NTHU MATH 2820, 2026 Lecture Notes

Chapter 1 Ch1~6, p.2-1

There are many random phenomena (example?) in our real

life. What is the| language/mathematical structure fthat we use to

depict them?
Outline Chamdteristic — gaé‘@m ?ﬁgigﬂ_)
> sample space * don't know w/wt‘ — waiting time
result we will
> event 9t . the Adure — rain tomorow ?
> probability measure Y'ib‘)e best we can c/oL- —
probability] * conditional probability\, i;):b ‘ZZ"T"’Q/C“/‘“/“”?' .
Spac€ |« independence probbiity of these possible resutts.
» three theorems Website of My Probability Course
» multiplication law http://www.stat.nthu.edu.tw/~swc
* law of total probability heng/Teaching/math2810/inde
* Bayes’ rule X.php
Textbook page LNp. (Lecture Note page)

Definition (sample space, TBp. 2)

A sample space () is the set of all possible outcomes in a
random phenomenon.

Example 1.1 (throw a coin 3 times, TBp. 35)
Q) = {hhh, hht, hth,thh, htt, tht, tth, ttt}  h: head.

—Q is a finite set +: tail

Example 1.2 (number of jobs in a print queue, Ex. B, TBp. 2)

discrete| | O = {0,1,2,...}

vaxable L—Q is an infinite, but countable, set

10?. Example 1.3 (length of time between successive earthquakes, Ex. C, TBp. 2)

binss | 2= {1t >0} = [0, 09)

random «— Q is an infinite, but uncountable, set

vonigble
What are the differences between the Q in these examples?
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Ch1~6, p.2-3

collecbion of all
“wel(-defmed ” events

= 6-field

Definition (event, TBp. 2)

A particular subset of €2 is called an event.<

Example 1.4 (cont. Ex. 1.1)
Let A be the event that total number of heads equals 2,

then A = {hht, hth,thh}.

Example 1.5 (cont. Ex. 1.2)

Let A be the event that fewer than 5 jobs in the print queue,
then A ={0,1,2,3,4}.

e union. C' = AU B = (' at least one of A and B occur.
e intersection. C = AN B = C: both A and B occur.

e complement. C' = A° = (C: A does not occur.

muctually
exduSiv):e disjoint. ANB = () = A and B have no outcomes in common.

S S

n

(a) Shaded region: EU F. (b) Shaded region: EF.

Ch1~6, p.2-4

Definition (probability measure, TBp. 4)

A probability measure on € is a function P from subsets of
€ to the real numbers that satisfies the following axioms: I

L P(Q) = 1. < total prob. = | Dt T —o, l]
2. It AC, then P(A) > O.éwn—nﬁaﬁvﬂ'y 24
¢ 3 If Ay and Ay are disjoint, then < ac///%iw‘éy
Axioms of P(A, U Ay) = P(A;) + P(A,).
probability

More generally, if Ay, As, ... are mutually disjoint, then

P (fjl Ai) _ i:;l P(4,).

Example 1.6 (cont. Ex. 1.1)

Suppose the coin is fair. For every outcome w € ), P(w) = %.
) = {hhh, hht, hth,thh, htt, tht, tth, ttt} p:->0.1]
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 o
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Property A. P(A%) =1 — P(A). gene\‘a(izatwm : ohi=e. p-25

_ P(AU--UAn)
Property B. P(0) = 0. = > p(Ad) )
Property C. If A C B, then P(A) < P(B). |~ =P(Ain4
t = P(AcnAz048
Property D. P(AUB) = P(A)+ P(B) — P(AN B).\—--

Definition (conditional probability, TBp. 17)
Let A and B be two events with P(B) > 0. The conditional

probability of A given B is defined to be Q. Whg ] ,vab

B P(ANB) important i
PUABI="5E) " dotrtres 2
2 A CB(’“‘“’-Q) Ans: update

B — Q ANB Fnﬁrma'brm .

Ch1~6, p.2-6

Example 1.7 (cont. Ex. 1.6)

B8 Suppose that thi_ﬁ'rst throw is A. What is the probability that
A we can get exact two h’s in the three trials? .\ Q.
Q) = {hhh, hht, hth, thh, hitt, tht, tth, ttt} e !
B = {hhh, hht, hth, htt} Plang) %
; 7 = = =L
A = {hh#/hththh} P(ale) RO I

Theorem (Multiplication Law, TBp. 17)
Let A and B be events and assume P(B) > 0. Then

gerewhzabion. P(AN B) = P(A|B)P(B)~— intuition
P(&NALN---NAn) NS Sometimes, this is easier
=P (A1) P(A(A)-P(As | AinAa) s --- to obtain (V21— B)

Example 1.7 (Ex. B, TBp. 18)
Suppose if it is cloudy (B), the probability that it is raining (A)

is 0.3, and that the probability that it is cloudy is P(B) = 0.2.
The probability that it is cloudy and raining is
P(AN B) = P(A|B)P(B) =0.3 x 0.2 =0.06.
—

made by S.-W. Cheng (NTHU, Taiwan)



Lecture Notes
Ch1~6, p.2-7

NTHU MATH 2820, 2026

Theorem (Law of Total Probability, TBp. 18)
Let 51, Bg, oo s Bn be such that U?:l Bz — ) and B,L N Bj = (Z)
for ¢ # 7, with P(B;) > 0 for all i. Then, for any event A,
P23 T2
P(A) =Y P(A|B)P(B;). +intuttion |

a partition L
of 0 L T —pP(ans:y)
(T oot
A
A 4@% ,"’Bl: | F—Ba‘ —» |St —©—» 2nd 4'95‘/
| /
A (new S.) By A
Theorem (Bayes’ Rule, TBp. 20)
Let A and By, ..., B, be events where the B, are disjoint,

?1IT—QandP(B)>OforaHi Then

P(An%) l———(? A|B
P(A) P(A|B;)P ( i)

Ch1~6, p.2-8

Definition (independence, TBp. 24)

Two events A and B are said to be independfnt if
defini \
iion o b P(ANB) = PAP(B). Bk
A collection of events Aq, Ao, ..., A, are said to be mutually
independent if for any subcollection, A; , ... 4; ,
P(A’Ll m m AZ'rn) P(AZI) e P(Azrn>
f.] When A and B are independent, 3os;mw;mkm
thion of P(ANB)  P(A)P(B) =t
v N
. P(A|B) = = = P(A

and P(A°|B) = P(A°).
Furthermore, P(A|B¢)

P(A) and P(A°|B¢) = P(A°).

| A+«—B independence
regui | 4 ><B <= & complement
Pel.on.d. Ce—» C

) Reading: textbook, Sections 1.1, 1.2, 1.3, 1.5, 1.6, 1.7
) Further Reading: Roussas, Chapters 1 and 2
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Chapters 2 and 3

Outline

»random variables (BEH4SEEY) > conditional distribution
» distribution

ediscrete and continuous

»independent random variables

» function of random variables

eunivariate and multivariate
ocdf, pmf, pdf

e distribution of transformed r.v.

e extrema and order statistics

 random variable

Definition 2.1 (random variable, TBp. 33)

A random variable is a function from €2 to the real numbers.

R ;% mw'n .?,mrr;&ipectsoj:nv.x
I (prob. the (random) value of X
\} " | spacey| | distribution of X
5 >R
> statistical modeling usually stasts from here . N
@ Ch1~6, p.2-10
(1) X7 = the total number of heads
(2) X3 = the number of heads on the first toss
(3) X3 = the number of heads minus the number of tails
— 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
| = {hhh it bt th hitt, tht, teh, 1)
b vV OV Y Y vV vV vV ¥
protatility 3,02 20 2, L 1 1 0<—newf)
sprce \—% 3 3 babil;
V. /8 % }{g <— new probabilidy
X,: 1, 1, 1, 0, 1, 0,0, 0. measure
—
X, 03, 1, 1, 1, -1, -1,-1, =3.
e

Why statisticians need random variables? Why they map to real line?

We need in R" b can db

candom voniabe |, Data in R space canao

because. ‘ umil’lé/ ne,ul' Pm[ub“[;{,.y “-I: ’; -, X,
measure. -, eff)'l%’- -~
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Ch1~6, p.2-11

+ distribution<—probaili€y mexsure of LY. ~dowt Know what value will appear
(DEC. D) o Forrv.. It value : yandom . buk ots distribution : Fixed .

A random variable have a sample space on real line. Does it bring
some special ways to characterize its probability measure?

