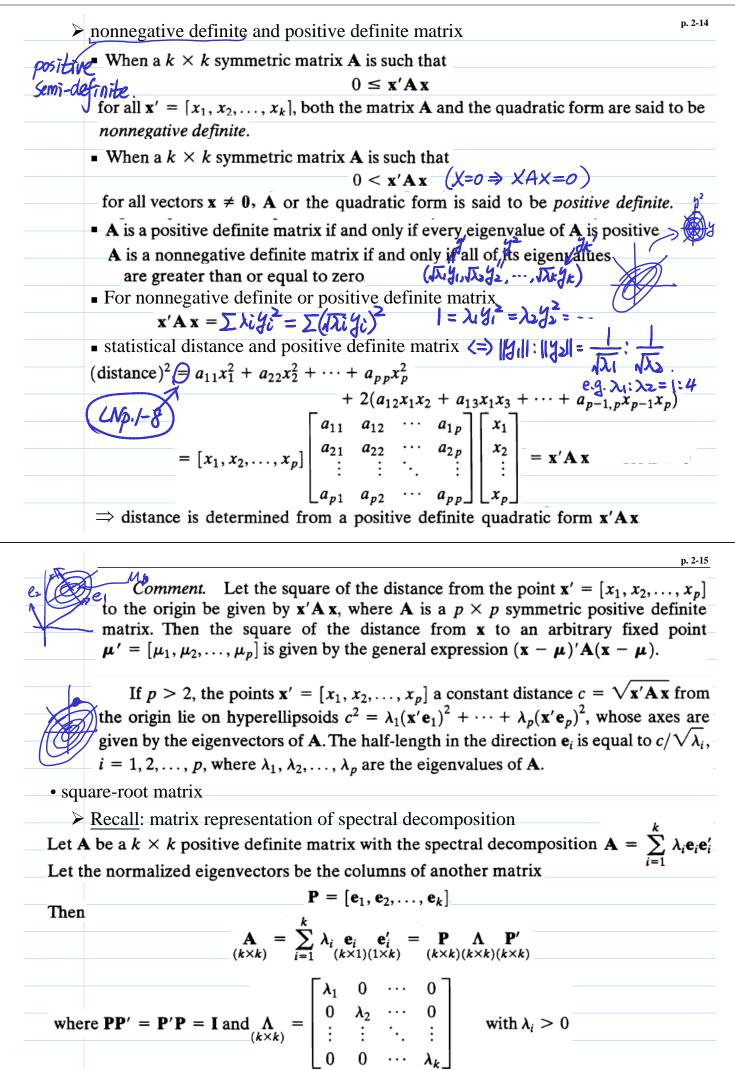
n. 2-10 **Definition 2A.31.** Let A be a square matrix of dimension $k \times k$ and let λ be an eigenvalue of **A**. If $\mathbf{x}_{(k\times 1)}$ is a nonzero vector $(\mathbf{x}_{(k\times 1)} \neq \mathbf{0}_{(k\times 1)})$ such that X= XI ... KK $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ $AX=X/I=[\lambda_1X_1]\cdots[\lambda_KX_K]$ then x is said to be an eigenvector (characteristic vector) of the matrix A associated with the eigenvalue λ . $(S = \lambda 2)$ • uniqueness of eigenvectors $(A(cx) = cAx = c\lambda x = \lambda(cx))$ -when all $\lambda c \leq are different$. K2 XAX2 -some \$ \i's are identical => 9 AXI= \IXI]=> =24722 = $\lambda_2(X_1X_2)$ eigenvectors corresponding to distinct $A(a_1X_1+a_2X_2)$ (xTAx) eigenvalues are perpendicular (A: Symutric) = a, $\lambda_1 x_1 + a_2 \lambda_2 x_2$ $=\chi [A] \times [$ determinant = product of eigenvalues $= \lambda_1 (a_1 \times a_2 \times a_3)$ $CAx = C \cdot \lambda x = (c\lambda)x$ =XAX ↓ |I|=1 $=\lambda_1(\chi_2^T\chi_1)$ **¼[™]X₂=0**∎ eigensystem Let A be a $k \times k$ square symmetric matrix. Then A has k pairs of eigenvalues and eigenvectors namely, sreal E $\lambda_2, (e_2)$ The eigenvectors can be chosen to satisfy $1 = \mathbf{e}'_1 \mathbf{e}_1 = \cdots = \mathbf{e}'_k \mathbf{e}_k$ and be mutually perpendicular. The eigenvectors are unique unless two or more eigenvalues {e1,...,ex} forms an orthgonal basis, are equal. P=[e1/...|ek], PP'=P'P=I. p. 2-11 \triangleright trace **Definition 2A.28.