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p.3-17
> Result 4 8. Let X, X,;,..., X, be mutually independent with X; distributed as
(Note that each X has the same covariance matrix X. )Then ’
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. . . p. 3-18
« Assessing the assumption of normality :
> Recall:

= Q-Q plot (quintiles vs. quintiles plot)
= histogram Skewnsss,

> Let X be distributed as N,(p, ) with || > 0. Then

/_dm = the marginal distribution X is nor 2;}7 normal P’Db""'/'*y P/ft
= linear combination of X, is norma:] (&&P/"fﬁ" ""”"“Z)

> -drm, + Many statisticians s%ggest ing ;
(s mponest (futw2
@;V S where Selpwét A€, ledline

:oc(; PAP in which il is the largest eigenvalue of S.
2\ (X - )X - is distributed as X%: ~
t?se

+ Mahalanobis distance

Scoltter d? = (x; — X)
?\0'\’ ! !
d?,d3,.

.., d% should behave like a chi-square random variable-

r ck\— squane plit
(& plaf' %r
e . ) Ghi=s J
@ In some case, data is clearly non-normal but a transformation to apprOX|mat
Box normality is possible. For example, for count data, consider the square root
rm. For proportion data, the logit transform, and for correlations r, the
g[(1+r)/(1-r)] is worth a try. (more detalils in textbook, 4.8)
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.3-19
- detecting(outliers) H s~ :
(-dm{—} Make a dot plot for each variable. —' I ***° il .L.:. o @
2»4;,& Make a scatter plot for each pair of variables.
.Aml% Calculate the standardized values Zjk = (Xjx — Xx)/Vskk for j = 1,2,...,n

and each column k = 1,2,..., p. Examine these standardized values for large

or small values. of dots =np.

> Calculate the generalized squared distances (X; — i)'S_l(xj — X). Examine
these distances for unusually large values. In a chi-square plot, these would be
the points farthest from the origin.

ammmm—— (1]

Normal probability plot Chi-square plot

» Note. When sample size is large, the
appearance of few extreme values is reasonable

> If outliers are identified, they should be examined for content. Depending upon
the nature of the outliers and the objectives of the investigation, outliers may be
deleted or appropriately “weighted” in a subsequent analyas@

% Reading: Textbook, 4.1, 4.2, 4.6, 4.7 (CM(K WM, Wp.3-5~()

Sample Mean Vector and Sample Covariance Matrix” ™
under Normality Assumption(ce Resuit3. |

» Maximum likelihood estimator LNp.3-3)
> Result 4.11. Let X,,X,,...,X, be a random sample from a normal population
with mean p and covariance 3. Then "
(= ~—
- - ] Z -r TN ('n - 1)
p=X and h3 DX -X)(X; - X) = " S
i=1

are the maximum likelihood estimatpps of p and X, respectively. Their observed

n
values, X and (1/n) 3, (x; — X)(x; — X)', are called the maximum likelihood esti-

pourt (S (44T (Xa"“)
_mafe} of p and . ﬁ = J%L'r( cxg-u)z (xn -,a))
{ Joint density } 11 _| ——— E?f;ztr( 5 29#)09 ),
of X1, Xz, Xaf T @myB IR “t(36 %‘7“%“/4)
¥ 57 K

oci‘gl%{ [ (g{(x; X)(x; — x)+nx— (x—,,;)ﬂ/i}
“[ (E(X-xi(x-xnn(xj - Tﬁnio«/mﬂ))
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« Sufficient statistics p. 3-21

> LetlX,,X,,..., e a random sample from a multivariate normal population
with mean g and covari 3. Then normality assumgptron s

dimenston red,k(xm J\_ and S hire sufficient statistics ~ 1Twe, all ’7{]%""‘"'177’"-

« Distribution of X and S s tepf' n X XS,

> Let X,,X,,..., X, be a random sample of size n from a p-vanate normal
distribution with mean p and covariance matrix =. Then

1. X is distributed as N,(u,(1/n)%). é—ﬁy esubl, & (LIV 3«/-7«)
&~ : ?S is distributed as a Wishart random matrix w1th n—1df
I(YB’X 8./X and S are independent. b - SZ-W drstribidtion
»Wishart distribution f '

i ’
« definition:  w, (.| %) =' Wishart distribution with m d.f. g’fl}c
m

= distribution of > Z,Z; C (f— 4 ZJ‘/

Sipdop
( cz)c z)

where the Z; are each independently distributed as N,(0, E)

= SOMe properties

L ~N(o,cxC’)
1. If A; is digtributed as V@Al ) independently of A,, whlch is distributed as

A,|3), then A; + A, is distributed as V.@(Al + A,|X). That is, the
degrees of freedom add. )

2. If A is distributed as W,,(A | X), then CAC' is distributed as W,,(CAC' | CZC').

p. 3-22

« Large-Sample ( when the noYm/oty MSuM/D’/an IS a‘rappca()
> Law of Large Number

Let X, X,,..., X, be independent observations from a population with mean
p and finite (nonsingular) covariance X. Then

X converges in probability to u
and

S(or 3 = S,) converges in probability to =

> Result 4.13 (The central limit theorem). Let X,;,X,,..., X, be independent
observations from any population with mean g and finite covariance 2. Then

Vn (X — p) has an approximate N,(0, X) distribution
and 271"

n(X - p)@l(f — p) is approximately xf,

for large sample sizes. Here n should also be large relative to p.

(2-0S M "‘/’Mn-/ ( /5.’.)

% Reading: Textbook, 4.3, 4.4, 4.5
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