

Chapter 1

Question

There are many random phenomena (example?) in our real life. What is the language/mathematical structure that we use to depict them?

Outline

- sample space
- event
- probability measure

probability space

- conditional probability
- independence
- three theorems
 - multiplication law
 - law of total probability
 - Bayes' rule

characteristic

* don't know what result we will get in the future

* the best we can do is to describe/calculate

the probability of these possible results.

樂透用獎号码

waiting time

rain tomorrow?

Website of My Probability Course

<http://www.stat.nthu.edu.tw/~swchen/Teaching/math2810/index.php>

Textbook page

LNp. (Lecture Note page)

Ch1~6, p.2-2

Definition (sample space, TBp. 2)

A sample space Ω is the set of all possible outcomes in a random phenomenon.

Example 1.1 (throw a coin 3 times, TBp. 35)

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\} \quad h: \text{head}$$

t: tail

Ω is a finite set

Example 1.2 (number of jobs in a print queue, Ex. B, TBp. 2)

$$\Omega = \{0, 1, 2, \dots\}$$

discrete random variable

Ω is an infinite, but countable, set

Example 1.3 (length of time between successive earthquakes, Ex. C, TBp. 2)

$$\Omega = \{t | t \geq 0\} = [0, \infty)$$

continuous random variable
 Ω is an infinite, but uncountable, set

Question

What are the differences between the Ω in these examples?

Definition (event, TBp. 2)

A particular subset of Ω is called an event.

collection of all
"well-defined" events
⇒ σ -field

Example 1.4 (cont. Ex. 1.1)

Let A be the event that total number of heads equals 2, then $A = \{hht, hth, thh\}$.

Example 1.5 (cont. Ex. 1.2)

Let A be the event that fewer than 5 jobs in the print queue, then $A = \{0, 1, 2, 3, 4\}$.

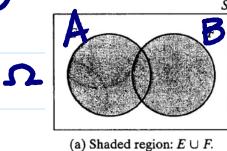
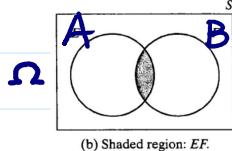
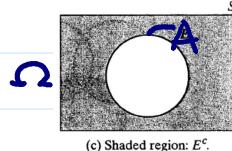
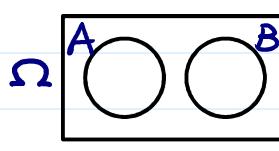
• union. $C = A \cup B \Rightarrow C$: at least one of A and B occur.

• intersection. $C = A \cap B \Rightarrow C$: both A and B occur.

• complement. $C = A^c \Rightarrow C$: A does not occur.

mutually
exclusive

• disjoint. $A \cap B = \emptyset \Rightarrow A$ and B have no outcomes in common.

**Definition** (probability measure, TBp. 4)

A probability measure on Ω is a function P from subsets of Ω to the real numbers that satisfies the following axioms:

1. $P(\Omega) = 1$. ← total prob. = 1

2. If $A \subset \Omega$, then $P(A) \geq 0$. ← non-negativity

3. If A_1 and A_2 are disjoint, then ← additivity

$P: \mathcal{F} \rightarrow [0, 1]$

Axioms of probability

$$P(A_1 \cup A_2) = P(A_1) + P(A_2).$$

More generally, if A_1, A_2, \dots are mutually disjoint, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Example 1.6 (cont. Ex. 1.1)

Suppose the coin is fair. For every outcome $\omega \in \Omega$, $P(\omega) = \frac{1}{8}$.

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}$$

1/8

1/8

1/8

1/8

1/8

1/8

1/8

1/8

1/8

$P: \Omega \rightarrow [0, 1]$

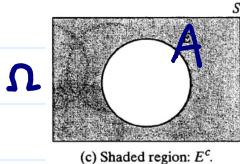
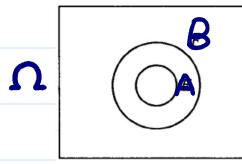
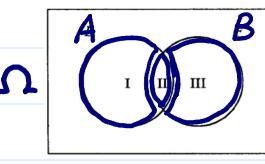
Property A. $P(A^C) = 1 - P(A)$.

Ch1~6, p.2-5

Property B. $P(\emptyset) = 0$.

Property C. If $A \subset B$, then $P(A) \leq P(B)$.

Property D. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.



generalization:

$$P(A_1 \cup \dots \cup A_n) = \sum P(A_i)$$

$$- \sum P(A_i \cap A_j)$$

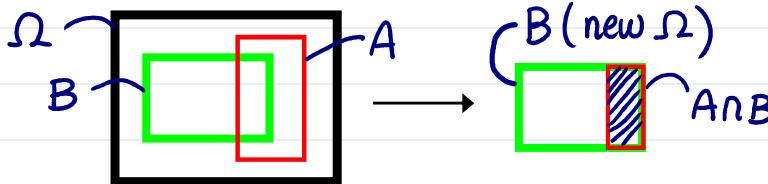
$$+ \sum P(A_i \cap A_j \cap A_k)$$

Definition (conditional probability, TBp. 17)

Let A and B be two events with $P(B) > 0$. The conditional probability of A given B is defined to be

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Q: Why cond. prob. important in statistics?



Ans: update information.

Ch1~6, p.2-6

Example 1.7 (cont. Ex. 1.6)

Suppose that the first throw is h . What is the probability that we can get exact two h 's in the three trials?

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}$$

$$B = \{hhh, hht, hth, htt\}$$

$$A = \{hht, hth, thh\}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3/8}{4/8} = \frac{1}{2}$$

Theorem (Multiplication Law, TBp. 17)

Let A and B be events and assume $P(B) > 0$. Then

generalization

$$P(A \cap B) = P(A|B)P(B)$$

intuition

$$P(A_1 \cap A_2 \cap \dots \cap A_n)$$

$$= P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdot \dots$$

Sometimes, this is easier to obtain ($\because \Omega \rightarrow B$)

Example 1.7 (Ex. B, TBp. 18)

Suppose if it is cloudy (B), the probability that it is raining (A) is 0.3, and that the probability that it is cloudy is $P(B) = 0.2$.

The probability that it is cloudy and raining is

$$P(A \cap B) = P(A|B)P(B) = 0.3 \times 0.2 = 0.06.$$

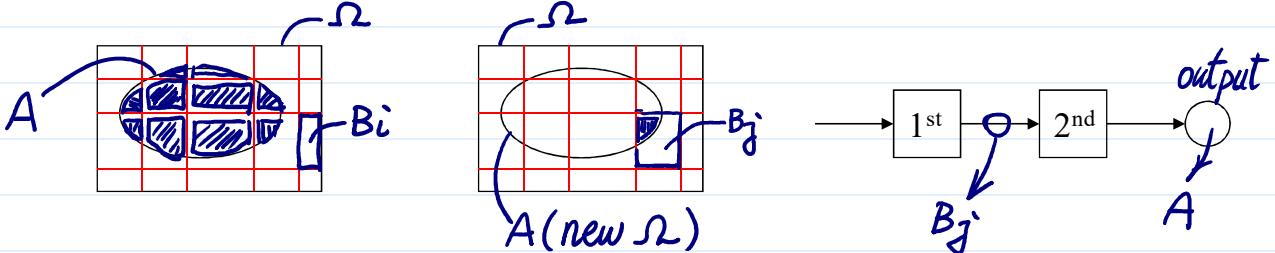
Theorem (Law of Total Probability, TBp. 18)

Let B_1, B_2, \dots, B_n be such that $\bigcup_{i=1}^n B_i = \Omega$ and $B_i \cap B_j = \emptyset$ for $i \neq j$, with $P(B_i) > 0$ for all i . Then, for any event A ,

$$P(A) = \sum_{i=1}^n P(A|B_i)P(B_i). \quad \begin{array}{l} \text{平均} \\ \text{權重} \end{array} \quad \leftarrow \text{intuition}$$

$\uparrow \quad \uparrow$
 $P(A \cap B_i)$

a partition of Ω

**Theorem (Bayes' Rule, TBp. 20)**

Let A and B_1, \dots, B_n be events where the B_i are disjoint, $\bigcup_{i=1}^n B_i = \Omega$ and $P(B_i) > 0$ for all i . Then

$$\frac{P(A \cap B_j)}{P(A)} = \frac{P(B_j|A)}{P(A|B_j)P(B_j)} = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^n P(A|B_i)P(B_i)}.$$

$\uparrow \quad \uparrow \quad \uparrow$
 update

Definition (independence, TBp. 24)

Two events A and B are said to be **independent** if

definition of independence $P(A \cap B) = P(A)P(B)$. 獨立

A collection of events A_1, A_2, \dots, A_n are said to be **mutually independent** if for any subcollection, A_{i_1}, \dots, A_{i_m} ,

$$P(A_{i_1} \cap \dots \cap A_{i_m}) = P(A_{i_1}) \dots P(A_{i_m}). \quad \text{cf.}$$

When A and B are independent,

intuition of independence $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$, generalization of multiplication Law in LNP.6

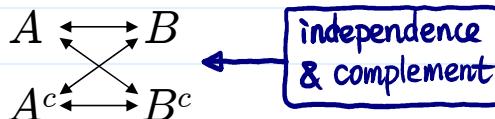
$$\text{and } P(A^c|B) = P(A^c).$$

$$\text{Furthermore, } P(A|B^c) = P(A) \text{ and } P(A^c|B^c) = P(A^c).$$

required
optional

❖ **Reading:** textbook, Sections 1.1, 1.2, 1.3, 1.5, 1.6, 1.7

❖ **Further Reading:** Roussas, Chapters 1 and 2



Chapters 2 and 3

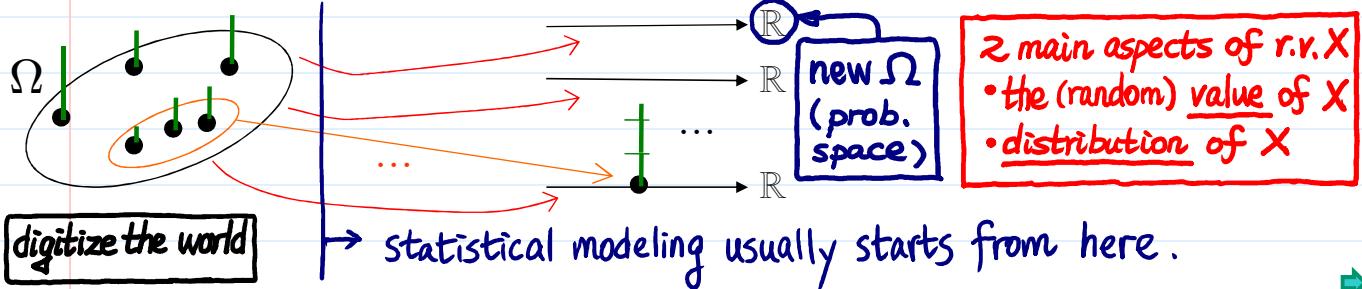
Outline

- random variables (隨機變數)
- distribution
 - discrete and continuous
 - univariate and multivariate
 - cdf, pmf, pdf
- conditional distribution
- independent random variables
- function of random variables
 - distribution of transformed r.v.
 - extrema and order statistics

• random variable

Definition 2.1 (random variable, TBp. 33)

A random variable is a function from Ω to the real numbers.



Ch1~6, p.2-10

Example 2.1 (cont. Ex. 1.1)

- (1) X_1 = the total number of heads
- (2) X_2 = the number of heads on the first toss
- (3) X_3 = the number of heads minus the number of tails

update probability space

$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}$	$X_1 : 3, 2, 2, 2, 1, 1, 1, 0$	$X_2 : 1, 1, 1, 0, 1, 0, 0, 0$	$X_3 : 3, 1, 1, 1, -1, -1, -1, -3$
$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$	$\frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8}$	$\frac{1}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8}$	$\text{new } \Omega$ $\text{new probability measure}$

Question 2.1

Why statisticians need random variables? Why they map to real line?

We need random variable because

Data in \mathbb{R}^n space
 Uncertainty need probability measure

can do
 "+", "-", "x",
 ":". exp. log, --

- distribution \leftarrow probability measure of r.v. \rightarrow don't know what value will appear (分配, 分布) • For r.v., its value: random, but its distribution: fixed.

Question 2.2

A random variable have a sample space on real line. Does it bring some special ways to characterize its probability measure?

	discrete	continuous
uni-variate r.v.	<ul style="list-style-type: none"> pmf cdf mgf/chf 	<ul style="list-style-type: none"> pdf cdf mgf/chf
multi-variate r.v.'s	<ul style="list-style-type: none"> joint pmf joint cdf joint mgf/chf 	<ul style="list-style-type: none"> joint pdf joint cdf joint mgf/chf

finite or countable infinity \leftarrow discrete
uncountable \leftarrow continuous

one r.v. \leftarrow uni-variate r.v.
at least two r.v. \leftarrow multi-variate r.v.'s

when any of them is known, the other 2 can be obtained

pmf: probability mass function, pdf: probability density function,
cdf: cumulative distribution function

mgf (moment generating function) and chf (characteristic function) will be defined in Chapter 4

Definition 2.2 (discrete and continuous random variables, TBp. 35 and 47)

A discrete random variable can take on only a finite or at most a countably infinite number of values. A continuous random variable can take on a continuum of values. \leftarrow uncountable

e.g.