= finite or countable mfinity

discrete continuous «——uncountable.
uni- e pmf é——=> ¢ pdf
rvariate | (e .
Cedf odf when any of them

©. | Cmglht [ omelehl) | (s fopyny, te
multi- * joint pmf €= * joint pdf other, 2. can be
~variate KPS * j0I

, ( joint cdf joint c@ Lgbtam
L.V.’s * joint mgf/chf | o 1'0int mgf/chﬂ

pmf: probability mass function, pdf: probability density function,
cdf: cumulative distribution function

mgf (moment generating function) and chf (characteristic function) will be
defined in Chapter 4

Ch1~6, p.2-12

Definition 2.2 (discrete and continuous random variables, TBp. 35 and 47)

A discrete random variable can take on only a finite or at
most a countably infinite number of values. A continuous ran-
dom variable can take on a continuum of values.e uncountable

eq.

Discrete Continuous
Xe{o,1.2,3} Xelo. 1]
X€ Z+ X € (w,@)

Definition 2.3 (cumulative distribution function, TBp. 36)

A function F' is called the cumulative distribution function
(cdf) of a random variable X if

F(z)=P(X <z),z€R.

7.51 )fz 3 —?R discrete continuous mixed .
i > _

A
® -~ -

-2 -1 0 1 2
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Ch1~6, p.2-13

Definition 2.4 (probability mass function/frequency function, TBp. 36)

A function p(x) is called a probability mass function (pmf)
or a frequency function if and only if (1) p(x) > 0 for all

x EIXI, and (2) > .y p(x) =1 oo Frile

For a discrete random variable X with pmf p(z), | orcountabl
P(X =) = p(x), Tii

and @et.

P(X = A) - erA p(x)
—d AR
probability mass function cumulative distribution function

O
} Q 8 P(Xs():'é‘-r%:f:?:(l)
fe‘oﬁms'“l’ﬁ_j’ Pi<)=% = F(1-)

P (x=1)=p(X<1)-P(x<r1)

T =F -F(r=)
= lim C(t
I T%F( )
2
<:I Ch1~6, p.2-14

Definition 2.5 (probability density function, TBp. 46)

A function f(x) is a probability density function (pdf ) or
density function if and only if (1) f(z) > 0 for all x, and ( )
: : ° similar role oo
For a continuous random Varlable X Wlth pdf f, pmF, but-
pdf of Uniform(0, 1) cdf of Umform(O 1) area.= P(A)
FOD | F(}') ’
area™
/ = area,*

. _ [ ﬂ&va(uo&a.pdvﬁcan
F(z) = [= f(t

be [mga than, one (c#. prf) .
f(a:):@F(:c) ( Note. ;cstf >OP —a:)—ff dt—O)

dx d +4
For small dx, P (x —— < X<z+ _:c) = / o J()dt = f(x)dx
How to interpret f(x)? 2 2 S Yroportional Fo prob.
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Ch1~6, p.2-15

Theorem 2.1 (properties of cdf)

If F(x) is a cumulative distribution function of some random
varaible X then the following properties hold.

1. 0< F(z) <1

2. F(x) is nondecreasing.

3. For any x € R, F'(z) is continuous from the right; i.e.

1751¢I:Icl F(t) = F(z).

4. lim F(z)=1and lim F(z)=0.

T— 00 T——00

5. P(X >12)=1—F(2) and P(a < X < b) = F(b) — F(a).
6. For any z € R, F'(z) has left limit. ~»Hx-)=P(X< x)
7. There are at most countably many discontinuity points of

Conversely, if a function F(x) satisfies properties 2, 3, 4 then
F(x) is a cdf.

Ch1~6, p.2-16

0 (0108 Why need joint distribution for the study of multivariate r.v.’s?

e o (1 Xa, ) R
g;‘;‘,mm QO = {hhh, hht, hth, thh, htt, tht, tth, ttt}
enough ? When Xi=| oceurs,
X,:#of | X;:total # of heads r P(Xz_o‘xlzoz__aﬁi_a
(%1, X2) head on - 3g 3
€R |5t toss ﬁ@(l/s;) 1(p/8) 23/8) 3(1/8) P(><z="><l=')=é§§-=3l
1/ 1 ( 3\ 1/ 3 1
20| | g(i5) §(55) 8(55) 0(5) | Nofe: oo marginal
a2 1| |0(%) §(2) 4Z) %) distributons ang not
‘L , enoug) +o describ
U crioe
— enough
mat‘ginal L jornt distribuction their 1'07/1{7 distr Adfim.
drsl:n‘bub’onj

When we know the joint distribution, we can obtain every marginal

distributions. Is the reverse statement true?
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Ch1~6, p.2-17

Definition 2.6 (joint cumulative distribution function, TBp. 71) ,Yz)
The joint cdf of X, Xs,...,X,, is
F(xy, 29, - ,2,) = P(X1 <21, X0 < 29,..., X, < 1) X
for z1,z9,...,2, € R.
Can ___:Y {XlS'Ja;Xzé xz}
P P(z) < X <zo,pn <Y <o) T t
eneralized 1 < T2, Y1 S Yo event .
e _ —
3302 S F(z2,12) — F(x2,41) »
—F(z1,92) + Flz1,51)
event
(7)) <
Definition 2.7 (marginal cdf, TBp. 76) ‘1(2 g{){hﬁ,
. . , -0)<X2<ﬂ
The marginal cdf of X is 4
X,
X1 Xl = 35'1) xz,x?,,}-rgcln—wo F(le, o L ,IL’n) K‘\%(

F
—
-@
E[dlscrete case: marginal pmf px,(x) = Fx,(z) — Fx,(z—).

continuous case: marginal pdf fx,(z) = L Fy,(x).

Ch1~6, p.2-18
ﬁ 1screte multivariate case °
p(x1, Ta, -+, Ty) P(Xi=a, Xe=29,..., Xpn =2y

. the =
m = joint pmf of X, X5,..., X,
me P((Xy,...,X,) €A) = >ooooply, .. xy)
paf (Z1,0rn)EA
F(ZEl)'T?n"'ale) V' Z p(t17t27"'7tn)
relationship by Joint cdf & pm§ 01<x1, 12<%3, ..., tn<Typ
le(aj1> :P(Xl :xl) ry Z p(xtha"')tn)
S — L —00<ty<00,...,—00<t, <00
®continuous multivariate case —relationship blw marginal & goint pmfs
871
L1, Lo, ,XTp) = F(xy,x9,- -,
f( 1,42, ’ n) 8.171 axn ( 1,42, V) n)
= 1nint ndf ~f =
— JUiIL Pl Ol A1, A2, y “Aqy

P((Xq,...,X,) € A) = /'--/Af(xl,...,xn)dx1~-—d:z:n

F(xlax% xn)j /_Olo/_;f(tlat%)tn)dtndtl
relabionship biw Joint cdf 8 Pdf 0 0
reletionship bjw mw?mal le (561 T / '
& Joint pdfs
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Ch1~6, p.2-19

« independent random variabless— R/, indeperdent event:s ((MpS)

Definition 2.8 (independent random variables, TBp. 84)

Random variables Xj, Xo,..., X, are said to be independent

if their joint cdf factors into the product of their marginal cdf’s

ANB A Xa % 4
for all x1,x9, ..., x,. A—-V:—é-?E - X it x B

N F(x1,29,...,2n) = Fx,(21)Fx,(2) - - - Fx, () €

() § =g F oo R R i
& F= -5 =1 % $a=Fa—F

Theorem 2.2 (TBp. 85-86)

1. For continuous case,

F(21,...,2) = Fx, (1) - Fx.(@)  f(@1, - 20) = fx. (@1)

t
'Ié

)
X

Joint

can be
determined

by manginals

an (-rn) G-

Note: similonity between
pdf & pmf.

