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p. 2-10
Definition 2A.31. Let A be a square matrix of dimension k X k and let A be an eigen-
ilue of A If (kxl) is a nonzero vector (( X # (kl) ) such that

X,,L ‘ kx1)
AX=X/ =[] e] AX =X

then x is said to be an eigenvector (characteristic vector) of the matrix A associated with
the eigenvalue A. ($=A2

. unlqueness of elgenvggtors( A(cX)= ch=ch=/\£cx))

—when

i% —Some a)/s w2 idoitraad s O BM X )y

-h(x;rx;)elgenvectors corresponding to dlstlnc Aakita>%) %

(ALY igenvalues are perpendlcula(A Wé-d: M¥atas kol //

<Ay, 4 determinant = product of eigenvalues (SX(4x+as).)

KA | o =L [cA%=c =)
= MO

v¥=0" €igensystem

Let Abeak X k squar matnx Then A has k pairs of eigenvalues

and eigenvectors namely,

@@ ®e

The eigenvectors can be chosen to sausfy 1= e1e1 --- = e}e; and be mutually
perpendicular. The eigenvectors are unique unless two or more eigenvalues
are equal.  {o,, ---,2¢} forms an Or’c\ngom.Q bagis,

P=le|-[er] , PP'=P'P=T

p.2-11

> trace

Definition 2A.28. Let A = {g,;} be ak X k square matrix. The trace of the matrix A,
k
written tr (A), is the sum of the diagonal elements; that is, tr (A) = E a;;.
i=1
Result 2A.12. Let A and B be & X k matrices and ¢ be a scalar.

A{ (a) tr(cA) = ctr (A) ) t(A) =tr{ PAP)
"~ ®) tr(A £ B) = tr(A) £ tr(B) =t (APP)
= A
=Sum Q‘@Wu@g

b _(c)_tr(AB) = tr(BA) VS Gl
(d) tr(B‘lAB) tr(A)

An)=lr{A2-dn #)
—L‘:(ﬁs ~An fft)

=t(ABB"), | -
(e) tr(AA’) = D 2 aut_ fen
‘D'(P«A)f‘_1 i= 7% a ved'o @ i'%
> partition of matrix -
a 2x2 case = < Suls 5n, 50,522 Symml/hc
4= A1 A2 (dit Sy Siz, Sz.l naf'symmd'fc
Apy Ao sab)
[‘411 A1z Bi1 B2 A1l Ao Bi1 Bio
+
A1 A2 Boy Boo {-’121 Az | [ B21 B2z

A1+ By Ao+ Bio A11B11 + A12B2) Ap1Bio+ A12B2s

A21 + B21 Azo+ Bas A21B11 + A20B21 A21B12 + A22B25
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= block diagonal matrix: partition matrix A for which A, =0 if i=j, e.g.,
A= A1 o

| 0 [Ax
+ ablock diagonal matrix is mvertlble iff each A, =0 is invertible and

Ail All 91 ]

o [AIEAL]X]|A,)
= these works with more than 2 by 2 partitioning

* positive definite matrix
> spectral decomposition and singular-value decomposition

esult 2A.14. The Spectral Decomposition. Let Abeak X matrix.

Pg[(,"'""e¢ en A can be expressed in terms of its k e1genvalue+elgenvector pairs (A;, e;) as

oo [l el ) A= St

=DAD’ A—Aee'+)te'+ “+ Ap e, e
PAP (kxk) (kxl](lxk) (kx1)(1x2k) (kfnuxkk)

Result 2A.15. Singular-Value Decomposition. Let A be an m X k matrix of real
numbers. Then there exist an m X m orthogonal matrix U and a k X k orthogonal
matrix V such that

A = UAV’
where the m X k matrix A has (i,i) entry A; = Ofori = 1, 2,..., min(m, k) and the
other entries are zero. The positive constants A; are called the singular values of A.

p. 2-13

« AV=UA (A=UAT > AT= UAVVJAV=U71)