Discrete

$$X \in \{0, 1, 2, 3\}$$

$$X \in \mathbb{Z}_+$$

Continuous

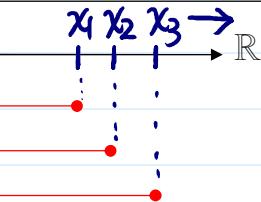
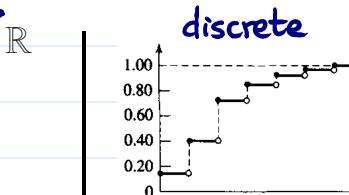
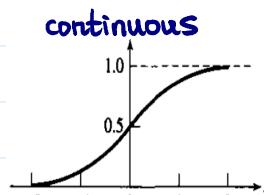
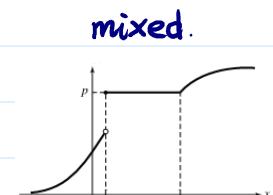
$$X \in [0, 1]$$

$$X \in (-\infty, \infty)$$

Definition 2.3 (cumulative distribution function, TBp. 36)

A function F is called the cumulative distribution function (cdf) of a random variable X if

$$F(x) = P(X \leq x), x \in \mathbb{R}.$$



Definition 2.4 (probability mass function/frequency function, TBp. 36)

A function $p(x)$ is called a probability mass function (pmf) or a frequency function if and only if (1) $p(x) \geq 0$ for all $x \in \mathcal{X}$, and (2) $\sum_{x \in \mathcal{X}} p(x) = 1$.

For a discrete random variable X with pmf $p(x)$,

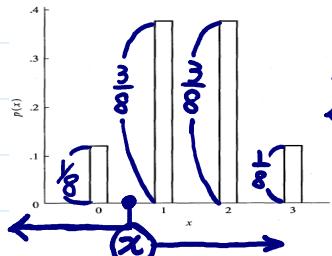
$$P(X = x) = p(x),$$

and

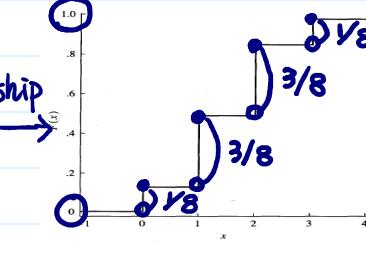
$$P(X \in A) = \sum_{x \in A} p(x).$$

\mathcal{X} : a finite or countably infinite set.

probability mass function



cumulative distribution function



$$\begin{aligned} P(X \leq 1) &= \frac{1}{8} + \frac{3}{8} = \frac{4}{8} = F(1) \\ P(X < 1) &= \frac{1}{8} = F(1-) \\ P(X = 1) &= P(X \leq 1) - P(X < 1) \\ &= F(1) - F(1-) \end{aligned}$$

• $F(x) = \sum_{t \leq x} P(X = t) = \sum_{t \leq x} p(t)$

$p(x) = P(X = x) = F(x) - F(x-)$

$$= \lim_{t \uparrow x} F(t)$$

Definition 2.5 (probability density function, TBp. 46)

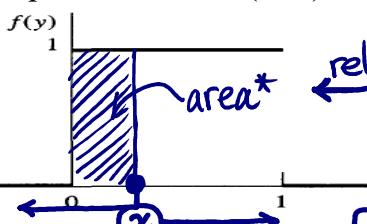
A function $f(x)$ is a probability density function (pdf) or density function if and only if (1) $f(x) \geq 0$ for all x , and (2) $\int_{-\infty}^{\infty} f(x) dx = 1$.

For a continuous random variable X with pdf f ,

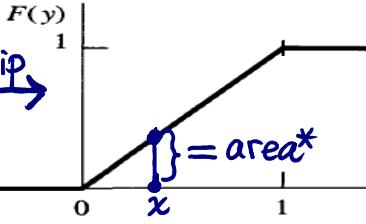
$$P(X \in A) = \int_A f(x) dx.$$

Note. pdf plays a similar role as pmf, but $\sum \rightarrow \int$

pdf of Uniform(0, 1)



cdf of Uniform(0, 1)



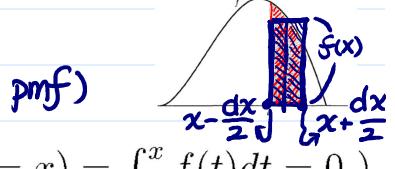
area = $P(A)$

• $F(x) = \int_{-\infty}^x f(t) dt$

$f(x) = \frac{d}{dx} F(x)$

The value of a pdf can be larger than one (c.f. pmf)

(Note. x st $f(x) > 0$, $P(X = x) = \int_x^x f(t) dt = 0$)



Question 2.3

How to interpret $f(x)$?

For small dx , $P\left(x - \frac{dx}{2} \leq X \leq x + \frac{dx}{2}\right) = \int_{x-\frac{dx}{2}}^{x+\frac{dx}{2}} f(t) dt \approx f(x) dx$

proportional to prob.

Theorem 2.1 (properties of cdf)

If $F(x)$ is a cumulative distribution function of some random variable X then the following properties hold.

1. $0 \leq F(x) \leq 1$
2. $F(x)$ is nondecreasing.
3. For any $x \in \mathbb{R}$, $F(x)$ is continuous from the right; i.e.

$$\lim_{t \downarrow x} F(t) = F(x).$$

4. $\lim_{x \rightarrow \infty} F(x) = 1$ and $\lim_{x \rightarrow -\infty} F(x) = 0$.
5. $P(X > x) = 1 - F(x)$ and $P(a < X \leq b) = F(b) - F(a)$.
6. For any $x \in \mathbb{R}$, $F(x)$ has left limit. $\rightarrow F(x-) = P(X < x)$
7. There are at most countably many discontinuity points of $F(x)$.

Conversely, if a function $F(x)$ satisfies properties 2, 3, 4 then $F(x)$ is a cdf.

Question 2.4 Why need joint distribution for the study of multivariate r.v.'s?

Why several marginal distributions not enough?

Example 2.2 (cont. Ex. 2.1)

$$(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$

$$\Omega = \{hhh, hht, hth, thh, htt, tth, ttt\}$$

X_2 : # of head on 1st toss

$$(x_1, x_2) \in \mathbb{R}^2$$

X_1 : total # of heads

$$0(1/8) \quad 1(3/8) \quad 2(3/8) \quad 3(1/8)$$

When $X_1=1$ occurs,

$$P(X_2=0 | X_1=1) = \frac{3/8}{3/8} = \frac{2}{3}$$

$$P(X_2=1 | X_1=1) = \frac{1/8}{3/8} = \frac{1}{3}$$

$$\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \quad 0 \quad 1$$

marginal distribution

$$\begin{array}{cccc} \frac{1}{8} \left(\frac{1}{16} \right) & \frac{1}{8} \left(\frac{3}{16} \right) & \frac{1}{8} \left(\frac{3}{16} \right) & 0 \left(\frac{1}{16} \right) \\ 0 \left(\frac{1}{16} \right) & \frac{1}{8} \left(\frac{3}{16} \right) & \frac{2}{8} \left(\frac{3}{16} \right) & \frac{1}{8} \left(\frac{1}{16} \right) \end{array}$$

joint distribution

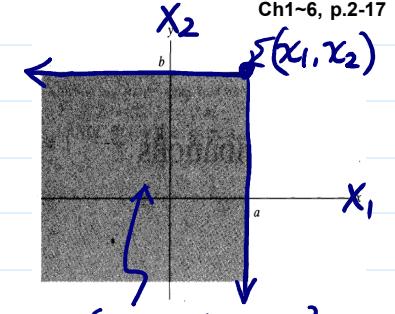
Note: two marginal distributions are not enough to describe their joint distribution.

Question 2.5

When we know the joint distribution, we can obtain every marginal distributions. Is the reverse statement true?

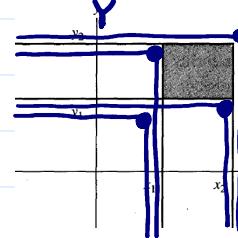
Definition 2.6 (joint cumulative distribution function, TBp. 71)The joint cdf of X_1, X_2, \dots, X_n is

$$F(x_1, x_2, \dots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n)$$

for $x_1, x_2, \dots, x_n \in \mathbb{R}$.

can be generalized to more than 2 r.v.'s

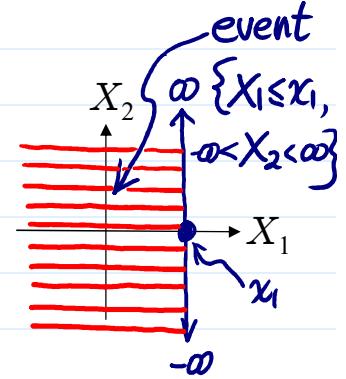
$$P(x_1 < X \leq x_2, y_1 < Y \leq y_2) = \frac{F(x_2, y_2) - F(x_2, y_1)}{-F(x_1, y_2) + F(x_1, y_1)}$$



{ $X_1 \leq x_1, X_2 \leq x_2$ } event.

Definition 2.7 (marginal cdf, TBp. 76)The marginal cdf of X_1 is

$$F_{X_1}(x_1) = P(X_1 \leq x_1) = \lim_{x_2, x_3, \dots, x_n \rightarrow \infty} F(x_1, x_2, \dots, x_n)$$



- discrete case: marginal pmf $p_{X_1}(x) = F_{X_1}(x) - F_{X_1}(x-)$.
- continuous case: marginal pdf $f_{X_1}(x) = \frac{d}{dx} F_{X_1}(x)$.

Ch1~6, p.2-18

discrete multivariate case

cf. the similarity between pmf & pdf

$$p(x_1, x_2, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \Rightarrow \text{joint pmf of } X_1, X_2, \dots, X_n$$

$$P((X_1, \dots, X_n) \in A) = \sum_{(x_1, \dots, x_n) \in A} p(x_1, \dots, x_n)$$

$$\frac{F(x_1, x_2, \dots, x_n)}{\text{relationship b/w joint cdf & pmf}} = \sum_{t_1 \leq x_1, t_2 \leq x_2, \dots, t_n \leq x_n} p(t_1, t_2, \dots, t_n)$$

$$p_{X_1}(x_1) = P(X_1 = x_1) = \sum_{-\infty < t_2 < \infty, \dots, -\infty < t_n < \infty} p(x_1, t_2, \dots, t_n)$$

continuous multivariate case

$$f(x_1, x_2, \dots, x_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(x_1, x_2, \dots, x_n) \Rightarrow \text{joint pdf of } X_1, X_2, \dots, X_n$$

$$P((X_1, \dots, X_n) \in A) = \int \dots \int_A f(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$\frac{F(x_1, x_2, \dots, x_n)}{\text{relationship b/w joint cdf & pdf}} = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(t_1, t_2, \dots, t_n) dt_n \dots dt_1$$

$$\frac{f_{X_1}(x_1)}{\text{relationship b/w marginal & joint pdfs}} = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, t_2, \dots, t_n) dt_2 \dots dt_n$$

- independent random variables ← Recall. independent events (LNp.8)

Definition 2.8 (independent random variables, TBp. 84)

Random variables X_1, X_2, \dots, X_n are said to be **independent** if their joint cdf factors into the product of their marginal cdf's

$\text{ANB} \rightarrow$

$$F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2) \cdots F_{X_n}(x_n)$$

for all x_1, x_2, \dots, x_n .

$$\begin{cases} (\Rightarrow) f = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{X_1} \cdots F_{X_n} = f_{X_1} \cdots f_{X_n} \\ (\Leftarrow) F = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1} \cdots f_{X_n} = F_{X_1} \cdots F_{X_n} \end{cases}$$

joint
can be
determined
by marginals

Theorem 2.2 (TBp. 85-86)

1. For continuous case,

$$F(x_1, \dots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n) \Leftrightarrow f(x_1, \dots, x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)$$

For discrete case,

Note: similarity between
pdf & pmf.

$$F(x_1, \dots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n) \Leftrightarrow p(x_1, \dots, x_n) = p_{X_1}(x_1) \cdots p_{X_n}(x_n)$$

2. X, Y independent

for interpretation

$$P(Y \in B | X \in A) = P(Y \in B)$$

For any
A & B

$$\Leftrightarrow P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

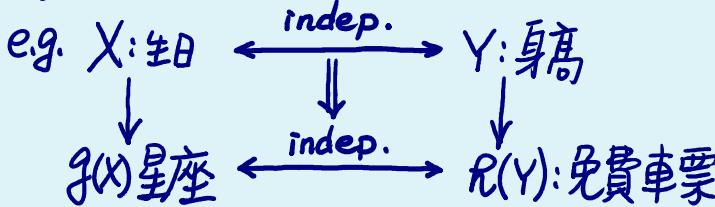
i.e. the events $\{X \in A\}$ and $\{Y \in B\}$ are independent

No matter what data X occurs, it has no impact
on the appearance probability of data Y .

3. X, Y independent $\Rightarrow Z = g(X)$ and $W = h(Y)$ are independent

indep. &
transformation

intuition



generalization

X_1, \dots, X_n are independent

$$1 < i_0 < i_1 < \cdots < i_k = n$$

$$Y_1 = g_1(X_1, \dots, X_{i_1}),$$

$$Y_2 = g_2(X_{i_1+1}, \dots, X_{i_2}),$$

...

$$Y_k = g_k(X_{i_{k-1}+1}, \dots, X_{i_k}).$$

Y_1, \dots, Y_k are independent

4. marginal distributions of X_1, X_2, \dots, X_n + independence \Rightarrow
joint distribution of X_1, X_2, \dots, X_n

• conditional distribution \leftarrow conditional probability (LNp.5)

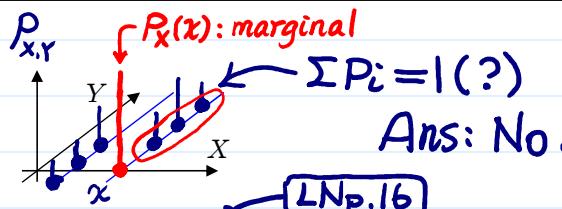
Definition 2.9 (conditional pmf for discrete case, TBp. 87)

X and Y are discrete random variables with joint pmf $p_{XY}(x, y)$,
the conditional pmf of Y given X is

$$p_{Y|X}(y|x) \equiv P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{p_{XY}(x, y)}{p_X(x)} = \frac{\text{joint}}{\text{marginal}}$$

$A \cap B$

if $p_X(x) > 0$. The probability is defined to be zero if $p_X(x) = 0$.