For discrete case,

F(zy,...,m) = Fx,(z1) - - - Fx,(20) & p(21, ..., Tn) = px,(71) - - Px, (70)

OL

2. X, Y independent ioriwberprefaﬁon YeB| XeA
& P(XeAY eB)=P(XeAPY €B) [ =PYeB)

Ch1~6, p.2-20

A&t

Forgs_g i.e. the events {X € A} and {Y € B} are mdependentj

G No matter what data X occuns . 1t hao no mpact

on the appemrance probability of data Y.
X, Y independent = Z = ¢g(X) and W = h(Y) are inde-

pendent
trms§;> mation

Xq,..., X, are independent

eg. Xigh «~——

l<ipp<nu<---<ip=n
u Y g% Yi gl(X17"'7Xi1)7
92(Xii1, - Xap),

b
g «—— e ﬁ%\’) 2582 |, _ Koo

X;y)

2

)Xik)-

Yi, ..., Y, are independent

¥4 marginal distributions of X1, Xs, ..., X,+ independence =

joint distribution of X7, Xs,..., X,

made by S.-W. Cheng (NTHU, Taiwan)
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« conditional distribution < conditional probability (LNp.5)

Definition 2.9 (conditional pmf for discrete case, TBp. 87)

X and Y are discrete random variables with joint pmf pxy(z,y),

the conditional pmf of Y given X is An
P X = x, Y = y
prxle) = P(¥ =ylX =z) = 2\ ),

P(X=2x) _-B
event event  pxy(z,y) _ Joint

if px(x) > 0. The probability is defined to be zero if px(z) = 0.

/)?.\’ L"P(Z) marginal

v Z\IPa—l(o)
M Ans: No.
x _{LNp.

Example 2.3 (cont. Ex 2.2)
Px,1x, (0]1) = 2/3, and px,|x, (1]1) = 1/3 update I~ P, (0)= Y-

Py _(1)=1!
LY o> ) v 4

Ch1~6, p.2-22

Definition 2.10 (conditional pdf for continuous case, TBp. 86)

X and Y are continuous random variables with joint pdf fxy (z,y),
the conditional pdf of Y given X is defined by

oln xl\/a{—ice the
g btfal = frix(ylz) J(f)}y @) y € R, sinﬁ/an‘w‘:)' between.
- S prf 3 pdf.

if 0 < fx(x) < oo and 0 otherwise.

T = Sy =] (?)

1. The deﬁn1t1on of fyx(y|r) comes from

P(a'SY<b x- X<x+ % -QQX\X"'E) fb fI-I-AQS/Qf ( )d d
u, v)dudv
Pla <Y < blz— Am/2 < X <az+Az/2) = sececbalt ot

f HAAZ/; fx(t)dt

f fxv(z Mdy P‘fXY<$>y)dy
fX( ) a fx(ﬂf)

made by S.-W. Cheng (NTHU, Taiwan)
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Ch1~6, p.2-23

2. For each fixed z, py|x(y|r) is a pmf for y and fyx(y|v) is
a pdf 01 ¥« Nobice the differests roles of x & &

3) pxv (2, y) = pyix(ylz) px (@), and fxv(z,y) = frix(ylr) fx()
Xvs g X % PN

— multiplication law .Qi LNp.6
Ypy(y) =2, pY|X(y|$)pX( ), and fy(y) = [° frix y|33)fX( )dx

— law of total probablhty <<t LNp +

ttems3.4.5
upda.te update
PY|X(?J|9C) PX( ) frix(ylz) fX( ) carn be
® @pX|Y x|y dow pY|X(y|$$sz33§]’ ande|y—(x\y) 2o frix (wle) fx (@)de o more
LNP.?—f—D— Bayes’ rule intuition (graphs in LNp.21&22) 2 Vs

6. X, Y are independent < pyx(y|z) = py(y) or fyx(y|z) = fr(y)

 functions of random variables

Raw Transformations
gl(Xl’ ceey X’)’L)9=Y' ‘——

EZ’] Questln 2.6

For givenr.v.’s X, ..., X
: how to derive the
g X1 X, )=Yg e— distributions of their
> O transformations?
Extract

Information  Cunknown parameters in the statistical model

no

Ch1~6, p.2-24

1. method of events — discrete rivi’s (pm#)
Theorem 2.7

Let X = (X1, Xo, ..., X,,) be random variables, and Y = g(X).
Then, the distribution of Y is determined by the distribution of
X as follow: for any event B defined by Y, P(Y € B) = P(X €
A), where A =g (B). R t&

pmf-

Example 2.4 (univariate discrete random variable)

Let X be a discrete r.v. taking the values z;, ¢ = 1,2,..., and
Y = g(X). Then, Y is also a discrete r.v. taking the values y;,
Y j=1,2,.... To determine the pmf of Y, by taking B = {y;},
we have

A={x;: g(x;) = yj} and hence
py(y;) = P({y;}) = > px(w).

T, €A
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NTHU MATH 2820, 2026 Lecture Notes

Ch1~6, p.2-25

Example 2.5 (sum of two discrete random variables, TBp. 96)

X and Y are random variables with joint pmf p(x,y). Find the

distribution of Z = X +Y.
(Exercise: difference of two random variables, Z=X-Y) 4~ Qns, f(>= § p(z+Y, )

pz(2)=P(Z=2)=P(X+Y =2)= y: p(z,z — )

When X, Y independent, p(z,y) = px(x)py (y),

y px(x)py(z —x) = convolution of py and py

r=—00

value of nwv.
distnbution o§ Y.V.

X+tY=3 = Y=3-X

Ch1~6, p.2-26

2. method of cumulative distribution function (a special case of method 1)
Let Y be a function of the random variables X, Xo, ..., X,,.

1. Find the region Y <y in the (z1,x9,...,x,) space.
T Ay~ 7
2. Find Fy(y) = P(Y < y) by summing the joint pmf or
integrating the joint pdf of X, Xs,..., X, over the region
Y <uw.

3. (for continuous case) Find the pdf of Y by differentiating
Fy(y), ie., fr(y) = ZFv ().

Note. It can be generalized to multivariate Y = (Y7, Y5, ..., Y,,).

P(A ) Pyl gm)= (_1_1; L Yl
4= " € A =p c
X, A“ Fx)dx J}(y.,- ~Ym)y= 5 ] J_am)ﬁ(g,, %

made by S.-W. Cheng (NTHU, Taiwan)
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Ch1~6, p.2-27

Example 2.6 (square of a random variable, similar example see TBp. 61)
X is a random variables with pdf fx(z) and cdf Fx(x). Find

the distributon of Y = X2, X IS q conkinuous 1.
Fory > 0,{Y <y} ={-\y < X < /y}

Fy(y) = P(Y <y) = P(-Vy £ X < V) = Fx(Vy) - Fx (=)

d d d

fY(?J) _ d_yFY(y) = d—yFX(\/@) — @FX(_\/E)
1 1
— fX(\/Q)m - fX(—\/g)(—m)
1
= R+ x(-vE)

and fy(y) =0 for y < 0.

Ch1~6, p.2-28

Example 2.7 (sum of two continuous random variables, TBp. 97)

X and Y are random variables with joint pdf f(z,y). Find the

distribution of 7 = X +Y. X, Y': continuous Vivi's
(Exercise: difference of two random variables, Z=X-Y) ey

o
Let R, be {(z,y) : x +y < z}. Then, LAAS_ fzfz)-‘-f_“f(z*ﬁ: $dy

Fylz) = P(Z<2)=P(X+Y <z)= / / fapdzdy

- [ ] sy

— 400/0()]0(:13,1—1’)(133% (se g;;c_“”)
fz(z) = EFz(z):/_dex

When X, Y independent, f(z,y) = fx(x)[fv(y),

x+g=3

fz(2) = /_oo fx(z)fy(z—x)dz = convolution of fx and fy

e the cmolaion, o
discrete rv’s (LNp,25)
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Example 2.8 (quotient of two continuous random variables, TBp. 98)
X and Y are r.v. with joint pdf f(z,y). Find the distribution

of Z = Y/ X (Exercise: product of two random variables, Z=XY)

Q. ={(x,y):y/r <z} ={(r,y) : x <0,y > zz}U{(x,y) : x >0,y < zx}

P(Z<z)
//sza:ydxdy—/ /m / / f(z,y)dydx
= / / +/ / xf(x, zv)dvdr (set g;z fé))
/ / (_r T, TV dvd:c+/ / _f T, TV) dvdx -~
_ /_Oo/_ ivf( v)dd

1) = Fo(e) = [ lolfnn)de —

Ch1~6, p.2-30

Theorem 2.4 (TBp. 63)

Let X be a random variable whose cdf F' possesses a unique
inverse . Let Z = F(X), then Z has a uniform distribution
on [0, 1].