AU = VK (VA=VAT) { ];
« AA”= UA2U @UAV*VA v’ | L kdm m-dim

m»(m,j squared smgular ValGesof A are eigenvalues of AA~” and columns of U
are eigenvectors of AA”

ATA=VAN”
SO squared singular values of A are eigenvalues of A” A and columns of V
are eigenvectors of A”A

> quadratic form /‘%/Ek—ﬂel
Definition 2A.32. A quadratic form Q(x) in the k variables x, x5,. .., X, is Q(x) = x'AX,
where x' = [x, x;,..., x) and A is a k X k symmetric matrix.
x'Ax dzwn?)z/’é@ﬂ
X(Ap e e +A e e +---+ A e e )X
= Aj(xe)(efx) + - + A (x'€k)( efX)

= M[é__g + Ap(x' e,,) mg, ¥ -“fﬂkgb
nmg‘oo\wt. Y=
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» nonnegative definite and positive definite matrix

/0057 e When a k X k symmetric matrix A is such that

9 i I”k ) 0 = X'AX
forallx' = [x1,x5,..., x; |, both the matrix A and the quadratic form are said to be
nonnegative definire.

= When a k X k symmetric matrix A is such that
0<x'Ax (X=0> XAx=0)
for all vectors x # 0, A or the quadratic form is said to be posmve definite. Y’
" Aisa posnwe definite matrix if and only if every eigenvalue of A i 1:; positive /
A is a nonnegative definite matrix if and only if°all of fts eigenyalues

are greater than or equal to zero (J)_ugmlxaga., mgk)

= For nonnegative deflnlte or posmve definite matrn&

x'Ax z}‘bgb o ZG-—L (/) = )ng 'bg) - ~- , —L
= statistical distance and posmve deflnlte matrix <= (4|l llgzll
(distance) @ an X3 + apxd + o+ appr, é_;u 'i-)_?; Y

' + 2(aux1x2 + a13X1X3 + -+ ﬂp_l’pxp_lxpg

J ay;; a2 o 41p || X

= [x1,%,...,Xp] 112:1 32:2 azf’ x:z = x'AX
ap1 Qp2 dppd L%p

= distance is determined from a positive definite quadratic form x’Ax

p. 215

omment. Let the square of the distance from the point X' = [xy, x3,..., X))
to the origin be given by x'A x, where A is a p X p symmetric positive deﬁmle
matrix. Then the square of the distance from x to an arbitrary fixed point
g’ = [My, Ma,. .., 1p) is given by the general expression (x — u)'A(x — p).

If p > 2, the points x’ = [x, xz, ., x,] a constant distance ¢ = Vx'Ax from
the origin lie on hyperellipsoids c¢? )q(x e,)2 ot Ap(X ep) whose axes are
given by the eigenvectors of A.The half-length in the direction e; is equal to ¢/ \/_,,
i=1,2,..., p,where Ay, Ay, ..., Apare the eigenvalues of A.

« Suare-root matrix
» Recall: matrix representation of spectral decomposition P
Let A be a k X k positive definite matrix with the spectral decomposition A = E Ae;e;

. . . i=1
Let the normalized eigenvectors be the columns of another matrix '

P=|e,e,..., el
Then [e1, 2 k]
E A e e =P AP
(kxk) i=1 (kx])(lxk] (kXk)(kxk)(kxk)
A O - 0
0 A -+ 0
where PP’ =P'P=Iand A =| . 2 . | with A; > 0
(kxk) Toon
0 0 - A
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> inverse hee
k 4 -
A=A = 3 Leer , AR =PAP'RATP=PAATP
=1 A T =pp’=1.
> square-root matrix -

k
A =% VX ee] = I@P
i=1

= SOme properties !
1. (AY2) = AM2 (that is, AY? is symmetric) .(Ayz)/: (DAX‘P’ y= P{Ab) F/
o Z/L-’_JL

k L
3. (AT =3 % eel = @', where A2 is a diagonal matrix with
i=1 VA
1/V/A; as the ith diagonal element.