Example 2.3 (cont. Ex 2.2)

$$p_{X_2|X_1}(0|1) = 2/3, \text{ and } p_{X_2|X_1}(1|1) = 1/3$$

update $\left[\begin{array}{l} p_{X_2}(0) = 1/2 \\ p_{X_2}(1) = 1/2 \end{array} \right]$

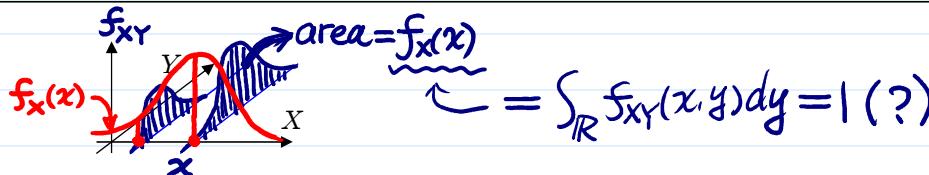
Definition 2.10 (conditional pdf for continuous case, TBp. 86)

X and Y are continuous random variables with joint pdf $f_{XY}(x, y)$,
the conditional pdf of Y given X is defined by

$$\frac{\text{joint}}{\text{marginal}} = f_{Y|X}(y|x) = \frac{f_{XY}(x, y)}{f_X(x)}, \quad y \in \mathbb{R},$$

Notice the similarity between pmf & pdf.

if $0 < f_X(x) < \infty$ and 0 otherwise.



Theorem 2.3

1. The definition of $f_{Y|X}(y|x)$ comes from

$$P(a \leq Y \leq b, x - \frac{\Delta x}{2} \leq X \leq x + \frac{\Delta x}{2}) / P(x - \frac{\Delta x}{2} \leq X \leq x + \frac{\Delta x}{2})$$

$$P(a \leq Y \leq b | x - \Delta x/2 \leq X \leq x + \Delta x/2) = \frac{\int_a^b \int_{x - \Delta x/2}^{x + \Delta x/2} f_{XY}(u, v) du dv}{\int_{x - \Delta x/2}^{x + \Delta x/2} f_X(t) dt}$$

$$\approx \frac{\int_a^b f_{XY}(x, y) \Delta x dy}{f_X(x) \Delta x} = \int_a^b \frac{f_{XY}(x, y)}{f_X(x)} dy$$

2. For each fixed x , $p_{Y|X}(y|x)$ is a pmf for y and $f_{Y|X}(y|x)$ is a pdf for y . \leftarrow Notice the different roles of x & y

3. $p_{XY}(x, y) = p_{Y|X}(y|x) p_X(x)$, and $f_{XY}(x, y) = f_{Y|X}(y|x) f_X(x)$

— multiplication law \leftarrow cf. LNp.6

4. $p_Y(y) = \sum_x p_{Y|X}(y|x) p_X(x)$, and $f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx$

— law of total probability \leftarrow cf. LNp.7

5. $p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x) p_X(x)}{\sum_x p_{Y|X}(y|x) p_X(x)}$, and $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{\int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx}$

update \downarrow update \downarrow

6. X, Y are independent $\Leftrightarrow p_{Y|X}(y|x) = p_Y(y)$ or $f_{Y|X}(y|x) = f_Y(y)$

LNp.7 cf. \rightarrow Bayes' rule

intuition (graphs in LNp.21 & 22)

items 3,4,5 can be generalized to more than 2 r.v.'s

• functions of random variables

Raw Data

X_1, \dots, X_n

Transformations

$$g_1(X_1, \dots, X_n) = Y_1$$

$$\dots$$

Extract Information

$$g_k(X_1, \dots, X_n) = Y_k$$

r.v.

Θ

unknown parameters in the statistical model

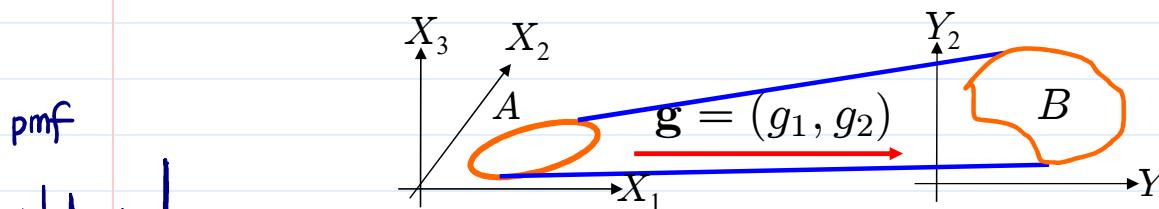
Question 2.6

For given r.v.'s X_1, \dots, X_n , how to derive the distributions of their transformations?

1. method of events \rightarrow discrete r.v.'s (pmf)

Theorem 2.7

Let $\underline{X} = (X_1, X_2, \dots, X_n)$ be random variables, and $\underline{Y} = \mathbf{g}(\underline{X})$. Then, the distribution of \underline{Y} is determined by the distribution of \underline{X} as follow: for any event B defined by \underline{Y} , $P(\underline{Y} \in B) = \frac{P(\underline{X} \in A)}{P_{\underline{X}}}$, where $A = \mathbf{g}^{-1}(B)$.



Example 2.4 (univariate discrete random variable)

Let X be a discrete r.v. taking the values $x_i, i = 1, 2, \dots$, and $Y = g(X)$. Then, Y is also a discrete r.v. taking the values $y_j, j = 1, 2, \dots$. To determine the pmf of Y , by taking $B = \{y_j\}$, we have

$$A = \{x_i : g(x_i) = y_j\} \text{ and hence}$$

$$p_Y(y_j) = P(\{y_j\}) = P(A) = \sum_{x_i \in A} p_X(x_i).$$

Example 2.5 (sum of two discrete random variables, TBp. 96)

X and Y are random variables with joint pmf $p(x, y)$. Find the distribution of $Z = X + Y$.

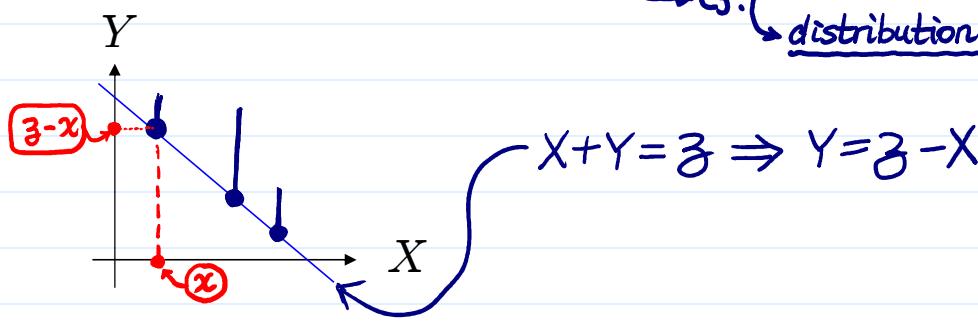
(Exercise: difference of two random variables, $Z = X - Y$) \leftarrow Ans. $p_Z(z) = \sum_y p(z+y, y)$

$$p_Z(z) = P(Z = z) = P(X + Y = z) = \sum_{x=-\infty}^{\infty} p(x, z - x)$$

When X, Y independent, $p(x, y) = p_X(x)p_Y(y)$,

$$p_Z(z) = \sum_{x=-\infty}^{\infty} p_X(x)p_Y(z - x) \Rightarrow \text{convolution of } p_X \text{ and } p_Y$$

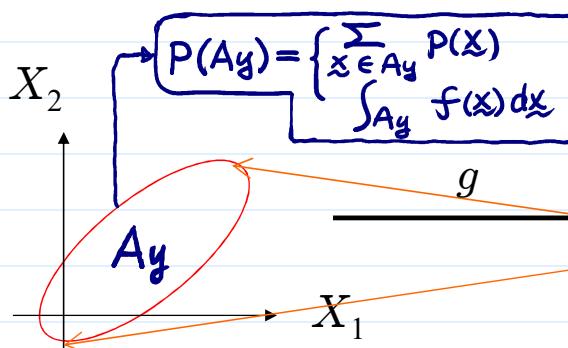
cf. $\begin{cases} \text{value of r.v.} \\ \text{distribution of r.v.} \end{cases}$

**2. method of cumulative distribution function** (a special case of method 1)

Let Y be a function of the random variables X_1, X_2, \dots, X_n .

1. Find the region $Y \leq y$ in the (x_1, x_2, \dots, x_n) space.
2. Find $F_Y(y) = P(Y \leq y)$ by summing the joint pmf or integrating the joint pdf of X_1, X_2, \dots, X_n over the region $Y \leq y$.
3. (for continuous case) Find the pdf of Y by differentiating $F_Y(y)$, i.e., $f_Y(y) = \frac{d}{dy} F_Y(y)$.

Note. It can be generalized to multivariate $Y = (Y_1, Y_2, \dots, Y_m)$.



$$\begin{aligned} F_Y(y_1, \dots, y_m) &= P(Y_1 \leq y_1, \dots, Y_m \leq y_m) \\ &= P(X \in A_{y_1, \dots, y_m}) \\ f_Y(y_1, \dots, y_m) &= \frac{\partial^n}{\partial y_1 \dots \partial y_m} F_Y(y_1, \dots, y_m) \end{aligned}$$

Example 2.6 (square of a random variable, similar example see TBp. 61)

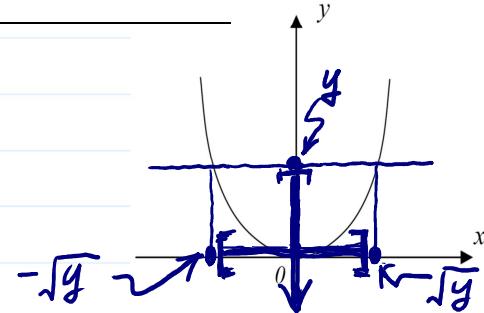
X is a random variables with pdf $f_X(x)$ and cdf $F_X(x)$. Find the distribution of $Y = X^2$. $\hookrightarrow X$ is a continuous r.v.

For $y \geq 0$, $\{Y \leq y\} = \{-\sqrt{y} \leq X \leq \sqrt{y}\}$

$$F_Y(y) = P(Y \leq y) = P(-\sqrt{y} \leq X \leq \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$\begin{aligned} f_Y(y) &= \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(\sqrt{y}) - \frac{d}{dy} F_X(-\sqrt{y}) \\ &= f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} - f_X(-\sqrt{y}) \left(-\frac{1}{2\sqrt{y}}\right) \\ &= \frac{1}{2\sqrt{y}} (f_X(\sqrt{y}) + f_X(-\sqrt{y})) \end{aligned}$$

and $f_Y(y) = 0$ for $y < 0$.

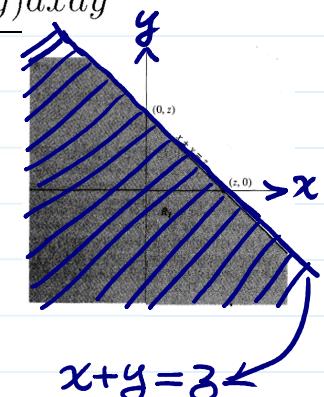
**Example 2.7** (sum of two continuous random variables, TBp. 97)

X and Y are random variables with joint pdf $f(x, y)$. Find the distribution of $Z = X + Y$. $\hookrightarrow X, Y$: continuous r.v.'s

(Exercise: difference of two random variables, $Z = X - Y$)

Let R_z be $\{(x, y) : x + y \leq z\}$. Then,

$$\begin{aligned} F_Z(z) &= P(Z \leq z) = P(X + Y \leq z) = \iint_{R_z} f(x, y) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) dy dx \\ &= \int_{-\infty}^z \int_{-\infty}^{\infty} f(x, v-x) dx dv \quad (\text{set } y = v - x) \quad \{x = x\} \\ f_Z(z) &= \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} f(x, z-x) dx \end{aligned}$$



When X, Y independent, $f(x, y) = f_X(x)f_Y(y)$,

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx \Rightarrow \text{convolution of } f_X \text{ and } f_Y$$

\hookrightarrow the convolution for discrete r.v.'s (LNp.25)

Example 2.8 (quotient of two continuous random variables, TBp. 98)

X and Y are r.v. with joint pdf $f(x, y)$. Find the distribution of $Z = Y/X$. (Exercise: product of two random variables, $Z=XY$)

$$Q_z = \{(x, y) : y/x \leq z\} = \{(x, y) : x < 0, y \geq zx\} \cup \{(x, y) : x > 0, y \leq zx\}$$

$P(Z \leq z)$

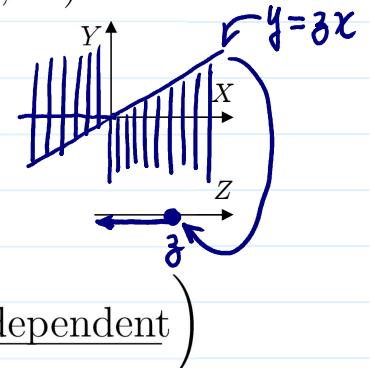
$$\underline{F_Z(z)} = \int \int_{Q_z} f(x, y) dx dy = \int_{-\infty}^0 \int_{xz}^{\infty} + \int_0^{\infty} \int_{-\infty}^{xz} f(x, y) dy dx$$

$$= \int_{-\infty}^0 \int_z^{-\infty} + \int_0^{\infty} \int_{-\infty}^z xf(x, xv) dv dx \quad (\text{set } \begin{cases} y = xv \\ x = x \end{cases})$$

$$= \int_{-\infty}^0 \int_{-\infty}^z (-x)f(x, xv) dv dx + \int_0^{\infty} \int_{-\infty}^z xf(x, xv) dv dx$$

$$\underline{f_Z(z)} = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} |x| f(x, xz) dx$$

$$\left(= \int_{-\infty}^{\infty} |x| f_X(x) f_Y(xz) dx \quad \text{when } X, Y \text{ independent} \right)$$