—» D no Jump @ strictly increasing => X : a continuous r.v.
Theorem 2.5 (TBp. 63)

Let U be a uniform random variable on [0,1] and F is a cdf
which possesses a unique inverse F~!. Let X = F~1(U). Then
the cdf of X is F.

o larger slope 3 more Xi's
e Smaller S'Ope?femr Xi's

Note. The 2 theorems
are useful for generating
pseudo-random numbers

| in computer simulation
' E F (the concepts can be
‘ = X generalized to any r.v.’s).
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3. method of probability density function (for continuous r.v.’s and

differentiable, one-to-one transformations, a specigl case of method 2) : ;A,Zacf ,—',,,
J

[
COre 0 ariatc Co O ASC DP. O

Let X be a continuous random variable with pdf fx(z). Let
Y = g(X), where g is differentiable, strictly monotone. Then,

can be relax da—1 c§. Example 2.4
to piecewise _ (o 9 (W) in Lip.2¢
Lz Bl = 130000 5 | @ et e e

for y s.t. y = g(z) for some z, and fy(y) = 0 otherwise.

Example 2.9

X is a random variables with pdf fx(z). Find the distributon
of Y =1/X.

For z > 0 (or x < 0),
y=1/z=g(x) = x=9'(y)=1/y
dg™/dy=—1/y" and |dg™'/dy| = 1/y"
hence fr(y) = fx(1/y)(1/y?)

Ch1~6, p.2-32

Theorem 2.7 (multivariate continuous case, TBp. 102-103)

X = (Xy, Xy, ..., X,) multivariate continuous, Y = (Y7, Y2, .. Y=) =
L -

g(X). g is one-to-one, so that its inverse exists and is denoted
by B @ Xi X2 Xn
x=g '(y) = w(y) = (wi(y), wa(y), ..., wa(y)).

Assume w have continuous partial derivatives, and let

€))
atgl(Y) c’%gl(y) L 8@1 )
awzy(l.v) 8w§(2>') o 8w%’)
J=| T  Tow By -Tﬁer?mﬁaﬁow :
J’ox.obrc\f 5“5;(3’) 313;(3') % Similar to
Y1 Y2 Yn -
“———determinant — d@ (
Then [ oksolute d
1 value 3
fx(y) = fx(g )]

for y s.t. y = g(x) for some x, and fy(y) = 0, otherwise.

Note. When the dimensionality of Y, denoted by k, is less than n, we can
choose another n — k transformations Z such that (Y, Z) satisfy the above
assumptions. By integrating out the last n—k& arguments in the pdf of (Y, Z),
the pdf of Y can be obtained.
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Example 2.10 (cont. Ex 2.8)

X; and X, are random variables with joint pdf fx, x,(x1,z9).

Let Yo = X;. Then

Qwn _y Qwn_y Owe - Ows
3y1 ) ayz ) Ui Y2, 82 Y1
0 1
J = = —yo, and |J| =
il ‘92 y1| Y2 1| = [y

Therefore,
vy, 92) = Fx,%, (42, y192) |9

M) = / Friva (1, y2)dys = / Fxix (Y2, v1y2) |y2| dys
L'Cf- Ex2.8 ™ LNP.Zq

Ch1~6, p.2-34

4. method of moment generating function: based on the
uniqueness theorem of moment generating function. To be
explained later in Chapter 4.

- extrema and order statistics _)|E/% 51 g —> quontile (D4 %)

Definition 2.11 (order statistics, sec 3.7)

Let X1, Xs,..., X, be random variables. We sort the X;’s and
denote by X (1) < Xp) < --- < X, the order statistics. Using
the notation,

Xq) = min(X;, X, ..., X,) is the minimum

Xy = max(Xi, Xy,...,X,) is the maximum
R = X, — X is called range
S; = X)) — Xy-1),J =2,...,n are called jth spacings
X, X, X X, X X j
‘tm-ﬂsfgmaﬁon 04 ° 2 ° 3 P 6 o : P > » R 3-' not exist
XnXe Xa QX(4> Xs) X6)
Ve | | | N
NS /\ Sy ' N—5—"
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Note. In the section, we only consider the case that X, Xo,..., X, are

i.i.d continuous r.v.’s with cdf F' and pdf f. Although X, Xo,...,X,, are

independent, their order statistics are not independent in general.l Xy, - -, X

Definition 2.12 (i.i.d.)

X1, Xy, ..., X, are i.i.d. (idependent, identically distributed)
with cdf F/pmf p/pdf f = X1, Xy, ..., X, are independent and
have a common marginal cdf F'/pmf p/ pdf f. Lgom{: = TT marginal

common

Theorem 2.8 (TBp. 104)
The cdf of X3y is 1=[1 — F()]" and its pdfis nf(z)[1 — F(z)]" "

The cdf of X, is [F(x)]" and its pdf is nf(z)[F(z)]" . \\
%If’%x P(x- ';'<>Q')< x+ %) = ﬁ(:)(x) dx ;
&l % el - FX(,,,)(I> - P(X(n) <z)=PXi<z%,..., X, < 1‘)
ol — —
X1, Xn = choose. ‘Q”vﬂw%‘v%*) = P(Xi<z)--P(Xy <@ dFX/n)(x)
Tthe st , n
(%) Foodx 1 Fo] = [F(z)]". ax
K % e L= Fofn) = PN om = P(X, >p. . X )
= P(X - P(X,
<_fm_t:‘ﬁ (Xq > x)n (X, > x) d Fs® )
Xy, Xnﬁcth:semlséﬂwt(x””w) = [1 - ( )] : dx
S(x)dx[F(xﬂ("(? E P(%"‘“ <X(”)< x+ >) ‘V§X(nsm CIX

The pdf of the kth order statistic X is

>Xk) P(x—ﬁé<xa<)<%+ ) "f',m(x) dx
n!

Ch1~6, p.2-36
q X-Jfoodx Theorem 2.9 (TBp. 105)

Q_WH; s | L5l0) = e P @)L - P
& @
X, - %Xn = choase. | o P\aCL w (-2 %—rd%> ooty £o61dx;
N & t (~m, X) % _-\ﬁoo;)dn
El vt L, ol
(l ! nﬂk) e e D—FPO] <\|n > Lo -~ o dxn,

Theorem 2.10 (TBp. 114, Problem 73)

)i(z) The joint pdf of X1y, X9y, -+, X, is
_ﬁ_: pX(I)-;ﬁz) P(‘xt <X(L)< %(«1' C;-XL) L-—‘, oo ﬂz)zf;((,)-..)(m)(ﬁr"fxvl)dx‘"'d’ﬂ
< :X(l) fX(1)X(2)...X(n) (3717 Lo, . .. 7'1771) — n'f(.fl?l)f(fﬂg) T f<x7l>7
= for vy < a9 <--- <, and fx Xy Xy =0 otherwise.
not a product _ LremTw
Set. Question: Are X(), X(9),..., X, independent, judged from
the from of its joint pdf’ ?é’C‘F Th 2, ‘Eem,l (U\/P./q)
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Example 2.11 (range, TBp. 105-106)

The joint pdf of X(;) and X, (5-—< X< s+% ;'t"'<X(ﬁ)<t"'¢)
~ j‘;ﬂ)ﬁn)(s t)dsdt.

qu)X(n)(S’ t) =n(n—1)f(s)f(O)[F(t) — F(s)]"" 2» for s < 1,

and 0 otherwise. Therefore, the pdf of R = X(,,) — X is

00 Thek exertise in Exz.%CLl\/P.za;’)
fr(r) = / fx % (8;8+r)ds for r >0, and fr(r) = 0, otherwise.

al;b Xi,-— Xn = choose. one 4o place Tn (6% KoL)
$exds ong (t‘dt‘bf‘{/e)

% the vest i (s,t)
W, (v Dfeste(rers]

T FB-HO— &

1. Find the joint pdf of X;) and X;), where ¢ < j.

2. Find the joint pdf of X ;) and X(; 1), and derive the pdf of jth spacing
Sj = Xg) — X

+ Reading: textbook, 2.1 (not including 2.1.1~5), 2.2 (not including 2.2.1~4), 2.3, 2.4, Chapter 3
¢ Further Reading: Roussas, 3.1, 4.1,4.2,7.1,7.2,9.1,9.2,9.3, 9.4, 10.1

Chapter 4 Ch1~6, p.2-38

Outline

» expectation<— HATE » moment generating function
& characteristic function

* mean, variance, standard

deviation, covariance, » conditional expectation and
correlation coefficient prediction
» 0 method

Can we describe the characteristics of distributions by use of

some intuitive and meaningful simple values?

pmf ©] X 3X 3X+3

| \ | @‘ |

S 9, — < — AL —
gufa=1:3) " —+ "0z Y —— — AN
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* expectation

Definition 3.1 (expectation, TBp. 122, 123)

For random variables X, ..., X,,, the expectation of a univari-
ate random variable Y = g(Xj,...,X,,) is defined as
LIR"’-—)JR'
EY) = ) ypv(y)=Elg(X1,.... X))
weighted avernge —oo<y<oc
HoAE 45
__‘2‘:33*1:43 = Z g(xy, .. xn)p(xy, .o X)),
%é: Pv/fy —00<x1<00,..., —00< T, <O

if X1, Xs,..., X, are discrete random variables, or (Y : random
E(Y): §i
. g
B(Y) = / yfy ()dy = Elg(Xy, ..., X,)

/ / g(z1, .. xn) flan, ... 2p)da - - day,

if Y and X, Xy, ..., X, are continuous random variables.