A%.

4. A2ATV? = ATV2AV2 = | and AV2ATY2 = A7Y, where ATV2 = (AY2)7,
. A o
« matrix inequalities and maximization

> Cauchy-Schwarz Inequality. Let b and d be any two p X 1 vectors. Then

with equality if and only if b = c¢d (or d = cb) for some constant c.

p. 2-17

Extended Cauchy-Schwarz Inequality. Let b and d be any two vectors, and
let W@. Then lP>Z1)b (pxlc}{u
(pXp Pt /7
(b’d)* = (b’Bb) (d'B'd)
with equality if and only if b = ¢B7'd (or d = ¢ Bb) for some constant c.
> Maximization Lemma. Let B be positive definite and d be a given vector.

. (pxp) (px1)
Then, for an arbitrary nonzero vector ( x”,
X
2
x'd
max( - ) =d'Bld
x#0 X' Bx
with the maximum attained when x = c¢B™ d for any constant ¢ # 0.

(px1)  (pxp)(px1)
» Maximization of Quadratic Forms for Points on the Unit Sphere. Let B bea

. . . . . (pxp),
positive definite matrix with eigenvalues Ay = A; = --- = A, = 0 and associated

normalized eigenvectors ey, e, ..., e,. Then
| '
Be, mfﬂﬂ 1 (attained whenx = e;)
X

:24 6[ '

(B min = Bx _ A (attained whenx = e))
¥ 6! x#0 X'X P P
EXEE S oag. oy 4BY &

yYy  Fvx
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p. 2-18
Moreover,

x'Bx
max

=A- tt i d h = ,k= gy iy P
X Xx k+1 (attained whenx = e; 1.2 p-1)

where the syinbol' 1 is read “is perpendicular to.” .
« approximation of a rectangular matrix by a lower-dimensional matrix
» sum of squared differences d
lS'(ﬂM&

m k
> (@ - b;)? = tr[(A - B)(A - B)'] & qunaraafion 7 feven
= = 4, avedtrs Lo mams
> Result 2A.16. Let A be an m X k matrix of real numbers with m = k and singular
value decomposition UAV'. Let s < k = rank (A). Then

AR ™ e

mz K ( ; B=2 Awv) X2z >0
dm(Spacespanned by Cojumns ot BY =
is the rank-s least squéﬁs apﬁoﬁmau%n to A. It ini}nizess

tr[(A - B)(A - B)']

over all m X k matrices B having rank no greater than s. The minimum value, or
k

error of approximation,is >, A
i=s5+1

. ] . . p. 2-19
U sample mean, covarlance, and correlation as matrix operatlon

> sample mean = 7] — - — - - -
>ample mea X1 yil X11 X122 " Xip 1
n
X3 y2l 1| ¥ X2 o Xaa || 1 1
X = =| n |== =-X'1
. n n
— r
X, _}:& Xp1 Xp2 t Xpn |[ 1
L 1 L n_ L JL _
> sample covariance matrix % z,
1x =LrX =% 2 %
n T
% % %,
X1p — Xy X3~ Xy ottt Xpp

EF
(T-p)X X=X = | = 0% e m s 0

\ Xp1 — X} Xpy — Xy ¢ Xnp — Ep
1 ' 1 , 1, \we >
nS,= (X - ;11*X) (X - ;11*)() =X (1 - 11 )X->5n=;})((1:,,'14)><

. ! 1
since (I - l11') (l - lll') =] - 11_1’ - 111’ +~1511’11' =1-—-11
n n n n n n
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» sample correlation matrix

Dla’Z —
(pxp)
Since
VS11 Vs Vs Vs V11 VSpp
R = : : g : = D72 8,p72
S1p S2p Spp
L Vs11 VSpp VS22 VSpp VSpp Vpp

s Reading: Textbook, 2.2, 2.3, 2.4, 2.7, Supplement 2A, 3.5
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