** Let $\mathbf{A} = \{a_{ij}\}$ be a $k \times k$ square matrix. The *trace* of the matrix \mathbf{A} , written tr (A), is the sum of the diagonal elements; that is, tr (A) = $\sum_{i=1}^{n} a_{ii}$. **Result 2A.12.** Let A and B be $k \times k$ matrices and c be a scalar. (f) tr(A) = tr(PAP) (a) $\operatorname{tr}(c\mathbf{A}) = c \operatorname{tr}(\mathbf{A})$ = tr(AP'P) = tr(A) = sum of eigenvalues (b) $\operatorname{tr}(\mathbf{A} \pm \mathbf{B}) = \operatorname{tr}(\mathbf{A}) \pm \operatorname{tr}(\mathbf{B})$ (c) $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA}) \Rightarrow \overline{\operatorname{tr}(A_1 \cdot \cdot A_n)} = \overline{\operatorname{tr}(A_2 \cdot \cdot A_n A_1)}$ (d) $\operatorname{tr}(\mathbf{B}^{-1}\mathbf{AB}) = \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(A_3 \cdot \cdot A_n A_1 A_2)$ $= \operatorname{tr}(ABB^{-1})_k k$ (e) $\operatorname{tr}(\mathbf{A}\mathbf{A}') = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}^2 \notin \operatorname{generalization} of length$ $= tr(A'A) \not a i=1 \sum_{j=1}^{k} a_{ij}^2 \notin \operatorname{generalization} of length$ of a vector to matrix> partition of matrix Sn, S11, S22: Symmetric S2 'S12, S21: not symmetric in general, $\sim 2 \times 2$ case $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{pmatrix} \chi \\ data \\ cat \end{pmatrix}$ $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{bmatrix}$ A_{11} A_{12} $\begin{bmatrix} B_{11} & B_{12} \end{bmatrix}$ $A_{21} A_{22} | B_{21} B_{22} |$ $A_{11}B_{11} + A_{12}B_{21} \quad A_{11}B_{12} + A_{12}B_{22}$ $A_{21}B_{11} + A_{22}B_{21}$ $A_{21}B_{12} + A_{22}B_{22}$