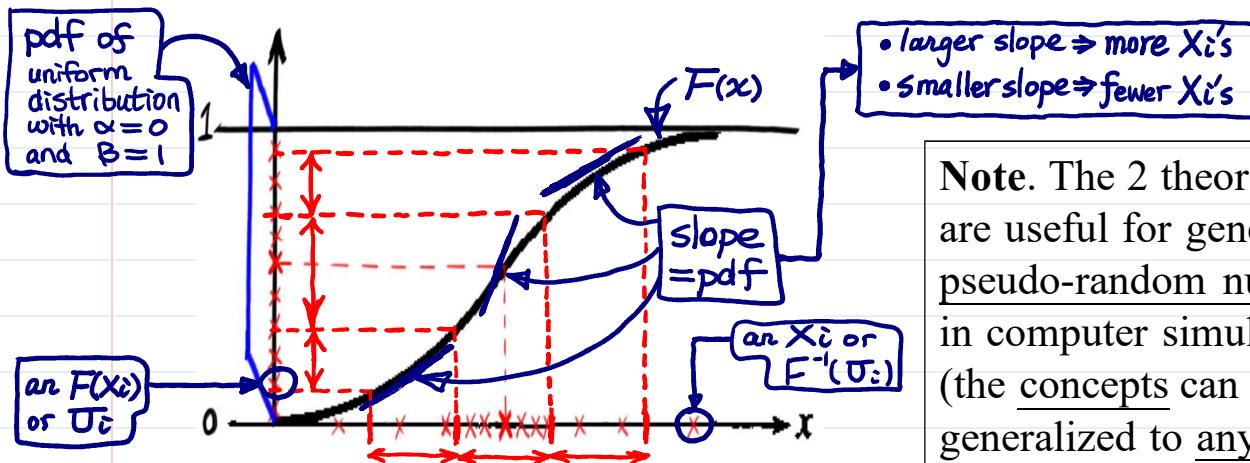
**Theorem 2.4** (TBp. 63)

Let X be a random variable whose cdf F possesses a unique inverse F^{-1} . Let $Z = F(X)$, then Z has a uniform distribution on $[0, 1]$.

→ ① no jump ② strictly increasing $\Rightarrow X$: a continuous r.v.

Theorem 2.5 (TBp. 63)

Let U be a uniform random variable on $[0, 1]$ and F is a cdf which possesses a unique inverse F^{-1} . Let $X = F^{-1}(U)$. Then the cdf of X is F .



Note. The 2 theorems are useful for generating pseudo-random numbers in computer simulation (the concepts can be generalized to any r.v.'s).

3. method of probability density function (for continuous r.v.'s and differentiable, one-to-one transformations, a special case of method 2):

check its proof in textbook

Theorem 2.6 (univariate continuous case, TBp. 62)

Let \underline{X} be a continuous random variable with pdf $f_X(x)$. Let $\underline{Y} = g(\underline{X})$, where g is differentiable, strictly monotone. Then,

can be relaxed to piecewise strictly monotone

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$$

cf. Example 2.4 in LNp.24
Q: What's the role of the term?

for y s.t. $y = g(x)$ for some x , and $f_Y(y) = 0$ otherwise.

Example 2.9

\underline{X} is a random variables with pdf $f_X(x)$. Find the distribution of $\underline{Y} = 1/\underline{X}$.

For $x > 0$ (or $x < 0$),

$$y = 1/x \equiv g(x) \Rightarrow x = g^{-1}(y) = 1/y$$

$$dg^{-1}/dy = -1/y^2 \text{ and } \left| dg^{-1}/dy \right| = 1/y^2$$

hence

$$f_Y(y) = f_X(1/y)(1/y^2)$$

Theorem 2.7 (multivariate continuous case, TBp. 102-103)

$\underline{X} = (X_1, X_2, \dots, X_n)$ multivariate continuous, $\underline{Y} = (Y_1, Y_2, \dots, Y_n) \equiv \underline{g}(\underline{X})$. g is one-to-one, so that its inverse exists and is denoted by ①

$$\underline{x} = \underline{g}^{-1}(\underline{y}) = \underline{w}(\underline{y}) = (w_1(\underline{y}), w_2(\underline{y}), \dots, w_n(\underline{y})).$$

Assume w have continuous partial derivatives, and let ②

$$J = \begin{vmatrix} \frac{\partial w_1(\underline{y})}{\partial y_1} & \frac{\partial w_1(\underline{y})}{\partial y_2} & \dots & \frac{\partial w_1(\underline{y})}{\partial y_n} \\ \frac{\partial w_2(\underline{y})}{\partial y_1} & \frac{\partial w_2(\underline{y})}{\partial y_2} & \dots & \frac{\partial w_2(\underline{y})}{\partial y_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial w_n(\underline{y})}{\partial y_1} & \frac{\partial w_n(\underline{y})}{\partial y_2} & \dots & \frac{\partial w_n(\underline{y})}{\partial y_n} \end{vmatrix}$$

Then

$$f_Y(\underline{y}) = f_X(\underline{g}^{-1}(\underline{y})) \left| J \right|$$

interpretation:
Similar to
 $\left| \frac{dg^{-1}}{dy} \right|$

for \underline{y} s.t. $\underline{y} = \underline{g}(\underline{x})$ for some \underline{x} , and $f_Y(\underline{y}) = 0$, otherwise.

Note. When the dimensionality of \underline{Y} , denoted by k , is less than n , we can choose another $n - k$ transformations \underline{Z} such that $(\underline{Y}, \underline{Z})$ satisfy the above assumptions. By integrating out the last $n - k$ arguments in the pdf of $(\underline{Y}, \underline{Z})$, the pdf of \underline{Y} can be obtained.

Example 2.10 (cont. Ex 2.8)

X_1 and X_2 are random variables with joint pdf $f_{X_1 X_2}(x_1, x_2)$.
Find the distribution of $Y_1 = X_2/X_1$. (Exercise: $Y_1 = X_1 X_2$)

Let $Y_2 = X_1$. Then

$$\begin{aligned} x_1 &= y_2 \equiv w_1(y_1, y_2) \\ x_2 &= y_1 y_2 \equiv w_2(y_1, y_2). \end{aligned}$$

$$\frac{\partial w_1}{\partial y_1} = 0, \quad \frac{\partial w_1}{\partial y_2} = 1, \quad \frac{\partial w_2}{\partial y_1} = y_2, \quad \frac{\partial w_2}{\partial y_2} = y_1.$$

$$J = \begin{vmatrix} 0 & 1 \\ y_2 & y_1 \end{vmatrix} = -y_2, \quad \text{and} \quad |J| = |y_2|$$

Therefore,

$$\begin{aligned} f_{Y_1 Y_2}(y_1, y_2) &= f_{X_1 X_2}(y_2, y_1 y_2) |y_2| \\ f_{Y_1}(y_1) &= \int_{-\infty}^{\infty} f_{Y_1 Y_2}(y_1, y_2) dy_2 = \int_{-\infty}^{\infty} f_{X_1 X_2}(y_2, y_1 y_2) |y_2| dy_2 \end{aligned}$$

cf. Ex2.8 in LNp.29

4. **method of moment generating function:** based on the *uniqueness theorem* of moment generating function. To be explained later in Chapter 4.

- extrema and order statistics 順序統計量 → quantile (分位數)

Definition 2.11 (order statistics, sec 3.7)

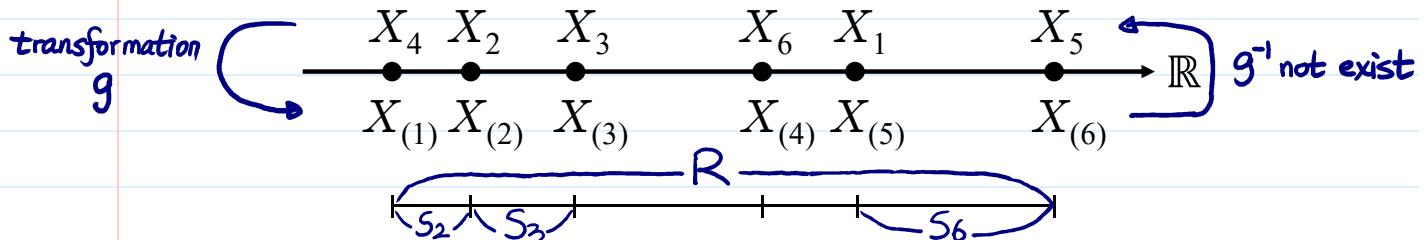
Let X_1, X_2, \dots, X_n be random variables. We sort the X_i 's and denote by $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ the order statistics. Using the notation,

$X_{(1)} = \min(X_1, X_2, \dots, X_n)$ is the minimum

$X_{(n)} = \max(X_1, X_2, \dots, X_n)$ is the maximum

$R \equiv X_{(n)} - X_{(1)}$ is called range

$S_j \equiv X_{(j)} - X_{(j-1)}, j = 2, \dots, n$ are called jth spacings



Note. In the section, we only consider the case that X_1, X_2, \dots, X_n are i.i.d continuous r.v.'s with cdf F and pdf f . Although X_1, X_2, \dots, X_n are independent, their order statistics are not independent in general. $X_{(1)}, \dots, X_{(n)}$

Definition 2.12 (i.i.d.)

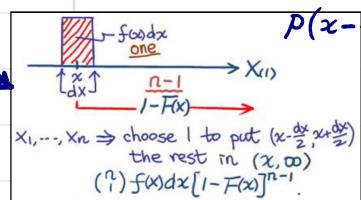
X_1, X_2, \dots, X_n are **i.i.d.** (independent, identically distributed) with cdf F /pmf p /pdf $f \Rightarrow X_1, X_2, \dots, X_n$ are independent and have a common marginal cdf F /pmf p /pdf f . \hookrightarrow joint = \prod marginal

but not common value

Theorem 2.8 (TBp. 104)

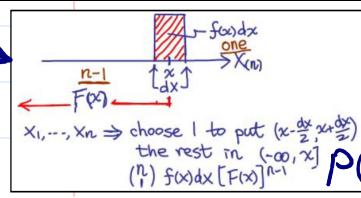
The cdf of $X_{(1)}$ is $1 - [1 - F(x)]^n$ and its pdf is $nf(x)[1 - F(x)]^{n-1}$.

The cdf of $X_{(n)}$ is $[F(x)]^n$ and its pdf is $nf(x)[F(x)]^{n-1}$.



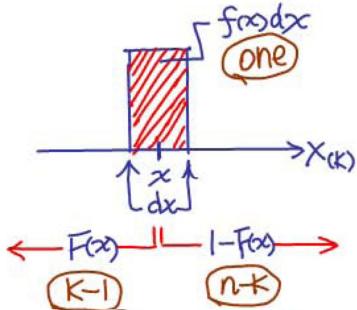
$$P(x - \frac{dx}{2} < X_{(1)} < x + \frac{dx}{2}) \approx f_{X_{(1)}}(x) dx$$

$$\begin{aligned} F_{X_{(n)}}(x) &= P(X_{(n)} \leq x) = P(X_1 \leq x, \dots, X_n \leq x) \\ &= P(X_1 \leq x) \cdots P(X_n \leq x) \quad \frac{dF_{X_{(n)}}(x)}{dx} \\ &= [F(x)]^n. \end{aligned}$$



$$P(x - \frac{dx}{2} < X_{(n)} < x + \frac{dx}{2}) \approx f_{X_{(n)}}(x) dx$$

$$\begin{aligned} 1 - F_{X_{(1)}}(x) &= P(X_{(1)} > x) = P(X_1 > x, \dots, X_n > x) \\ &= P(X_1 > x) \cdots P(X_n > x) \quad \frac{dF_{X_{(1)}}(x)}{dx} \\ &= [1 - F(x)]^n. \end{aligned}$$



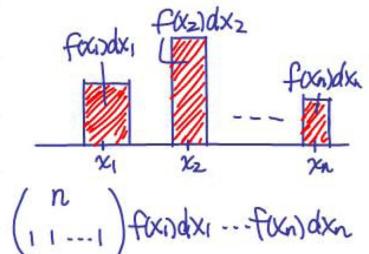
Theorem 2.9 (TBp. 105)

The pdf of the k th order statistic $X_{(k)}$ is

$$P(x - \frac{dx}{2} < X_{(k)} < x + \frac{dx}{2}) \approx f_{X_{(k)}}(x) dx$$

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} f(x) [F(x)]^{k-1} [1 - F(x)]^{n-k}.$$

$$\begin{aligned} x_1, \dots, x_n \Rightarrow \text{choose 1 to place in } (x - \frac{dx}{2}, x + \frac{dx}{2}) \\ &= k-1 = \dots = (-\infty, x) \\ &= n-k = \dots = (x, \infty) \\ &= \binom{n}{k-1} f(x) dx [F(x)]^{k-1} [1 - F(x)]^{n-k} \end{aligned}$$



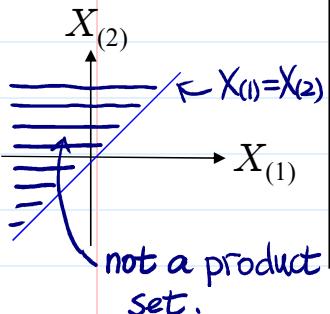
Theorem 2.10 (TBp. 114, Problem 73)

The joint pdf of $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ is

$$P(x_i - \frac{dx_i}{2} < X_{(i)} < x_i + \frac{dx_i}{2}, i=1, \dots, n) \approx f_{X_{(1)} \dots X_{(n)}}(x_1, \dots, x_n) dx_1 \cdots dx_n$$

$$f_{X_{(1)} X_{(2)} \dots X_{(n)}}(x_1, x_2, \dots, x_n) = n! f(x_1) f(x_2) \cdots f(x_n),$$

for $x_1 \leq x_2 \leq \dots \leq x_n$, and $f_{X_{(1)} X_{(2)} \dots X_{(n)}} = 0$ otherwise.