=

@ Ch1~6, p.2-40

Definition 3.2 (mean, variance, standard deviation, covariance, correlation coefficient)

1. (TBp.116&118) g(x) = = = FElg(X)] = E(X) is called

mean of X, usually denoted by F(X) or ux.
R

wnfbmt

2. (TBp.131)  g(x) = (z — px)”" = Elg(X)] = E[(X - E(X)) ]
is called variance of X, usually denoted by Var(X) or o%. 0k ]
The square root of variance, i.e., oy, is called standard

deviation. L constant . not random

3. (tBp13s)  g(z,y) = (¢ — px)(y — py) = Elg(X,Y)] =
E[(X — E(X))(Y — E(Y))] is called covariance of X and

Y, usually denoted by Cov(X,Y) or oxy.
T

4. (TBp.142) The correlation coefficient of X, Y is defined
as oxy/(oxoy), usually denoted by Cor(X,Y) or pxy. X
and Y are called uncorrelated if pxy = 0. @@Yz—o‘“—
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Notes. (intuitive explanation of mean)

[$From its

deSnition D Mean of a random variable parallels the notion of a weighted average
u

2. It is helpful to think of the mean as the center of mass of the pmf/pdf

~ ®—centerof gravity ( u.,)
3. Mean can be interpreted as a long-run average. (see Chapter

L

Notes. (intuitive explanation of variance and standard deviation)

i’gx;‘z (D) variance is the average value of the squared deviation of X from pyx
h_’E_ 2. If X has units. then mean and standard deviation have the same unit
ow the :

oL and variance has unit squared.
dist. s
SP":ad Theorem 3.1 (properties of mean)
ou
1. (TBp.125)  For constants a, by, ..., b, € R
@ n 9 convex 1
Ela+,,0:X;) =a+ ), bE(X).

5 < ar b El ) 4(E]
D EHa+bX) = a+bE(X) E@(\O];g[ ]

_ (TBp.124) If X, Y are independent, then QEEOWVQ

i T al XV (VY — F(al XV E(B(V)) ()()]S [E(X)J HX)
“f::::::::‘ L‘ 1 GIE) SR (G ) R d

> ated W Z e W& 2Zare

In particular, E(XY) = E(X)E(Y). inde

(SR - (x/V) = E(X)/E(Y )‘74)-5( )= E(xv)=E00 E(¥)
Note. E[g(X)] # g[E(X)] in general mem— Yen o
@

Ch1~6, p.2-42

Theorem 3.2 (properties of variance and standard deviation)

@a_)TBp 132) 0% =Var(X) = E[(X — ux)?*] = B(X?) — y%.

Sor colulation. purpose [ECT

QTBp 131)  Var(a+bX) =b*Var(X), a, b € R, and g,4px = |blox.

/OCQﬁon shife > no /M on 6= \ b'

3. (TBp.140) L » scale C/,,,,ye > 02— h0> [b1 -+~ bn] [aza_cou()q xa)] 5
n n covanance ma'h':;(, var(x;)
i=1 i=1 1<i<j<n

gone

In particular, Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y).
(TBp.140) If Xy,..., X, are independent,

mean o5 som ) ( .-mg'z'_. cov(Xo X3 ) ja;? J
tem 1, Thm3.| , uncorrelated. , ¥ c=
(N 41 V_qr Z X Z Var(X d
—‘&.',
v Mx 2
5. (TBp.136) E[(X —0)?] = Var(X) + (ux —6)” (Mean square error =
variance + bias square) L—B - E[(X"ﬂx)a‘i' (- O - 2(“"_9)0(_“’()]

cf
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Notes. (intuitive explanation of covariance and correlation coefficient)

Ch1~6, p.2-44

Wt not be
cr':".?,(.sa.l relosion

B

1. covariance is a measure of the joint variability of X and Y, or their

dlogre of assom@w he, when X (rv) TS J_ga (or small), will Y tend to

be M or Smaller ?

2. covariance is the average value of the product of the deviation of X

4. correlation coefficient is unit free

between X and Y.

from its mean and the deviation of ¥ from its mean. < from s definition).
3. positive covariance and negative covariance =, fp back : covdecends on the.

scale/nit of X&Y

5. correlation coefficient measures the strength of the linear relationship

cov(X.Y) i
=Elocw) © 1D

(-44)] o> Mo

% >)<<—ux posrlig.

X: XMt Ve

X Y-M“:im TO OTO QT

A My egatme ] olo ‘Q

2exo

COVONDICE. COVONIONCE

[
W= @ e kW oA

=59

-3 . . e 1y
-2 -1 & 1 2 3 1
1]

-2
i}

=1

T oy
I Z2 3 4
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Theorem 3.4 (properties of covariance and correlation coefficient)

(TBp.138)  Cov(X,Y) = E[(X — ux)(Y — py)] = E(XY) — pxpy

(Note. Cov(X, X) = Var(X).) i
for calculation purpose. - il
2. (TBp.140) Cbi ==~ bn] [ 5= Cou(x,5) d;m

C’ov(aJerXz,chZdY) YdeCOU 5 5
M

3. (TBp.140) If X, Y are independent then Cov(X,Y) = 0, i.e., in-
dependent = uncorrelated. But, the converse statement is not

necessarily true. r[9=+1¢ a>o

P=-1 < a<O
4. (TBp.143) —1 < pxy <1 and pxy = £1}if and only if ¥ = aX + b

with probability one for some a, b € R. tandords zadron (FE2EA)
X — Y — After standardization
5. pXY:E [( IuX) ( NY) mean =0 "
E— - O-X Var =1

6. |Cor(a+bX,c+dY)| = |Cor(X,Y)| x‘:l‘s’cj‘:m Sh‘ft no impact on fcor]

Ch1~6, p.2-46

* moment generating function & characteristics function

Definition 3.3 (moment generating function, TBp. 155)

The moment generating function (mgf) of a random variable X is

fet"j((x)dx
Mx(t) = E(e"*), teR M= {Zetxj)(x)

if the expectation exists. LaPﬂC@ fm/zsfammtmfu o5
Theorem 3.5 (properties of moment generating function)

1. The moment generating function may or may not exist for
any particular value of ¢.

L £=0>E(e®*) = | «always exists Y E(etx)<w

2. uniqueness theorem (TBp.143). If the moment gener-
ating function exists for £ in an open interval containing
zero, it uniquely determines the probability distribution.

- S k know mgd-= know distribubion,
0
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%3, (TBp.156)  If the moment generating function exists in an

open interval containing zero, then the reason, why itls
Lknow ofl moments (k) called. moment

(kjo
<ty = 0 e M (0) = B(X")4= generating uaction

4. (TBp.158)  For any constants a,b, Myypx(t) = e Mx (bt).