made by S.-W. Cheng (NTHU, Taiwan)

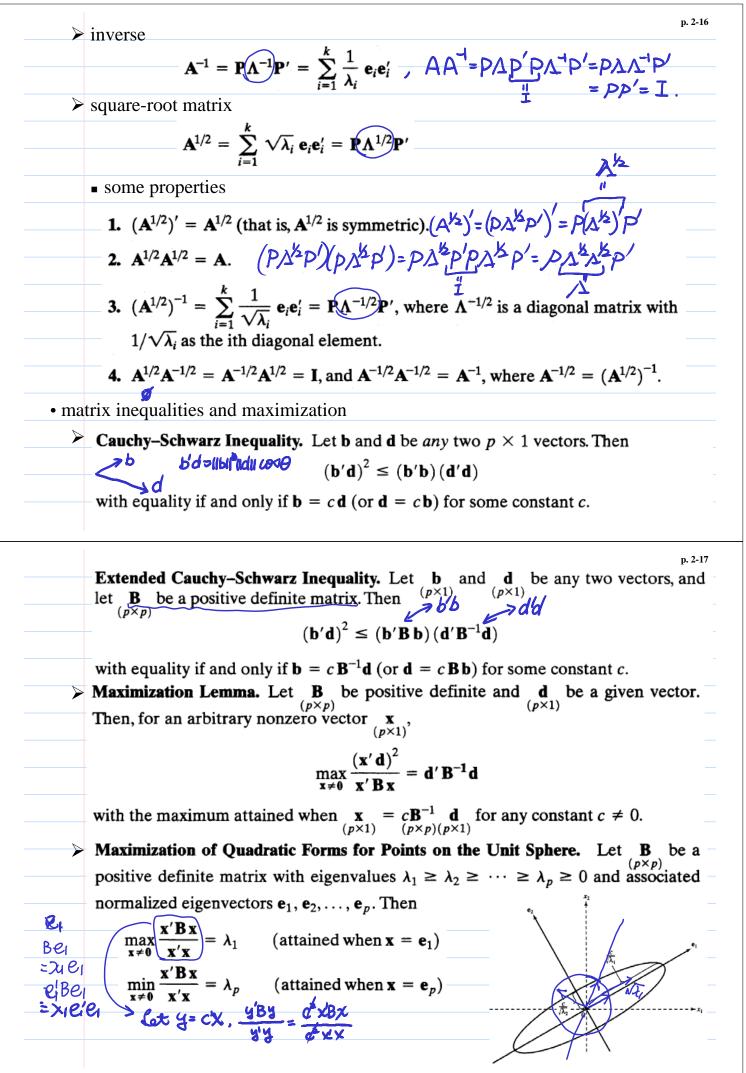
• block diagonal matrix: partition matrix **A** for which
$$\mathbf{A}_{ij}=0$$
 if $i \neq j, e.g.,$
 $A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$
• a block diagonal matrix is invertible iff each $\mathbf{A}_{ij}=0$ is invertible and
 $A^{-1} = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{bmatrix}$
• these works with more than 2 by 2 partitioning
• positive definite matrix
> spectral decomposition and singular-value decomposition
Pesult 2A.14. The Spectral Decomposition. Let **A** be a $k \times k \left[\text{symmetric} \right] \text{matrix}.$
Pesult **2A.14.** The Spectral Decomposition. Let **A** be a $k \times k \left[\text{symmetric} \right] \text{matrix}.$
Pesult **2A.14.** The Spectral Decomposition. Let **A** be a $k \times k \left[\text{symmetric} \right] \text{matrix}.$
Pesult **2A.15.** Singular-Value Decomposition. Let **A** be a $m \times k$ matrix of real numbers. Then there exist an $m \times m$ orthogonal matrix **U** and $k \times k$ orthogonal matrix **V** such that
A = UAV'
where the $m \times k$ matrix **A** has (i, i) entry $i \geq 0$ for $i = 1, 2, ..., \min(m, k)$ and the other entries are zero. The positive constants λ_i are called the singular values of **A**.
• $AV = UA \left(i A = UAV' \\ \text{where the } m \times k \max t A$ has (i, i) entry $i \geq 0$ for $i = 1, 2, ..., \min(m, k)$ and the other entries are zero. The positive constants λ_i are called the singular values of **A**.
• $AV = UA \left(i A = UAV' \\ \text{where the } m \times k \max t A$ has (i, i) entry $i \geq 0$ for $i = 1, 2, ..., \min(m, k)$ and the other entries are zero. The positive constants λ_i are called the singular values of **A**.
• $AV = UA \left(i A = UAV' \\ A = VA^2 V' \\ A = k = (x_1, x_2, ..., x_k]$ and **A** is a $k \times k$ symmetric matrix.
Y As guared singular values of **A** are eigenvalues of **A** 'A and columns of **V** are eigenvectors of **A** 'A and columns of **V** are eigenvectors of **A** 'A $A = VA^2 V' \\ A = A_1 (\mathbf{e}_1) (\mathbf{e}_1 + \lambda_2 \mathbf{e}_2 \mathbf{e}_2 + ... + \lambda_k \mathbf{e}_k \mathbf$

made by S.-W. Cheng (NTHU, Taiwan)



made by S.-W. Cheng (NTHU, Taiwan)

NTHU STAT 5191, 2010



Moreover,

$$\max_{1 \le i_1, \dots, i_k} \frac{\mathbf{x}^T \mathbf{B} \mathbf{x}}{\mathbf{x}^T} = \lambda_{k+1} \quad (\text{attained when } \mathbf{x} = \mathbf{e}_{k+1}, k = 1, 2, \dots, p-1)$$
where the symbol \bot is read "is perpendicular to."
• approximation of a rectangular matrix by a lower-dimensional matrix
> sum of squared differences

$$\sum_{n=1}^{\infty} \sum_{j=1}^{k} (a_{ij} - b_{ij})^2 = \operatorname{tr}[(\mathbf{A} - \mathbf{B})(\mathbf{A} - \mathbf{B})^{\prime}] \subseteq \operatorname{qoval}(\mathbf{A}) \oplus \mathbf{A}^{\dagger} \oplus \mathbf{A}^{\bullet} \oplus \mathbf{A}^{\bullet}$$

made by S.-W. Cheng (NTHU, Taiwan)

