



made by S.-W. Cheng (NTHU, Taiwan)

NTHU STAT 5191, 2010

p. 2-5 some properties of matrix operations **Result 2A.4.** For all matrices A, B, and C (of equal dimension) and scalars c and d, the following hold: (a) (A + B) + C = A + (B + C)**(b)** A + B = B + A(c) $c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$ (d) $(c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$ (e) (A + B)' = A' + B'(That is, the transpose of the sum is equal to the sum of the transposes.) (f) $(cd)\mathbf{A} = c(d\mathbf{A})$ $(\mathbf{g}) \ (c\mathbf{A})' = c\mathbf{A}'$ **Result 2A.5.** For all matrices A, B, and C (of dimensions such that the indicated products are defined) and a scalar c, (a) $c(\mathbf{AB}) = (c\mathbf{A})\mathbf{B}$ (b) A(BC) = (AB)C(c) A(B + C) = AB + AC(d) $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$ (e) $(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}' \xrightarrow{\sim} \mathbf{A}'\mathbf{B}'$ p. 2-6 More generally, for any \mathbf{x}_i such that $\mathbf{A}\mathbf{x}_i$ is defined, . dim(span(rows)) < dim(span(cloumns)) √ (f) $\sum_{j=1}^{n} \mathbf{A} \mathbf{x}_j = \mathbf{A} \sum_{j=1}^{n} \mathbf{x}_j$ (g) $\sum_{j=1}^{n} (\mathbf{A}\mathbf{x}_{j})(\mathbf{A}\mathbf{x}_{j})' = \mathbf{A}\left(\sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}'\right) \mathbf{A}'$ rank $\begin{bmatrix} A_{x_{j}} \\ A_{y_{j}} \end{bmatrix} \begin{bmatrix} A_{x_{j}} & A_{y_{k}} \end{bmatrix} \longleftrightarrow$ The product ≻ rank **Definition 2A.25.** The row rank of a matrix is the maximum number of linearly independent rows, considered as vectors (that is, row vectors). The column rank of a matrix is the rank of its set of columns, considered as vectors. **Result 2A.6.** The row rank and the column rank of a matrix are equal. *rank of a matrix* is either the row rank or the column rank > square matrix: # of rows = # of columns($m = \beta$) • a square matrix is said to be symmetric if $a_{ij} = a_{ji} (A' = A)$ • identity matrix I: the square matrix with ones on the diagonal and zero elsewhere $\mathbf{I}_{(k \times k)(k \times k)} = \mathbf{A}_{(k \times k)(k \times k)} = \mathbf{A}_{(k \times k)} \text{ for any } \mathbf{A}_{(k \times k)}$ non singular: columns of A are linearly \triangleright singularity singularity non S, ngularity; columns of A are integrable molecular if $\mathbf{A} = \mathbf{0}$ implies $(k \times k)(k \times 1) = (k \times 1)$ that $\mathbf{x}_{(k\times 1)} = \mathbf{0}_{(k\times 1)}$. If a matrix fails to be nonsingular, it is called *singular*. Equivalently, a square matrix is nonsingular if its rank is equal to the number of rows (or columns) it has.

made by S.-W. Cheng (NTHU, Taiwan)

Result 2A.II. Let A and	B be $k \times k$ square matrices.
(a) $ \mathbf{A} = \mathbf{A}' $	
(b) If each element of a re	bw (column) of A is zero, then $ \mathbf{A} = 0$
(c) If any two rows (column	nns) of A are identical, then $ \mathbf{A} = 0$
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	nns) of A are identical, then $ \mathbf{A} = 0$ en $ \mathbf{A} = 1/ \mathbf{A}^{-1} $; that is, $ \mathbf{A} \mathbf{A}^{-1} = 1$.
\Leftrightarrow eigensystem $ c\mathbf{A} = c^k \mathbf{A} $, where	c is a scalar.
eigenvalues and eigenvector	
Definition 2A.30. Let A be a trix. Then the scalars $\lambda_1, \lambda_2, \ldots$	$k \times k$ square matrix and I be the $k \times k$ identity ma- , λ_k satisfying the polynomial equation $ \mathbf{A} - \lambda \mathbf{I} = 0$
Definition 2A.30. Let A be a trix. Then the scalars $\lambda_1, \lambda_2, \ldots$ are called the <i>eigenvalues</i> ($\mathbf{A} - \lambda \mathbf{I} = 0$ (as a function of	$k \times k$ square matrix and I be the $k \times k$ identity ma- , λ_k satisfying the polynomial equation $ \mathbf{A} - \lambda \mathbf{I} = 0$ or <i>characteristic roots</i>) of a matrix A . The equation λ is called the <i>characteristic equation</i> .
Definition 2A.30. Let A be a trix. Then the scalars $\lambda_1, \lambda_2, \ldots$ are called the <i>eigenvalues</i> ($\mathbf{A} - \lambda \mathbf{I} = 0$ (as a function of	$k \times k$ square matrix and I be the $k \times k$ identity ma- , λ_k satisfying the polynomial equation $ \mathbf{A} - \lambda \mathbf{I} = 0$ r <i>characteristic roots</i>) of a matrix A . The equation
Definition 2A.30. Let A be a trix. Then the scalars $\lambda_1, \lambda_2, \dots$ are called the <i>eigenvalues</i> (or $ \mathbf{A} - \lambda \mathbf{I} = 0$ (as a function of $\mathbf{A} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$	$k \times k$ square matrix and I be the $k \times k$ identity ma- , λ_k satisfying the polynomial equation $ \mathbf{A} - \lambda \mathbf{I} = 0$ or <i>characteristic roots</i>) of a matrix A . The equation (λ) is called the <i>characteristic equation</i> . three roots: $\lambda_1 = 9$, $\lambda_2 = 9$, and $\lambda_3 = 18$
Definition 2A.30. Let A be a trix. Then the scalars $\lambda_1, \lambda_2, \dots$ are called the <i>eigenvalues</i> (or $ \mathbf{A} - \lambda \mathbf{I} = 0$ (as a function of $\mathbf{A} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$	$k \times k$ square matrix and I be the $k \times k$ identity ma- , λ_k satisfying the polynomial equation $ \mathbf{A} - \lambda \mathbf{I} = 0$ or <i>characteristic roots</i>) of a matrix A . The equation λ is called the <i>characteristic equation</i> .