E——@) (TBp.159) X, Y independent = Mx y(t) = Mx(t) My ().

usefyl for identifying the dist. of Xi+---+Xn conecalization s indep. Xi, - Xh
. . < n

6. continuity theorem (see Chapter 5) My, @ = M t)

Definition 3.4 (moment, TBp. 155)

The kth moment of a random variable is E(X) = yy,, and the
kth central moment is E[(X — ux)"] = p}. A Cmri
>Som? Notes. - , A" @ (imear combination 05+ My, , My
" Me = ;Z_O (ilz(_'uX) .ﬂ;—rﬂx:a(mearcombmﬁowof,a/,uz’,---,ué
s = Nin (5)x)" '

=0 TN RER
. d!
» In particular, F(X)= ux = 1, and, Iil
Var(X) = 0% = pig — 3 = ib. by

Definition 3.5 (joint moment generating function, TBp. 161)

For random variables Xy, X5, ..., X, their joint mgf is defined as:
ﬁq/\)i;".'x"(t)é;;t) My, xpx, (b1, b2, - - -, bn) 55 (212X 40 )
|t X C,Q‘ngfmc RTINS
if the expection exists. =£( etsa+tx1+-~-+t><n)

Theorem 3.6 (properties of joint mgf)

1. My, (t1) = Mx, x,--x,(t1,0, . .. ,0) <—relationship betweens Jointz

mgf R @@‘m/ ngc

#3. X1, Xs,..., X, are independent if and only if
J

2. uniqueness theorem

LNP.I?)
ot :d’; n
n il.PI ~cdf Mx x,. x, (tl, to, . .. ,tn) = H My, (tz)
Y na {;g_ﬁ 3 i=1 s mgac of the sun
4 arﬁ_..._H« OJ: I%@Kl,““,)(n
atrl o0 c at’l"n MXlX?"'Xn (t17 t27 © 0o 7tn> — EEMXC(E)
L L ti=to==tn,=0

= B(XPXp - X7)
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-« conditional expectation<— Recal(: conditional distribution (WNp21~23)

Definition 3.7 (conditional expectation, TBp. 135-136)

The conditional expectation of A(Y) given X =z is F£5): Yor R(Y)
;. functibn ] —%— random * fixed Féi Rix(4]%)
of X [Discrete case] : E(h(Y)|X =) = hy)pyx(y|z) L.

In particular, EY|X =2x) = Zygpy|X(y|x)[a.Pvn-P
[Continuous case]: E(h(Y)|X =z) = [ h(y)fyx(ylr)dy far‘é{

In particular, FEY|X =2x) = fng x(ylx)dy / a_ﬁppgj;

i wti:h. ZE _1 f(z, y): joint pdf 5§(ax;om zion

e‘e(';) v : of & only
— ~Eyp(Y ]2
X: height (cm) Ewivl®) g (1)
Y: weight(kg) = W
E(Y | x=170)
= avernge weight
peop) .
t\ig\cb :\v‘;\'gse |* @ curve on (x,Y) plane

samap from XtoY

=
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Theorem 3.8 (properties of conditional expectation)

1’|Ey|X( (Y)|x)]is a function of x and is free of Y. <—

————————
the Y panl has been mitegrated or su
% If X and Y are independent then Ey x(h(Y)|r) = Ey(h(Y))

BZJ,,L“Z % [Rixty9=Ry)
INp 23, JUxE0=514)

3. E(h(X >\X:w>:hx>

ixed vald

E\(p( (ﬁ(\()l 96) S a. Constont Function o)C x
= X offers no Wformation o§ e o

| )

?ﬁ:@ Let g(x) = Ey|x(h(Y)|x), then g(X) is a random Variablelh
):

1

900« Sinckon, (transformatlon of X) and usually denoted by Ey| x(h(Y)|X

ks g It's a function of X only. But, its rondom value reflects A(Y) —F
toaverade]D. law of total expection (TBp.149)

| weight Ex[Eyx(h(Y)|X)] = Ey[h(Y)]. .
In particular, My
E{Exly(YIY)]"EY = Fx [EY]X(Y‘X)] - E:'lx(Yl")
Tx Iiﬁxg)&y(%g) d {( fag)ﬁva,gsdgdxﬁ gz&m%%}‘ E B ADIY]
=Ex 1 ke | § Exy(ROD) = Ey Exiy AKX DIX
=E/E 22 Fix X Sﬂjxfﬂx(é’b‘)fx(%) =_E_x_ éﬂ_*[ﬂl‘."‘)lﬁ]

Ch1~6, p.2-52

4. variance decomposition (TBp.151)
Vary(Y) =
Varx|[Eyyx (Y|X)] + =
Ex[Vary x(Y]X)]

Note.
L. Vary(Y) > Ex[Vary x(Y|X)]
and the equality holds if and only if

Eyix(Y]X) = @L

with probability one. o > X
Varx[ Evix(YIX)] =0  [a%erese) | |
2. Vary(Y) > VarX[Ey|X(Y\ ] S S o 9'_7;_7

and the equality holds if and only if
Vary x(Y|X) =0

with probability one; i.e.,
Y = Eyx(Y]X) Evi(rlx)

with probability one. =
Ex [Varvix(YIX)]=0 ooy a
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* prediction
Example 3.1 (predicting the value of a r.v. Y from another r.v. X, TBp. 152-154)

data: X and Y (example?%- Xl 55 ‘GET/
statistical modeling: assign (X, Y) a Y( %%%Hiii
(known) joint distribution (cdf F(z,y), pdf f(z,y), or pmf p(z,y))
objective: Predict Y by using a function of X, i.e., g(X).

We consider the following three groups of g’s:
(i) G1 = {g(x) : g(x) = ¢, where ¢ € R} f?:%%#ﬁx
(ii) G2 = {g(2) : g(x) = a + bx, where a,b € R}, and
(iii) G5 = {g(x) : g is arbitrary}.

Note. G C Gy C Gs.

question: Within each group, what is the “best” prediction?

¥
ne, howf:o c/wasa C ‘J%F G
criterion: minimizing mean square error: N N gb _ﬁ)r Zs

e MSE = Ex y{[Y — g(X)I*}. {predicted value)
H:rue value error

Ch1~6, p.2-54

G’l ample DE onstant pred 0 B
Exy(Y — ¢ = Ey(Y — o)’ 2 Ey[Y — Ey(Y)]* = Vary (Y) fmin

Gal. | The equality holds if and only if ¢ = EY(Y).‘::M(V,,“J*O know 4ty

mean : .
&S‘f:‘ Eva[Y — g(X)]2 Z EX’y[Y — Ey|X(Y|X)]2 = EX[VaTyLX(Y’X)] WPJ
Finder || The equlity holds if and only if g(z) = By x(Y]z). (oMl

MSE e :

Notes for the best predictor in G;.

® Eyx(Y|X) is the best predictor of ¥ based on X, in the mean squared

best in rediction error sense.Yituits check the graph I median - best predickor]
L inttbion[™ ¢ | Np.50 ear £ o]

? need to know the joint distribution of X and Y, or at least Ey|x(Y|x)

o F Y|z) is called the regression function of Y on X. 3 2
yvix(Y]z) gre g AL

ExylY —(a+bX)]> > Exy {Y [uy + F_;;?"QL‘Q] } %

The equality holds if and only if a = uy — bu X and b = p— _
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@ Ch1~6, p.2-55
Notes for the best predictor in G,.

;Ey|X(Y|.CU) = py + p2=(z — px) if (X,Y) is distributed as

A ‘bivariati—no?mal ! \( best in Gz ) mnio;mt
m Gs) =L, vegressivn andysis

needs to know only the means, variances and covariances

F)sthe best in G & Gy —> Which one. requite ore. information. ?-

%)052/(1 — p?) is small if p is close to +1 or —1, and large if p

is close to 0 @K‘ check the plot in (Np. 44

Notes.
mibn E[Y — (a+ bX)]? < min E(Y — ¢)* and the equality holds
Collect if and only if p = 0. VG CG2CG3

XYt min B(Y — g(X))? < mibn E[Y — (a + bX)]? and the equal-
‘ g — a,

ehindel ity holds if and only if By x(Y]z) = py +p(oy /ox)(@—pix).

Joint
dist. |BONEI R

___sWhat if the joint distribution of X and Y'is unknown?

()

Ch1~6, p.2-56
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+ Reading: textbook, Chapter 4
¢ Further Reading: Roussas, 5.1, 5.3,5.4,5.5,6.1,6.2, 6.4, 6.5

Ch1~6, p.2-58

Some Commonly Used Distributions

(from Chapters 2, 3, 6)

Question 4.1

For a given random phenomenon or data, what distribution (or
statistical model) is more appropriate to depict it? T-s{:afc‘sﬁcal modeling

* discrete distributions

Definition 4.1 (Uniform distribution U(a,,...,a,,) )

Equal probability|to obtain aq, as, ..., ay,.
1 St
= T =a1,...,0y :
pmf: p(x) = { m : U(1,2,3,4)
0, otherwise .
a pmf 2 (Ec)) |
m a,t
e mgf: —Zj?ll o < by definition (Ec) _ _J___,_J_u__l_.__.J_.,,
o 1 2 3 4
. Z.;rlzl a] — . PR
® mean: —,  =a (] parameter. a; € R, m = 1, 2, ca

Zm:l(aj_a)?

e variance: == e example: throw a fair die once
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Definition 4.2 (Bernoulli distribution B(p), sec 2.1.1)

A Bernoulli distribution takes on only two values: 0 and 1, with
probabilities 1 — p and p, respectively.