Question: Are $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ independent, judged from the form of its joint pdf? \leftarrow C.f. Thm 2.2, item 1 (LNp.19)

Example 2.11 (range, TBp. 105-106)

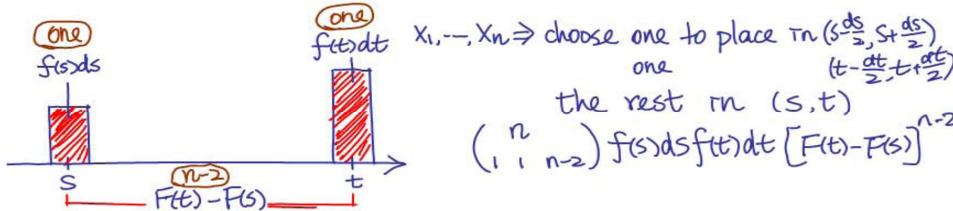
The joint pdf of $X_{(1)}$ and $X_{(n)}$ is $P(s - \frac{ds}{2} < X_{(1)} < s + \frac{ds}{2}, t - \frac{dt}{2} < X_{(n)} < t + \frac{dt}{2}) \approx f_{X_{(1)}, X_{(n)}}(s, t) ds dt$.

$$f_{X_{(1)}X_{(n)}}(s, t) = n(n-1)f(s)f(t)[F(t) - F(s)]^{n-2}, \quad \text{for } s \leq t,$$

and 0 otherwise. Therefore, the pdf of $R = X_{(n)} - X_{(1)}$ is

$$f_R(r) = \int_{-\infty}^{\infty} f_{X_{(1)}X_{(n)}}(s, s+r)ds \quad \text{for } r > 0, \text{ and } f_R(r) = 0, \text{ otherwise.}$$

↑ check exercise in Ex2.7 (LNp.28)



Exercise

1. Find the joint pdf of $X_{(i)}$ and $X_{(j)}$, where $i < j$.
2. Find the joint pdf of $X_{(j)}$ and $X_{(j-1)}$, and derive the pdf of j th spacing $S_j = X_{(j)} - X_{(j-1)}$.

❖ **Reading:** textbook, 2.1 (not including 2.1.1~5), 2.2 (not including 2.2.1~4), 2.3, 2.4, Chapter 3

❖ **Further Reading:** Roussas, 3.1, 4.1, 4.2, 7.1, 7.2, 9.1, 9.2, 9.3, 9.4, 10.1

Chapter 4

Ch1~6, p.2-38

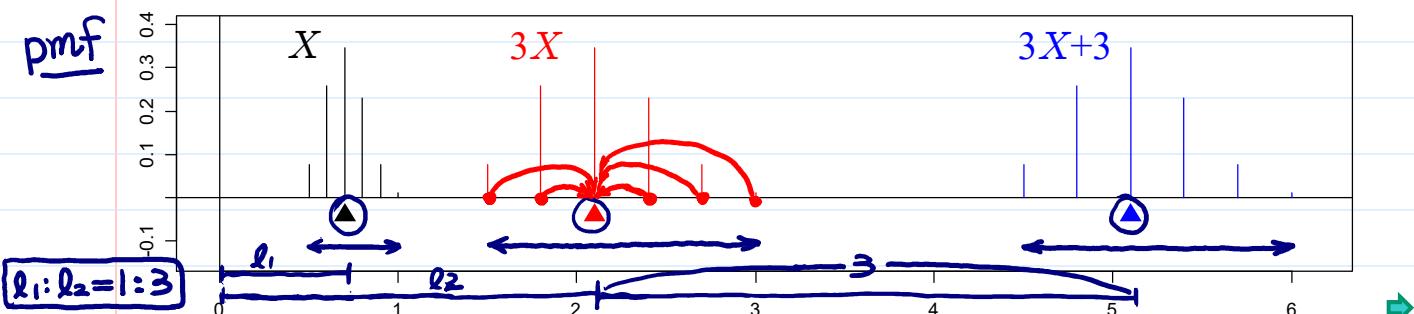
Outline

- expectation ← 期望值.
- moment generating function & characteristic function
- conditional expectation and prediction
- δ method

• mean, variance, standard deviation, covariance, correlation coefficient

• Question 3.1

Can we describe the characteristics of distributions by use of some intuitive and meaningful simple values?



• expectation

Definition 3.1 (expectation, TBp. 122, 123)

For random variables X_1, \dots, X_n , the expectation of a univariate random variable $Y = g(X_1, \dots, X_n)$ is defined as

$$E(Y) \equiv \sum_{-\infty < y < \infty} y p_Y(y) = E[g(X_1, \dots, X_n)]$$

weighted average
加權平均
平均: y
權重: p_Y/f_Y

$$\equiv \sum_{-\infty < x_1 < \infty, \dots, -\infty < x_n < \infty} g(x_1, \dots, x_n) p(x_1, \dots, x_n),$$

if X_1, X_2, \dots, X_n are discrete random variables, or

$$E(Y) \equiv \int_{-\infty}^{\infty} y f_Y(y) dy = E[g(X_1, \dots, X_n)]$$

$$\equiv \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \dots dx_n,$$

if Y and X_1, X_2, \dots, X_n are continuous random variables.

Y : random
 $E(Y)$: fixed value

Definition 3.2 (mean, variance, standard deviation, covariance, correlation coefficient)

1. (TBp.116&118) $g(x) = x \Rightarrow E[g(X)] = E(X)$ is called mean of X , usually denoted by $E(X)$ or μ_X .

constant

2. (TBp.131) $g(x) = (x - \mu_X)^2 \Rightarrow E[g(X)] = E[(X - E(X))^2]$ is called variance of X , usually denoted by $Var(X)$ or σ_X^2 . The square root of variance, i.e., σ_X , is called standard deviation.

constant, not random

3. (TBp.138) $g(x, y) = (x - \mu_X)(y - \mu_Y) \Rightarrow E[g(X, Y)] = E[(X - E(X))(Y - E(Y))]$ is called covariance of X and Y , usually denoted by $Cov(X, Y)$ or σ_{XY} .

4. (TBp.142) The correlation coefficient of X, Y is defined as $\sigma_{XY}/(\sigma_X \sigma_Y)$, usually denoted by $Cor(X, Y)$ or ρ_{XY} . X and Y are called uncorrelated if $\rho_{XY} = 0$. $\Leftrightarrow \sigma_{XY} = 0$

Notes. (intuitive explanation of mean)

from its definition

1. Mean of a random variable parallels the notion of a weighted average.
2. It is helpful to think of the mean as the center of mass of the pmf/pdf. $\xrightarrow{\text{center of gravity (重心)}}$
3. Mean can be interpreted as a long-run average. (see Chapter 5.) $\xrightarrow{\text{LLN}}$

Notes. (intuitive explanation of variance and standard deviation)

from its definition

how the dist. is spread out

Theorem 3.1 (properties of mean)

1. (TBp.125) For constants $a, b_1, \dots, b_n \in \mathbb{R}$,

$$E(a + \sum_{i=1}^n b_i X_i) = a + \sum_{i=1}^n b_i E(X_i). \rightarrow E(a+bX) = a+b \cdot E(X)$$

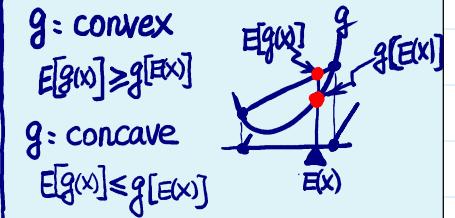
2. (TBp.124) If X, Y are independent, then

$$E(g(X)h(Y)) = E(g(X))E(h(Y)).$$

In particular, $E(XY) = E(X)E(Y)$. $\xrightarrow{W \text{ & } Z \text{ are independent.}}$

(Question 3.2: $E(X/Y) = E(X)/E(Y)$? $\leftarrow E\left(\frac{X}{Y}\right) = E\left(X \cdot \frac{1}{Y}\right) = E(X) \cdot E\left(\frac{1}{Y}\right)$ $\leftarrow Y \in (Y) ?$

Note. $E[g(X)] \neq g[E(X)]$ in general.



Theorem 3.2 (properties of variance and standard deviation)

$$1. \text{ (TBp.132)} \quad \sigma_X^2 = \text{Var}(X) = E[(X - \mu_X)^2] = E(X^2) - \mu_X^2. \quad \uparrow [E(X)]^2$$

$$2. \text{ (TBp.131)} \quad \text{Var}(a + bX) = b^2 \text{Var}(X), \quad a, b \in \mathbb{R}, \quad \text{and} \quad \sigma_{a+bX} = |b| \sigma_X.$$

$$3. \text{ (TBp.140)} \quad \text{Var}\left(a + \sum_{i=1}^n b_i X_i\right) = \sum_{i=1}^n b_i^2 \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq n} b_i b_j \text{Cov}(X_i, X_j).$$

$\left[\begin{matrix} b_1 & \dots & b_n \end{matrix} \right] \left[\begin{matrix} a_{ij} = \text{cov}(X_i, X_j) \\ \vdots \\ b_n \end{matrix} \right]$ covariance matrix $\text{Var}(X_i)$

In particular, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y)$.

4. (TBp.140) If X_1, \dots, X_n are independent,

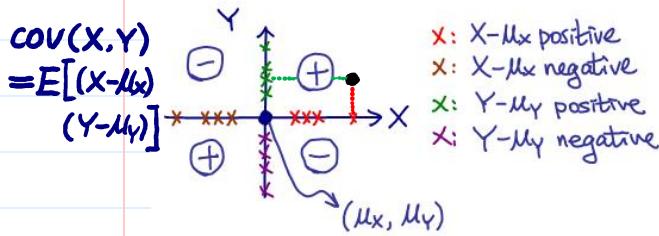
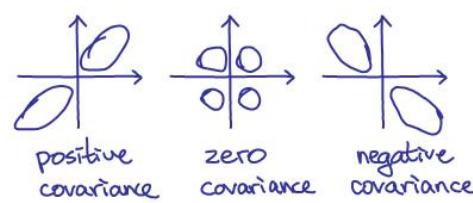
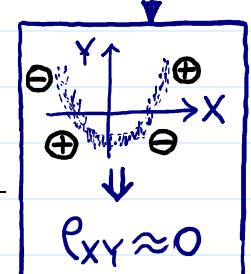
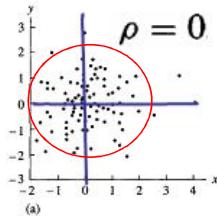
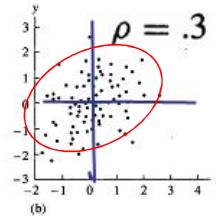
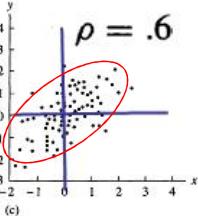
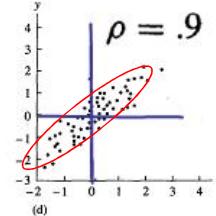
c.f. $\left[\begin{matrix} \text{mean of sum} \\ \text{item 1, Thm 3.1} \\ (\text{LNp.41}) \end{matrix} \right]$

$$\text{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \text{Var}(X_i). \quad \xrightarrow{\text{imply}} \text{cov}(X_i, X_j) = 0, \text{i.e., uncorrelated, } \forall i \neq j$$

$$5. \text{ (TBp.136)} \quad E[(X - \theta)^2] = \text{Var}(X) + (\mu_X - \theta)^2 \quad (\text{Mean square error} = \text{variance} + \text{bias square}) \quad \rightarrow = E[(X - \mu_X)^2 + (\mu_X - \theta)^2 - 2(\mu_X - \theta)(X - \mu_X)]$$

Notes. (intuitive explanation of covariance and correlation coefficient)

1. covariance is a measure of the joint variability of X and Y , or their degree of association.
i.e., when X (r.v.) is large (or small), will Y tend to be larger or smaller?
might not be causal relation
2. covariance is the average value of the product of the deviation of X from its mean and the deviation of Y from its mean. *from its definition.*
3. positive covariance and negative covariance *drawback: cov depends on the scale/unit of X & Y*
4. correlation coefficient is unit free
5. correlation coefficient measures the strength of the linear relationship between X and Y .



