Lecture Notes

Γ

• Some theoretical results under the modeling
$$\mu = 1/1 \cdot d$$
.
• Result 3.1. Let $\chi_1, \chi_2, \dots, \chi_n$ be a (random sample) from a joint distribution that has mean vector μ and covariance matrix is $\frac{1}{n} \sum_{X} proximative \infty$.
That is $E(\underline{X}) = \mu$ (population mean vector) \Rightarrow sample mean $\mu = 1$ and μ

made by S.-W. Cheng (NTHU, Taiwan)

Γ

• In future lecture,

$$\mathbf{S} = \left(\frac{n}{n-1}\right) \mathbf{S}_{n} = \frac{1}{(n-1)} \sum_{\substack{i=1\\ i \neq j \neq i}}^{n} (\mathbf{X}_{i} - \overline{\mathbf{X}}) (\mathbf{X}_{i} - \overline{\mathbf{X}})^{i}$$
will replace \mathbf{S}_{n} as the sample covariance matrix in most of the material.
• Note: even though the (*i*, *k*)th entry of \mathbf{S}_{i} s_{*i*,*b*} is an unbiased estimator of $\sigma_{i,k}$
 $E(\sqrt{s_{i}}) \neq \sqrt{\sigma_{i}}$ and $E(r_{i,k}) \neq \rho_{i,k}$
 $E(\sqrt{s_{i}}) \neq \sqrt{\sigma_{i}}$ and $E(r_{i,k}) \neq \rho_{i,k}$
 $E(\mathbf{X} = \mathbf{C}) (\mathbf{X} = \mathbf{C} + \mathbf{C}) + c_{i} + c_{$

made by S.-W. Cheng (NTHU, Taiwan)

Γ

$$\begin{aligned} & \textbf{Multivariate Normal Distribution} \\ & \textbf{Density of Normal Distribution} \\ & \textbf{Density of Normal Distribution} \\ & \textbf{Univariate case: normal density with mean μ and variance $\sigma^2 \quad \textbf{UNIADES} \\ & \textbf{UNIVARIANCE} \\ & \textbf{Multivariate case: a μ -dimensional normal density for the random vector \\ & \textbf{X}' = [X_1, X_2, \dots, X_p] has the form \\ & \textbf{UNIVARIANCE} \\ & \textbf{UNIVA$$$