(1 —p) =2 ifr=0o0rxz=1
pmf: p(z) = 4 2L 7P) .
0, otherwise
a/pmf? (Eo))
o mgf: pe’ + 1 — p —bydeSinition (Ec)

e mean: p —[by defw{onw (E) P
TordX)= E(Xz) (:E(X)] CEC)
Tin()= EXK1) +E(X) —[e0)T*

e parameter: p € [0, 1] use mag- 0

e example: toss a coin once, p=probability that head occurs

e variance: p(1l —p)

Note: If A is an event, then the indicator random variable [ Ia
follows the Bernoulli distribution. N A

Lep=pea) Taf1-R, IA‘“”-{O W& A

Ch1~6, p.2-60

Definition 4.3 (Binomial distribution B(n, p), sec 2.1.2)

Suppose that n independent Bernoulli trials are performed, where
n is a fixed number. The total number of 1 appearing in the n
trials follows a binomial distribution with parameters n and P-4

CS@ Iexp(amﬁ‘oa n . (n—2)
7 . p(]_—p) ; 3720717...,71

pmf: p(z) =
Q PNPP(E;)% 0, otherwise Qb gt i+ + O=X
R e e p——ece N M
J UL def. nition/ sum of iid. B(p)
® mean: np —E (Ec) —
(intuition, ) Swn/ itd B(D) — | E(0)= 3__%(/1)])94( rx pmE of
variance: np(l — p)emax at p=4, min a,ti 2 Pf‘ o ZHH B, p)
‘—"-"‘] 1 P=0 or 15
e parameter: p € [0,1], n=1,2" : {

Ko example: # of heads, toss a coin n tlm-e?lta STO (SUWH:O-One) Method,

Find E(x*) using maf*
2 n=10adp=5 Fmd E[X(X—lﬂ us/hg STO (E c)
sum of-i.i.d. B(p)
Note: (3¢)
T A5 s T390 011343678380 (a—l—b)nzzzzo(;l)aa’bn_x.

() 1 (b) X

)
7 N\

n=10andp=.1
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Note.

1. binomial distribution is a generalization of bernoulli distri-
bution from 1 trial to n trials
() Let X1,..., X, beiid. B(p), then Y = X; + -+ X, ~

B(n, p).— prove using @ m_( M, &)= ‘JLMX )@ couolition, & induction (Ec)
. Let X; ~ B(ng,p),i = 1,...,k, and Xl,...,Xk are inde-
pendent. Then, Y =X+ -+ Xpg~B(ni+---+ nk,p).~—]

FOVQ% ”
ol L */M% ] Bt ket
! 2

/9 ve ushiy cmmn&mmn
l l l T 1 — |
M ‘l_wz | 2 N
Xi + Xo + --- + Xk =Y=1% o% 15 i (Vh—\- ~~-+V\)€.\_> JCnoJ

Definition 4.4 (Geometric distribution G(p), sec 2.1.3)

The geometric distribution is constructed from an infinite se-
quence of independent Bernoulli trials. Let X be the total num-
ber of trials up to and including the first appearance of 1. Then,
X follows the geometric distribution.

b % Y% b %o
o 0 © o |
N — >
1 2 3 Xl %

Ch1~6, p.2-62

(1—=p)eVp 2=1,23,...

0, otherwise
wag (6F) y
OCdf:F(x):{(l) (1-p) 7i;[1$]_56<[g;]+1

use (%)
o mgf: ; ( )etv t < —log(l — —EW STO (Eo)
vas E)= Kﬁ;’jpm £) or use (%)

O mean: ]lo Ul maf (&)
Ual dAznitition method (TBp I, Baample B)
e variance; =2 Fmd E(x*) Z mgvﬂ
—E Find E(X0] @57? adiferzilulion method (&’)

. parameter. p € [0,1]

e example: lottery, # of tickets a person must purchase up
to and including the first winning ticket

Note: a memoryless distribution < intuition 1;:01;6 tg*i(—)t_
4 ‘ r=n 11—t
L_check its definition (LNpF4# ard prove (Ec) ffor =1 <t <1.
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Definition 4.5 (Negative Binomial distribution NB(r, p), sec 2.1.3)
An infinite sequence of independent Bernoulli trials is performed
until the appearance of the rth 1. Let X denote the total number

of trials. Then, X follows negative binomial distribution.
Soko  Wktoso %% KX Kok

90 _ol'0o o 90 of
t +———t + t— 13&\,
znd L{/
ﬁo?tnag %

(1-—p) ) z=rr+1,...

otherwise
Ul STO

t<—10g1— ) UL (K ( )
sum of iid Gp)

e variance: “152) g/an? ;CT/?r‘d Gp) (EC)
C o 2P Fond E0) usimg g:c

e parameter: p € [0,1], r=1,2,." Find E(X(x+)) u.srngSTo (Ec)
e example: lottery, # of tickets a person SUM & &bd.

must purchase up to and including the Note: Gﬁ) 1

rth winning ticket D e ()T = =R

for —1 <t <1.
Note. Ch1~6, p.2-64

1. negative binomial distribution is a generalization of geo-

metric distribution from 1st success to rth success
A_() Let X1, Xo,..., X, beiid. G(p), thenY = X;+-- -+ X, ~

N B(r, p)- prove using© mgs My(t)—Ter(t))@cmw(mm&mJucﬁm (Ec)
@. Let X; ~ NB(ry,p),i=1,...,k, and Xy,..., X} are inde-
@ pendent. Then, Y = X +-- +Xk ~ NB(ri+-- 4 1g,p).

p L[P“’VQ usg mgs (=)

%% %k k%

07 -~ 1706~ % )é)f’, ‘ prove usmg conwltron 3

12 cmom %12 e Xp - i’z-~-x,< mauctron.
‘ N

Definition 4.6 (Multinomial distribution Multinomial(n, p,, p,, . p) TBp.73-74)

Suppose that each of n independent trials can result in one of
types of outcomes, and that on each trial the probabilities of the
r outcomes are py, pa, ..., pr. Let X; be the total number of out-
comes of type i in the n trials, i = 1,...,r. Then, (X,...,X,)
follows a multinomial distribution.
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O Jomt pmf USE (K x%) one paes
n - . x;=20,1,...,n, and
0, otherwise

e joint mgf: (pie + -+ +p.e) ty,...,t. € R. {%g*%*) (Ec)

e marginal distribution: X; ~ B(n,p;), i = —E- ()
e mean: F(X;,)=np;, i=1,...,n vaew

e variance: Var(X;) =np;(1 —p;), i=1,....,n .~ E(:15) usimg STO

e covariance: Cov(X;, Xj) = —npipj, i # j Find EQCK) Ushg maf
e parameter: p; € [0,1], and Z‘;ﬁ:lpi =1. n=1,2,... (Ec)

e example: randomly choose n people, record the numbers

of people with different religions
SPEOp = &/zy ngdﬁ(/@
IR

ote: )(a1+---+ak)” = z (az " xk)afl---aik.
L

Tt FTp=n

Notes: multinomial distribution is a generalization of the binomial distri-
bution from 2 outcomes to r outcomes.

Ch1~6, p.2-66

Definition 4.7 (Poisson distribution P(A), sec 2.1.5)
Limit of binomial distributions X,, ~ B(n, p,), where p,, = 0 as

n — oo in such a way that A\, = np, — A.

n 5
A .
(n>pﬁ(1 — py)(n=2) Po= -;;Q‘J Note: if a, — a, (1 + %”)n — e
T

_ n(n—l)..:.c!(n—x+1) <%>I<1_%>nz
_ n(n—1)---/(.77,—1"*—1)1)\&:(1_&)71x

1 -1 T n -z i T,—A
1(1—=)--(1-2 )ﬁ(l—ﬁ) (1—ﬁ> W L
/ M n y n z! n z!