Theorem 3.4 (properties of covariance and correlation coefficient)

1. (TBp.138) $\text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$
 (Note. $\text{Cov}(X, X) = \text{Var}(X)$.)
 for calculation purpose

2. (TBp.140)

$$[b_1 \dots b_n] \left[\begin{array}{c} \sigma_{ij} = \text{Cov}(X_i, Y_j) \\ \vdots \\ d_m \end{array} \right]$$

$$\text{Cov} \left(a + \sum_{i=1}^n b_i X_i, c + \sum_{j=1}^m d_j Y_j \right) = \sum_{i=1}^n \sum_{j=1}^m b_i d_j \text{Cov}(X_i, Y_j)$$

gone

3. (TBp.140) If X, Y are independent then $\text{Cov}(X, Y) = 0$, i.e., independent \Rightarrow uncorrelated. But, the converse statement is not necessarily true.

$$\begin{cases} \rho = +1 \Leftrightarrow a > 0 \\ \rho = -1 \Leftrightarrow a < 0 \end{cases}$$

4. (TBp.143) $-1 \leq \rho_{XY} \leq 1$ and $\rho_{XY} = \pm 1$ if and only if $Y = aX + b$ with probability one for some $a, b \in \mathbb{R}$.

$$5. \rho_{XY} = E \left[\left(\frac{X - \mu_X}{\sigma_X} \right) \left(\frac{Y - \mu_Y}{\sigma_Y} \right) \right]$$

standardization (標準化)

After standardization,
mean = 0
var = 1

$$6. |\text{Cor}(a + bX, c + dY)| = |\text{Cor}(X, Y)| \rightarrow \begin{cases} \text{location shift} \\ \text{scale change} \end{cases} \Rightarrow \text{no impact on Cor}$$

• moment generating function & characteristics function

Definition 3.3 (moment generating function, TBp. 155)

The moment generating function (mgf) of a random variable X is

$$M_X(t) = E(e^{tX}), \quad t \in \mathbb{R} \quad M_X(t) = \begin{cases} \int e^{tx} f_X(x) dx \\ \sum e^{tx} p_X(x) \end{cases}$$

if the expectation exists.

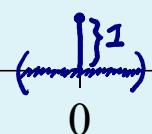
Laplace transformation of

Theorem 3.5 (properties of moment generating function)

1. The moment generating function may or may not exist for any particular value of t .

$$\hookrightarrow t=0 \Rightarrow E(e^{0 \cdot X}) = 1 \leftarrow \text{always exists} \quad \text{i.e., } E(e^{tx}) \text{ for } t \in \mathbb{R}$$

2. **uniqueness theorem** (TBp.143). If the moment generating function exists for t in an open interval containing zero, it uniquely determines the probability distribution.



t know mgf \Rightarrow know distribution.

★ 3. (TBp.156) If the moment generating function exists in an open interval containing zero, then

know all moments
 $\Rightarrow \text{know } M_X(t) = \sum_{k=0}^{\infty} \frac{M_X^{(k)}(0)}{k!} t^k$
 $\Rightarrow \text{know dist.}$

$$M_X^{(k)}(0) = E(X^k).$$

the reason why it's called moment generating function.

4. (TBp.158) For any constants a, b , $M_{a+bX}(t) = e^{at} M_X(bt)$.

5. (TBp.159) X, Y independent $\Rightarrow M_{X+Y}(t) = M_X(t)M_Y(t)$.

useful for identifying the dist. of $X_1 + \dots + X_n$

generalization: indep. X_1, \dots, X_n

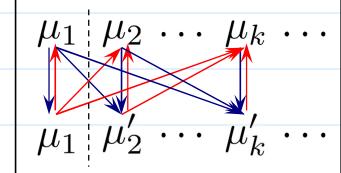
6. continuity theorem (see Chapter 5) $M_{X_1 + \dots + X_n}(t) = \prod_{i=1}^n M_{X_i}(t)$

Definition 3.4 (moment, TBp. 155)

The kth moment of a random variable is $E(X^k) \equiv \mu_k$, and the kth central moment is $E[(X - \mu_X)^k] \equiv \mu'_k$.

► Some Notes.

- $\mu'_k = \sum_{i=0}^k \binom{k}{i} (-\mu_X)^{n-i} \mu_i$ μ'_k : a linear combination of μ_1, \dots, μ_k
- $\mu_k = \sum_{i=0}^k \binom{k}{i} (\mu_X)^{n-i} \mu'_i$ μ_k : a linear combination of $\mu_1, \mu'_2, \dots, \mu'_k$
- In particular, $E(X) = \mu_X = \mu_1$, and,
 $Var(X) = \sigma_X^2 = \mu_2 - \mu_1^2 = \mu'_2$.



Definition 3.5 (joint moment generating function, TBp. 161)

For random variables X_1, X_2, \dots, X_n , their joint mgf is defined as:

$$M_{X_1, \dots, X_n}(t_1, \dots, t_n) = M_{X_1 + \dots + X_n}(t)$$

$$M_{X_1 X_2 \dots X_n}(t_1, t_2, \dots, t_n) = E(e^{t_1 X_1 + t_2 X_2 + \dots + t_n X_n})$$

c.f. mgf of $X_1 + X_2 + \dots + X_n = Y$
 $= E(e^{t_1 X_1 + t_2 X_2 + \dots + t_n X_n})$

if the expectation exists.

Theorem 3.6 (properties of joint mgf)

- $M_{X_1}(t_1) = M_{X_1 X_2 \dots X_n}(t_1, 0, \dots, 0)$ \leftarrow relationship between joint mgf & marginal mgf.
- uniqueness theorem

- X_1, X_2, \dots, X_n are independent if and only if

LN p.19, joint
 $\begin{cases} \text{cdf} \\ \text{pmf} \\ \text{pdf} \end{cases}$
 $= \prod_{i=1}^n$ marginal
 $\begin{cases} \text{cdf} \\ \text{pmf} \\ \text{pdf} \end{cases}$

$$M_{X_1 X_2 \dots X_n}(t_1, t_2, \dots, t_n) = \prod_{i=1}^n M_{X_i}(t_i).$$

c.f.
the mgf of the sum of indep. X_1, \dots, X_n
 $= \prod_{i=1}^n M_{X_i}(t)$

- $\frac{\partial^{r_1 + \dots + r_n}}{\partial t_1^{r_1} \dots \partial t_n^{r_n}} M_{X_1 X_2 \dots X_n}(t_1, t_2, \dots, t_n) \Big|_{t_1=t_2=\dots=t_n=0}$
 $= E(X_1^{r_1} X_2^{r_2} \dots X_n^{r_n})$

• conditional expectation \leftarrow Recall: conditional distribution (LNp.21~23)

Definition 3.7 (conditional expectation, TBp. 135-136)

The conditional expectation of $h(Y)$ given $X = x$ is

a function of x $\xrightarrow{\text{random}} \xleftarrow{\text{fixed}} \text{[Discrete case]} : E(h(Y)|X = x) = \sum_y h(y)p_{Y|X}(y|x)$

平均: Y or $h(Y)$
權重: $p_{Y|X}(y|x)$
 $f_{Y|X}(y|x)$

In particular, $E(Y|X = x) = \sum_y y p_{Y|X}(y|x)$ $\xrightarrow{\text{a pmf for } Y}$

Continuous case: $E(h(Y)|X = x) = \int h(y)f_{Y|X}(y|x)dy$ $\xrightarrow{\text{for } Y}$

In particular, $E(Y|X = x) = \int y f_{Y|X}(y|x)dy$ $\xrightarrow{\text{a pdf for } Y}$

function of x with unit of Y

e.g., $R(Y) = Y$
 X : height (cm)
 Y : weight (kg)

$E(Y|X=170)$
= average weight
of people whose
height = 170

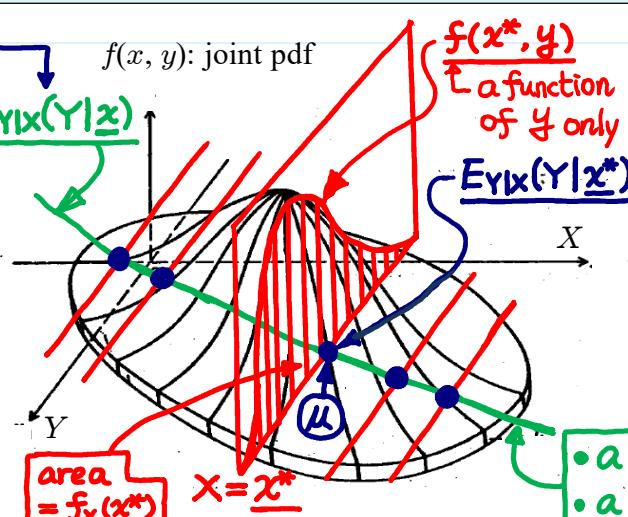
$f(x, y)$: joint pdf

$E_{Y|X}(Y|x)$

$f(x^*, y)$
 $\xrightarrow{\text{a function of } Y \text{ only}}$

$E_{Y|X}(Y|x^*)$

$$f_{Y|X}(y|x^*) = \frac{f(x^*, y)}{f_X(x^*)}$$



Theorem 3.8 (properties of conditional expectation)

fixed values \rightarrow 1. $E_{Y|X}(h(Y)|x)$ is a function of x and is free of Y . the Y part has been integrated or summed

2. If X and Y are independent then $E_{Y|X}(h(Y)|x) = E_Y(h(Y))$.
 By Thm 2.3, $\begin{cases} P_{Y|X}(y|x) = P_Y(y) \\ f_{Y|X}(y|x) = f_Y(y) \end{cases}$ intuition: $E_{Y|X}(h(Y)|x)$ is a constant function of x
 item 6, $\begin{cases} P_{Y|X}(y|x) = P_Y(y) \\ f_{Y|X}(y|x) = f_Y(y) \end{cases}$ $\Rightarrow X$ offers no information of Y cf.

3. $E(h(X)|X = x) = h(x)$

4. Let $g(x) = E_{Y|X}(h(Y)|x)$, then $g(x)$ is a random variable (transformation of X) and usually denoted by $E_{Y|X}(h(Y)|X)$.
 It's a function of X only. But, its random value reflects $E(Y)$ ↗

5. law of total expectation (TBp.149) $E_X[E_{Y|X}(h(Y)|X)] = E_Y[h(Y)]$

In particular, $E_Y[E_{X|Y}(Y|Y)] \rightarrow E_Y(Y) = E_X[E_{Y|X}(Y|X)]$.

$E_{X,Y} = E_X E_{Y|X}$

$$\sum_{x,y} P(x,y) P_{Y|X}(y|x) = \sum_y P(y) \int_x P_{Y|X}(y|x) f_X(x) dx$$

$$\sum_{x,y} P(x,y) f_{Y|X}(y|x) = \int_x f_Y(y) \int_y f_{Y|X}(y|x) dy dx$$

generalization $E_{X,Y}[R(X,Y)] = E_Y E_{X|Y}[R(X,Y)|Y]$
 $= E_X E_{Y|X}[R(X,Y)|X]$

4. variance decomposition (TBp.151)

$$\begin{aligned} Var_Y(Y) &= \\ &Var_X[E_{Y|X}(Y|X)] + \\ &E_X[Var_{Y|X}(Y|X)] \end{aligned}$$

Note.

1. $Var_Y(Y) \geq E_X[Var_{Y|X}(Y|X)]$
 and the equality holds if and only if $E_{Y|X}(Y|X) = E_Y(Y)$
 with probability one.

$$Var_X[E_{Y|X}(Y|X)] = 0$$

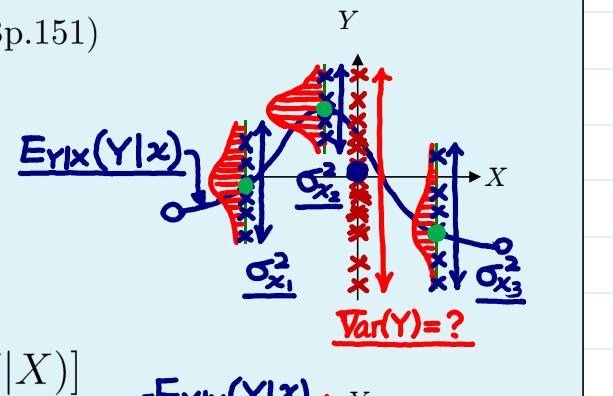
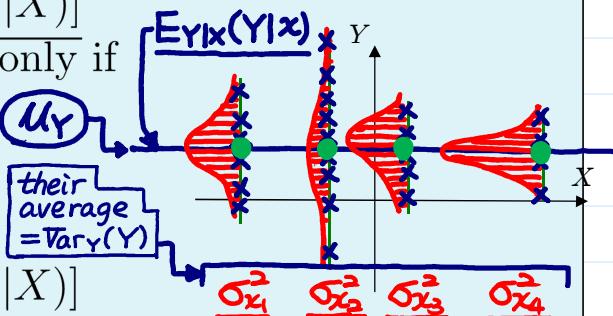
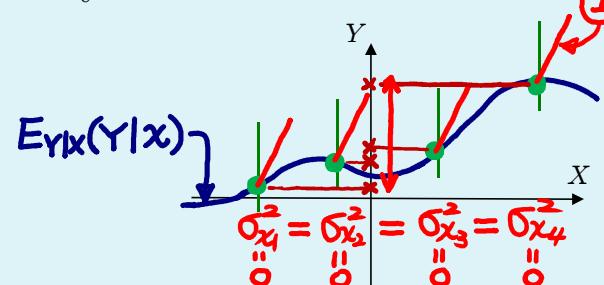
2. $Var_Y(Y) \geq Var_X[E_{Y|X}(Y|X)]$
 and the equality holds if and only if $Var_{Y|X}(Y|X) = 0$

with probability one; i.e.,

$$Y = E_{Y|X}(Y|X)$$

with probability one.

$$E_X[Var_{Y|X}(Y|X)] = 0$$



Notes for the best predictor in G_2 .

- $E_{Y|X}(Y|x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(x - \mu_X)$ if (X, Y) is distributed as bivariate normal

best in G_3

linear regression analysis

best in G_2

more information better predictor

- needs to know only the means, variances and covariances

c.f. \rightarrow the best in G_1 & $G_3 \rightarrow$ Which one require more information?

- $\sigma_Y^2(1 - \rho^2)$ is small if ρ is close to $+1$ or -1 , and large if ρ is close to 0

intuition \leftarrow check the plot in Unp. 44

Notes.

1. $\min_{a,b} E[Y - (a + bX)]^2 \leq \min_c E(Y - c)^2$ and the equality holds if and only if $\rho = 0$. $\therefore G_1 \subset G_2 \subset G_3$

2. $\min_g E(Y - g(X))^2 \leq \min_{a,b} E[Y - (a + bX)]^2$ and the equality holds if and only if $E_{Y|X}(Y|x) = \mu_Y + \rho(\sigma_Y/\sigma_X)(x - \mu_X)$.

Collect data of X, Y to estimate their joint dist.

Question 3.3

What if the joint distribution of X and Y is unknown?

- ❖ **Reading:** textbook, Chapter 4
- ❖ **Further Reading:** Roussas, 5.1, 5.3, 5.4, 5.5, 6.1, 6.2, 6.4, 6.5

Some Commonly Used Distributions (from Chapters 2, 3, 6)

Question 4.1

For a given random phenomenon or data, what distribution (or statistical model) is more appropriate to depict it? \uparrow statistical modeling

- discrete distributions

Definition 4.1 (Uniform distribution $U(a_1, \dots, a_m)$)

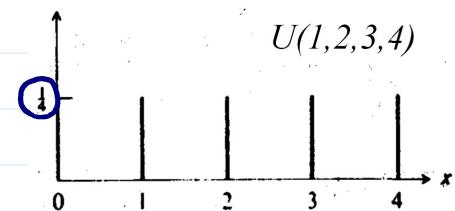
Equal probability to obtain a_1, a_2, \dots, a_m .

• pmf: $p(x) = \begin{cases} \frac{1}{m}, & x = a_1, \dots, a_m \\ 0, & \text{otherwise} \end{cases}$

• mgf: $\frac{\sum_{j=1}^m e^{a_j t}}{m}$ \leftarrow by definition (Ec)

• mean: $\frac{\sum_{j=1}^m a_j}{m} \equiv \bar{a}$

• variance: $\frac{\sum_{j=1}^m (a_j - \bar{a})^2}{m}$



• parameter: $a_i \in \mathbb{R}$, $m = 1, 2, \dots$

• example: throw a fair die once

Definition 4.2 (Bernoulli distribution $B(p)$, sec 2.1.1)

A Bernoulli distribution takes on only two values: 0 and 1, with probabilities $1 - p$ and p , respectively.

• pmf: $p(x) = \begin{cases} p^x(1-p)^{1-x}, & \text{if } x = 0 \text{ or } x = 1 \\ 0, & \text{otherwise} \end{cases}$

• mgf: $pe^t + 1 - p$ — by definition (Ec)

• mean: p — [by definition] (Ec)

• variance: $p(1-p)$ — $\text{Var}(X) = E(X^2) - [E(X)]^2$

• variance: $p(1-p)$ — $\text{Var}(X) = EX(X-1) + E(X) - [E(X)]^2$ (Ec)

• parameter: $p \in [0, 1]$ — use mgf

• example: toss a coin once, p = probability that head occurs

Note: If A is an event, then the indicator random variable I_A follows the Bernoulli distribution.

$\hookrightarrow p = P(A)$

$I_A: \Omega \rightarrow \mathbb{R}, I_A(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$

Definition 4.3 (Binomial distribution $B(n, p)$, sec 2.1.2)

Suppose that n independent Bernoulli trials are performed, where n is a fixed number. The total number of 1 appearing in the n trials follows a binomial distribution with parameters n and p .

Shape

• pmf: $p(x) = \begin{cases} \binom{n}{x} p^x(1-p)^{n-x}, & x = 0, 1, \dots, n \\ 0, & \text{otherwise} \end{cases}$

• mgf: $(pe^t + 1 - p)^n, t \in \mathbb{R}$. — by definition

• mean: np — [use mgf] (Ec)

• variance: $np(1-p)$ — max at $p=1$, min at $p=0$ or 1

• parameter: $p \in [0, 1], n = 1, 2, \dots$

• example: # of heads, toss a coin n times

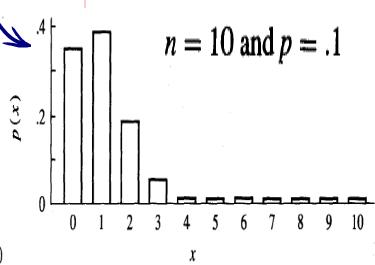
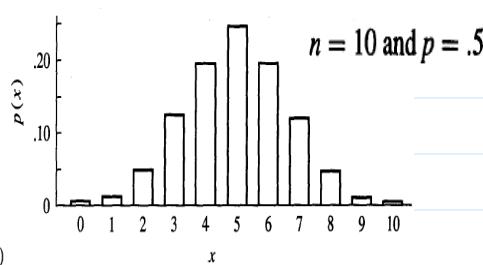
$0 + 1 + 1 + \dots + 0 = x$
 $1 \quad 2 \quad \dots \quad n$
 $0 \quad 0 \quad \dots \quad 0$

$E(X) = \sum_{x=0}^n x \binom{n}{x} p^x(1-p)^{n-x}$

$= \sum_{x=1}^n \binom{n-1}{x-1} p^{x-1}(1-p)^{(n-1)-(x-1)}$

$= np \quad \text{pmf of } B(n-1, p)$

→ STO (sum-to-one) method



Find $E(X^2)$ using mgf
Find $E[X(X-1)]$ using STO (Ec)
sum of i.i.d. $B(p)$

Note: (*)

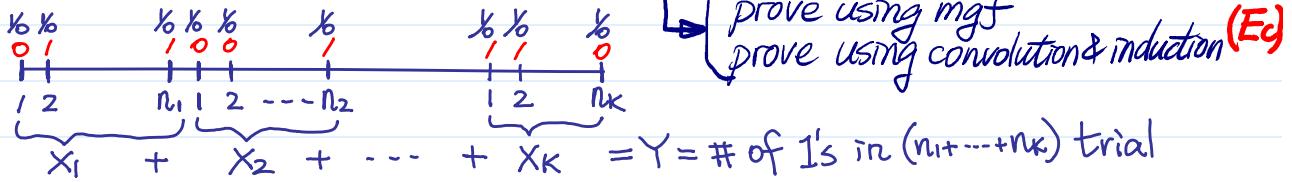
$$(a+b)^n = \sum_{x=0}^n \binom{n}{x} a^x b^{n-x}.$$

Note.

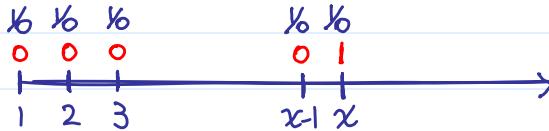
1. binomial distribution is a generalization of bernoulli distribution from 1 trial to n trials

2. Let X_1, \dots, X_n be i.i.d. $B(p)$, then $Y = X_1 + \dots + X_n \sim B(n, p)$. - prove using ① mgf ($M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$) ② convolution & induction (Ec)

3. Let $X_i \sim B(n_i, p)$, $i = 1, \dots, k$, and X_1, \dots, X_k are independent. Then, $Y = X_1 + \dots + X_k \sim B(n_1 + \dots + n_k, p)$.

Definition 4.4 (Geometric distribution $G(p)$, sec 2.1.3)

The geometric distribution is constructed from an infinite sequence of independent Bernoulli trials. Let X be the total number of trials up to and including the first appearance of 1. Then, X follows the geometric distribution.



• pmf: $p(x) = \begin{cases} (1-p)^{(x-1)}p, & x = 1, 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$

• a pmf? (Ec) \leftarrow use (**)

• cdf: $F(x) = \begin{cases} 1 - (1-p)^{[x]}, & 1 \leq [x] \leq x < [x] + 1 \\ 0, & x < 1 \end{cases}$ \leftarrow Find $P(X > x)$ using (**) (Ec)

• mgf: $\frac{pe^t}{1-(1-p)e^t}$, $t < -\log(1-p)$. \leftarrow use (**) (Ec) \leftarrow use STO

• mean: $\frac{1}{p}$ \leftarrow use $E(X) = \sum_{k=1}^{\infty} k P(X \geq k)$ or use (**) (Ec)

• variance: $\frac{1-p}{p^2}$ \leftarrow Find $E(X^2)$ using mgf \leftarrow Find $E[X(X-1)]$ using differentiation method (Ec)

• parameter: $p \in [0, 1]$

• example: lottery, # of tickets a person must purchase up to and including the first winning ticket

Note: a memoryless distribution \leftarrow intuition

\leftarrow check its definition (LNp.74) and prove (Ec)

Note: (**) $\sum_{x=n}^{\infty} t^x = \frac{t^n}{1-t}$, for $-1 < t < 1$.

Ch1~6, p.2-65

Joint pmf: use (****)

a joint pmf? (Ec)

$$p(x_1, \dots, x_m) =$$

Explanation

- use (****)

a joint pmf? (Ex)

$$p(x_1, \dots, x_r) = \begin{cases} \binom{n}{x_1 \cdots x_r} p_1^{x_1} \cdots p_r^{x_r}, & \begin{array}{l} x_i = 0, 1, \dots, n, \text{ and} \\ \sum_{i=1}^r x_i = n \end{array} \\ 0, & \text{otherwise} \end{cases}$$

explanation

- joint mgf: $(p_1 e^{t_1} + \cdots + p_r e^{t_r})^n$, $t_1, \dots, t_r \in \mathbb{R}$. use STO (Ec)
- marginal distribution: $X_i \sim B(n, p_i)$, $i = 1, \dots, r$ intuition (Ec)
- mean: $E(X_i) = np_i$, $i = 1, \dots, n$ prove using mgf
- variance: $Var(X_i) = np_i(1 - p_i)$, $i = 1, \dots, n$
- covariance: $Cov(X_i, X_j) = \underline{-np_i p_j}$, $i \neq j$ Find $E(X_i X_j)$ using STO Find $E(X_i X_j)$ using mgf
- parameter: $p_i \in [0, 1]$, and $\sum_{i=1}^r p_i = 1$. $n = 1, 2, \dots$ (Ec)
- example: randomly choose n people, record the numbers of people with different religions

(why negative?)

Note: $(a_1 + \cdots + a_k)^n = \sum_{x_1 + \cdots + x_k = n} \binom{n}{x_1, \dots, x_k} a_1^{x_1} \cdots a_k^{x_k}$.

Notes: multinomial distribution is a generalization of the binomial distribution from 2 outcomes to r outcomes.

Ch1~6, p.2-66

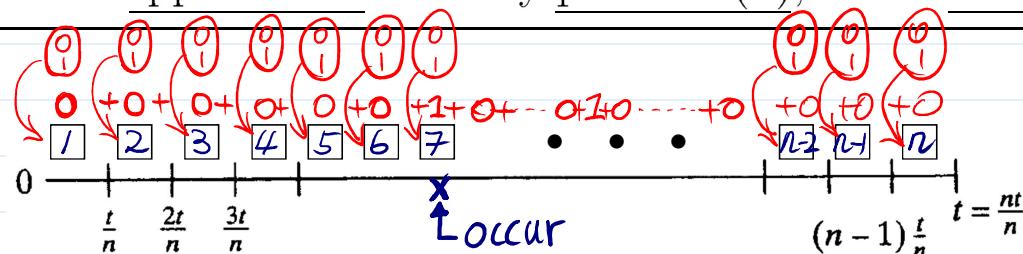
Definition 4.7 (Poisson distribution $P(\lambda)$, sec 2.1.5)

Limit of binomial distributions $X_n \sim B(n, p_n)$, where $p_n \rightarrow 0$ as $n \rightarrow \infty$ in such a way that $\lambda_n \equiv np_n \rightarrow \lambda$.

$$\begin{aligned}
 & \binom{n}{x} p_n^x (1-p_n)^{n-x} \quad P_n = \frac{\lambda_n}{n} \leftarrow \boxed{\text{Note: if } a_n \rightarrow a, \left(1 + \frac{a_n}{n}\right)^n \rightarrow e^a} \\
 &= \frac{n(n-1)\cdots(n-x+1)}{x!} \left(\frac{\lambda_n}{n}\right)^x \left(1 - \frac{\lambda_n}{n}\right)^{n-x} \\
 &= \frac{n(n-1)\cdots(n-x+1)}{n^x} \frac{1}{x!} \lambda_n^x \left(1 - \frac{\lambda_n}{n}\right)^{n-x} \\
 &= 1 \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{x-1}{n}\right) \frac{\lambda_n^x}{x!} \left(1 - \frac{\lambda_n}{n}\right)^n \left(1 - \frac{\lambda_n}{n}\right)^{-x} \rightarrow 1^x \cdot \frac{\lambda^x}{x!} \cdot e^{-\lambda} \cdot 1 = \frac{\lambda^x e^{-\lambda}}{x!}
 \end{aligned}$$

explanations.

1. if n large, the pmf of $B(n, p)$ is not easily calculated. Then, we can approximate them by pmf of $P(\lambda)$, where $\lambda = np$.



2. Let X be the number of times some event occurs in a given time interval I . Divide the interval into many small subintervals I_k , $k = 1, \dots, n$, of equal length. Let N_k be the number of events occurring in I_k . When we can assume N_1, \dots, N_n are independent and approximately $\sim B(p)$, X has a distribution near $P(\lambda)$, where $\lambda = np$.

shape

a pmf? (Ec)

use (*****)

$$\text{pmf: } p(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda}, & x = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{aligned} N_1 + N_2 + \dots + N_n &\sim B(n, p) \text{ with} \\ &\text{large } n \text{ &} \\ &\text{small } p \end{aligned}$$

• mgf: $e^{\lambda(e^t-1)}$, $t \in \mathbb{R}$. use STO (Ec)

• mean: λ use mgf (Ec)

meaning of parameter λ :
average occurrences

• variance: λ Find $E[X(X-1)]$
using STO

• parameter: $\lambda > 0$ Find $E(X^2)$ using mgf (Ec)
 $np(1-p) \approx np$

$$\text{Note: (*****)}$$

$$e^\lambda = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$

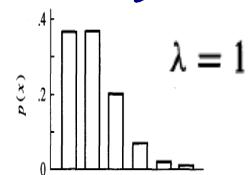
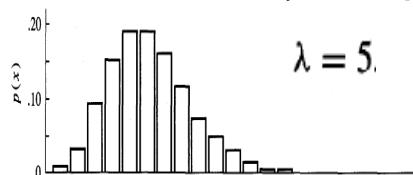
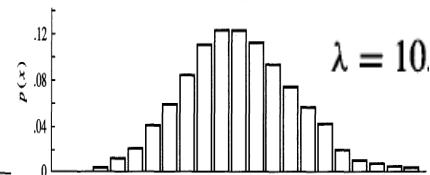
• example: number of phone calls coming into an exchange during a unit of time

Note: Let $X_i \sim P(\lambda_i)$, $i = 1, \dots, k$, and X_1, \dots, X_k are independent. Ch1~6, p.2-68

Then, $Y = X_1 + \dots + X_k \sim P(\lambda_1 + \dots + \lambda_k)$. prove using mgf (Ec) prove using convolution & induction

$$x_1 + x_2 + x_3$$
 intuition

$t_1 \quad t_2 \quad t_3 \quad t_4$ $\lambda_1 = \lambda(t_2 - t_1), \lambda_2 = \lambda(t_3 - t_2), \dots, \lambda_1 + \lambda_2 + \lambda_3 = \lambda(t_4 - t_1)$



Definition 4.8 (Hypergeometric distribution $HG(r, n, m)$, sec 2.1.4)

Suppose that an urn contains n black balls and m white balls. Let X denote the number of black balls drawn when taking r balls without replacement. Then, X follows hypergeometric distribution. c.f. with replacement $\Rightarrow X \sim B(r, \frac{n}{m+n})$

explanation

$$\text{pmf: } p(x) = \begin{cases} \frac{\binom{n}{x} \binom{m}{r-x}}{\binom{n+m}{r}}, & x = 0, 1, \dots, \min(r, n), \\ 0, & \text{otherwise} \end{cases}$$

a pmf? (Ec)

use (*****)

Note: (*****)

$$\binom{n+m}{r} = \sum_x \binom{n}{x} \binom{m}{r-x}$$

- mgf: exist, but no simple expression

• mean: $\frac{mn}{n+m}$ ← use STO (Ec)
 (Intuition)

• variance: $\frac{rnm(n+m-r)}{(n+m)^2(n+m-1)}$ ← Find $E[X(X-1)]$ using STO (Ec)

• parameter: $r, n, m, = 1, 2, \dots, r \leq n + m$

• example: sampling industrial products for defect inspection

Notes. a relationship between hypergeometric and binomial distributions: Let $m, n \rightarrow \infty$ in such a way that

$$\underline{p_{m,n}} \equiv \frac{n}{m+n} \rightarrow p,$$

where $0 < p < 1$. Then,

$$\frac{\binom{n}{x} \binom{m}{r-x}}{\binom{n+m}{r}} \rightarrow \binom{r}{x} p^x (1-p)^{r-x}.$$

(Intuition): When m, n are large,
with replacement \approx without replacement

• continuous distributions

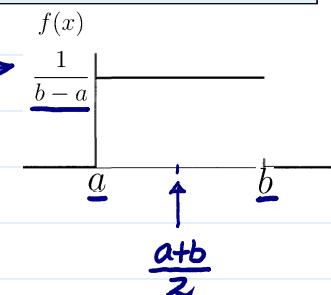
Definition 4.9 (Uniform distribution $U(a, b)$, sec 2.2)

Choose a number at random between a and b .

Shape

• pdf: $f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{otherwise} \end{cases}$

a pdf? (Ec)



• cdf: $F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b \end{cases}$ ← by definition (Ec)

• mgf: $\frac{e^{bt} - e^{at}}{t(b-a)}$, $t \in \mathbb{R}$. ← by definition (Ec)

• mean: $\frac{a+b}{2}$ ← [by definition
use mgf] (Ec)

• variance: $\frac{(b-a)^2}{12}$ ← [Find $E(X^2)$ using definition
Find $E(X^2)$ using mgf] (Ec)

• parameter: $a, b \in \mathbb{R}$, $a < b$

Thm 2.4, 2.5 (LNp.30)

Note: $U(0, 1)$ is useful for pseudo-random number generation

Definition 4.10 (Exponential distribution $E(\lambda)$, sec 2.2.1)

• **pdf:** $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$

• **cdf:** $F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$ by definition (Ec)

• **mgf:** $\frac{\lambda}{\lambda-t}$, $t < \lambda$. by definition (Ec)
use STO

• **mean:** $\frac{1}{\lambda}$ use STO
use mgf (Ec)

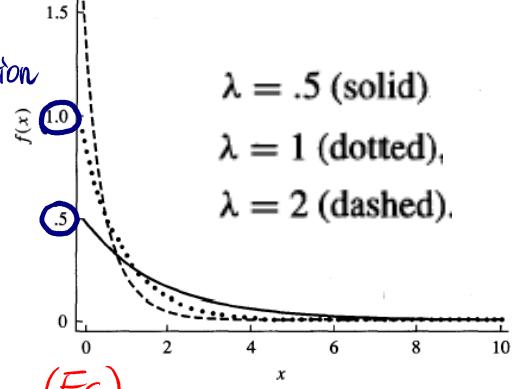
• **variance:** $\frac{1}{\lambda^2}$ Find $E(X^2)$ using STO

• **variance:** $\frac{1}{\lambda^2}$ Find $E(X^2)$ using mgf (Ec)

• **parameter:** $\lambda > 0$

• **example:** lifetime or waiting time

Exponential densities



meaning of parameter λ_1 : average waiting time ($\frac{\text{時間}}{\text{次}}$)
 λ : average occurrence rate ($\frac{\text{次}}{\text{時間}}$)

Notes:

1. memoryless (future independent of past): Let $T \sim E(\lambda)$, then

$$P(T > t+s | T > s) = \frac{P(T > t+s \text{ and } T > s)}{P(T > s)} = \frac{P(T > t+s)}{P(T > s)}$$

1st $\overset{t}{\overbrace{[0, s]}}$ 2nd $\overset{t}{\overbrace{[s, t+s]}}$

$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(T > t)$$

cdf of T : $F_T(t) = 1 - P(T > t)$

• (\Leftarrow) If a continuous distribution is memoryless, it is exponential.

• It does not mean the two events $T > s$ and $T > t+s$ are independent.

If discrete, then it is geometric

cf.

2. relationship between exponential, gamma, and Poisson distributions

Let T_1, T_2, T_3, \dots be i.i.d. $\sim E(\lambda)$ and $S_k = T_1 + \dots + T_k$, $k = 1, 2, \dots$

Let X_i be the number of S_k 's that falls in $[t_{i-1}, t_i]$, $i = 1, \dots, n$, then X_1, \dots, X_n are independent, and $X_i \sim P(\lambda(t_i - t_{i-1}))$. The reverse statement is also true.

Poisson Process

X_i : # of events occur during $[t_0, t_i] \rightarrow [0, t]$
 $\sim P(\lambda(t_i - t_0)) \rightarrow P(\lambda t)$

Binomial

$P_i(T_i > t) = P_i(P(\lambda t) = 0) = e^{-\lambda t} \times 100\% = e^{-\lambda t}$
 $T_i \sim E(\lambda)$
 $\xrightarrow{\text{Geometric time}}$
 $S_k \sim T(k, \lambda)$
 \downarrow
 Negative Binomial

Question 4.2: how to interpret λ ? ($\frac{\text{次}}{\text{單位時間}}$)

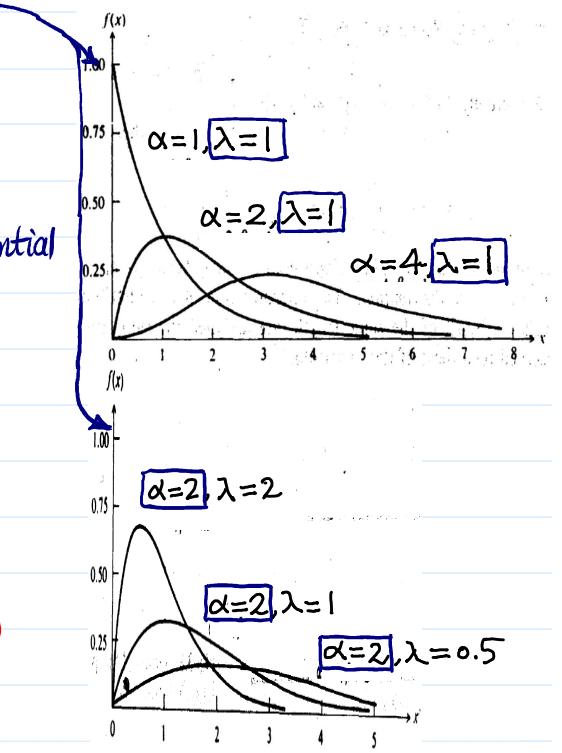
3. Sometimes, the pdf is written as $\frac{1}{\lambda} e^{-\frac{x}{\lambda}}$. In the case, how to interpret λ ?

Definition 4.11 (Gamma distribution $\Gamma(\alpha, \lambda)$, sec 2.2.2)

- **pdf:** $f(x) = \begin{cases} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$
- **mgf:** $(\frac{\lambda}{\lambda-t})^\alpha, t < \lambda.$ use STO (Ec)
sum of i.i.d. exponential
- **mean:** $\frac{\alpha}{\lambda}$ use STO
use mgf (Ec)
- **variance:** $\frac{\alpha}{\lambda^2}$ sum of i.i.d. exponential
- **parameter:** $\alpha, \lambda > 0$

- **Find $E(X^2)$ using STO**
- **Find $E(X^2)$ using mgf (Ec)**
- **Sum of i.i.d. exponential**

Notes.



1. α : shape parameter; λ : scale parameter (Question 4.3: how to interpret α, λ from the view point of Poisson process?)
(LNp.72) λ : occurrence rate, α : # of summed exponential r.v.'s

2. properties of gamma function $\Gamma(\alpha)$:

Ch1~6, p.2-74

- $\Gamma(\alpha) \equiv \int_0^\infty y^{\alpha-1} e^{-y} dy$ (which is finite for $\alpha > 0$)
- $\Gamma(1) = 1$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$
- $\Gamma(\alpha) = (\alpha - 1)!$ if α is an integer
- $\Gamma(\frac{\alpha}{2}) = \frac{\sqrt{\pi}(\alpha-1)!}{2^{\alpha-1}(\frac{\alpha-1}{2})!}$ if α is an odd integer

3. gamma distribution can be viewed as a generalization of exponential distribution, i.e., $\Gamma(1, \lambda) = E(\lambda)$.

(Ec) **intuition** prove using mgf

4. Let X_1, \dots, X_k be i.i.d. $\sim E(\lambda)$, then $Y = X_1 + \dots + X_k \sim \Gamma(k, \lambda)$.
5. Let X_1, \dots, X_k be independent, and $X_i \sim \Gamma(\alpha_i, \lambda)$, then $Y = X_1 + \dots + X_k \sim \Gamma(\alpha_1 + \dots + \alpha_k, \lambda)$. intuition prove using mgf (Ec)
6. Let $X \sim \Gamma(\alpha, \lambda)$, then $cX \sim \Gamma(\alpha, \lambda/c)$, where $c > 0$. intuition prove using mgf (Ec)
7. $X \sim \Gamma(\alpha, \lambda) \Rightarrow E(X^k) = \frac{\Gamma(\alpha+k)}{\lambda^k \Gamma(\alpha)}$, for $0 < k < \alpha$. use ① STO ② mgf (Ec) integration.

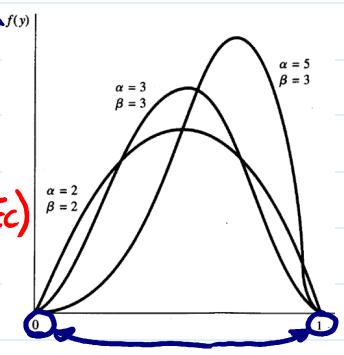
Definition 4.12 (Beta distribution $\text{beta}(\alpha, \beta)$, sec 15.3.2)

shape
pdf: $f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}$

a pdf? (Ec)
• mgf: $1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$ ← by definition
(Note: $e^{tx} = \sum_{k=0}^{\infty} \frac{(tx)^k}{k!}$) (Ec)

mean: $\frac{\alpha}{\alpha+\beta}$ ← use STO
intuition

variance: $\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$ ← Find $E(X^2)$ using STO
parameter: $\alpha, \beta > 0$ ← Find $E(X^2)$ using mgf (Ec)



Notes:

1. Beta function: $B(\alpha, \beta) \equiv \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

2. $\beta(1, 1) = U(0, 1)$ ← meaning of α & β

3. Let $X_1 \sim \Gamma(\alpha_1, \lambda)$, $X_2 \sim \Gamma(\alpha_2, \lambda)$, and X_1, X_2 independent.
Then, $\frac{X_1}{X_1+X_2} \sim \text{beta}(\alpha_1, \alpha_2)$. ← $\begin{bmatrix} Y_1 = \frac{X_1}{X_1+X_2} \\ Y_2 = \frac{X_2}{X_1+X_2} \end{bmatrix}$ ← find the joint pdf of (Y_1, Y_2) , then marginal pdf of Y_1 (Ec)