[ | RadvZe e")\ﬂ (/
explanatlons. e

1. if n large, the pmf of B(n,p) is not easily calculated. Then,

we can approximate them by pmf of P(\ Where A = np.
( l l
+O+ O+ ok O+o 1+ O+ - od+0 0 + {-O +0
0 } —
,%—,,—; T-occar (n1g’" N
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<:I Ch1~6, p.2-67
2. Let X be the number of times some event occurs in a given

time interval /. Divide the interval into many small subin-
tervals Iy, k = 1,...,n, of equal length. Let Nj be the
number of events occurring in f. When we can assume
Ny, ..., N, are independent and approximately ~ B(p), X
. . . . “
has a distribution near P(\), where A = np. NS+

- W(W) ~ B(n,p) with
wﬁmf(x(E°)J{ r=0,1,2,... large n. &
P 0, otherwise Small_p

UL (k)
e mgf: M ¢ e R.‘[W STO (EC>

. : uaz STO meanimq of peameter, A
g %‘{W g5 (59 avemgg’ d fgfms

e variance: A Fnd E(X]
usmg STO
e parameter: \ > 0| P4 EX*) 645'773 mgs (Ec) NOte Xk ;L"Z)
@(/_P> 6 = ZL =0 2!

e example: number of phone Calls coming into an exchange
during a unit of time

>
© Note: Let X ~ P(A ), i=1,....k and Xy,..., X} are mdependentCh1 o e
Then, Y = Xy +--- + Xp ~ P()\l -+ M) prove usmg (E)

mve %Dg (,0/)V0 uﬁm X/m{/uﬁffz)
A N (o)
t & +3 L UMD, oA gB) -, Al ks = AUEa—ET)

= 0 OHHHH HHHHHH_.— ‘OZ

0 13 0113 495 012345678900 RBMUISIEITIBIN 012345678 910N12103M1516171581920

Suppose that an urn contains n black balls and m white balls.

Let X denote the number of black balls drawn when taking
r balls without replacement. Then, X follows hypergeometric

distribution. &s with replecement > X ~B(r, 7

0]
x=0,1,...,min(r, n),

)\ r—z

pmf: p(z) = < n+m or—z<m

a prf 2 (Ec) r Note: ERFHE)
Ruse (o) O otherwise (") =3 () ()
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e mgf: exist, but no simple expression

(® mean: -4 <uze 570 (Ee)
Ry

e variance: (nrf$§3(;Tn;?1) < Find E[X(x)] uél'ﬂéSTO (E)

e parameter: r,n,m,=1,2,...., r<n+m

e example: sampling industrial products for defect inspection

Notes. a relationship between hypergeometric and binomial distri-
butions: Let m, n — oo in such a way that

n

7’)’L’I’LE _> Y
Pm, m-+n P

where 0 < p < 1. Then, : Whe m.r ane | /
< n ) ( m ) with. veplacenent = withoat re%mment

T r—x

T )
<n+m> (ﬁ)

r

Ch1~6, p.2-70

e continuous distributions

Definition 4.9 (Uniform distribution U(a, b), sec 2.2)

| Choose a number at random between a and b.

{%aaéxéb l o
1

0, otherwise =
0, z<a a T b
o cdf: F(z)=4¢ 7=, a<x <D é-ézdé)cfm‘é'?”/ (E<) 24b
1, x>b =z
e mgf: %, teR. < by definibion (Ec)
by definition
{8 INean: “TH’ é—EJS@%;C (EC)
t‘-- 2) s X
e  (b—a)? Find E0C) using definibion. /=
e variance: 5~ <—E Find E() w% ( c)
e parameter: a, 0 € R, a<b Thm 24,25 (LNp.30) |

Note: U(0, 1) is useful for pseudo-random number generationa-,
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Definition 4.10 (Exponential distribution E(A), sec 2.2.1)

pdf: f(z) = =0 & Exponential densities
a pif 2 (E2))

S, —AT
o cdf: F(z) = { (1) € i i géby(déﬁguﬁom
) =@

o mgf: 2, t <\ {iﬁe"iﬁﬁf””(gc)

(® mean: e{ e STO (Ec}

2 { e x>0

A =1 (dotted),
A = 2 (dashed).

L N W

Fiad B using STO K s 1w
e variance: 4 <———[de(X2) usn@m%bc(&)

e parameter: A > 0

e example: lifetime or waiting time

e

A average wattmg time ( 53 )
~R

i Querdge occurence m&e( o3 o5 )

meand %ODC Pa\'a\meﬂm’ {

=

@Notes: Ch1~6, p.2-72

)

1. memoryless (future indepgndent of past): Let T~ E(\), then

T-5 >t'
P(T >t s P(T >t
P(T>t+s\T>s) _ PT>it+sandT>s) PT>t+s)

= V=T e — P 5
£ 2nd F— é e~ At+s) —z IS discrete,
= o =P(T >1) |then it s

cs.|
— e 1s | [cF]
0 s t st cdf of ‘T Frit)=1- -P(T>t) e ad \C
e (<) If a continuous distribution is memoryless, it is exponential.

e It does not mean the two events T' > s and T' > t+s are independent.a—

J \.L

2. relationship between exponential, gamma, and Poisson distributions

Let Tl,TQ,Tg,. .. beiid. ~ E()\) and Sk; e Tl + -+ Tk, k= 1 2
Let X; be the number of S;’s that falls in [ti_l,t] 1= 1,...,0, then
X1,...,X, are independent, and X; ~ P(A(t; —t;—1)). The reverse state-

ment is also ture. —_— _-eXot, _
Lure. T, — | R.(T>t)-Pr(P0}F) =0)= Yor=e*
- Xyt # of evenbs occur <« l-—,r-él‘_)' ~
Poisson durng Cto, tl>lot]l — !f - % N Ny 4 Gfeom{?ﬁ‘;\{;;me
Process ~ P(k(ﬁ th?P(A‘t) r—tﬂ N & S g, Sk~T(k.N)
Binomial«* S 2
? N t

3. Sometimes, the pdf is written as Xe X, In the case, how to interpret A7

made by S.-W. Cheng (NTHU, Taiwan)



NTHU MATH 2820, 2026 Lecture Notes

Ch1~6, p.2-73

Deﬁnition 4.11 (Gamma distribution (a, A), sec 2.2.2)

AY a—1_—\z fn ‘
%dff {T(a)x e™ 220 Oy |
| pdf2 (Ec)) _ v "N\ a=1R=1]
use gmma Function ( U\//? ?43)
f: )Yt <A use s170 (Ec 2 =
*ms ( ‘6‘:5‘-’% oS iid. 6(])0[)6 r"‘zs« a.n2@d=4- =] |
() mean: Use ST0 [ &

Uiiim ~ T © RERER RO B

e variance: )\ sum of iid expancnﬁa.(

e parameter: a, A > 0
Find E(®) using STO
Find EX) using mgsf (Ec)
Notes. Su of iiid W&e

1. a: shape parameter; \: scale parameter (_ how to inter-
pret a, A from the view point of Poisson process?+ ]

(LNp.F2) A:occurence vute , o : # 0§ summed exponential Tiv.'s

=

¢ ] 1 ~6, p.2-
2. properties of gamma function I'(«): Ch1~6, p2-74

o I'(a) = [, y* e ¥dy (which is finite for a > 0)

e'()=1landI'(3) = /7

e ') =(a—I'(a —1)

o '(a) = (o — D!'if a is an integer

o I'(5) = Q‘C{_f?a 11))', if o is an odd integer

3. gamma distribution can be viewed as a generalization of exponential
distribution, i.e., I'(1, \) = E()). (nkwiEion)
(Eo) prove ug;@h
4. Let Xy,..., Xy beiid. ~ E(\), then Y = X5 +--- 4+ X ~ T'(k, ).
5. Let X4,..., X} be independent, and X; ~ F(ozz,)\) then Y = X; +

4 X NF(Odl—i——i—Oék,)\)“] \nbuu‘l:tog
- L prove usmgmgf(
6. Let X ~ I'(a, \),, then ¢X ~ I'(a, A\/c), where ¢ > 0

\n{:w,‘oro w C Eo)

prove. using mg;c
7. X ~T(a)) = B(XY) = 553 for 0 < k and E(r) = *7(7*. for

0< k< Oéé_—-l—-'USQG)STO @‘ﬁ (EC.) jm&agmﬁom
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Definition 4.12 (Beta distribution beta(a, B), sec 15.3.2)

Em Ilatp = - Nﬂy}
pdf: f(z) = Wfﬂ l1—-2) 1 0<z <1
2 ) | otherwise
@WQ(EC) pmfofB(n,p) (n)Px(,_E)n-x

f: 1 P s tv by definit
¢ Ig +Zk 1(Hr 0 a—i—ﬁ‘”)k = yofjmegg Z (fX) >(EC) :

. Use sTo —
(® mean: —
idon| "7 S uze g (2)

103 Varlance: ( _‘_B_{_O{)ﬂ(a_i_/@)Q << ‘-—F_nd E(X) w§/77 STO ( >
e parameter: o, > 0 Find E(x® 65/7@ mgac
Notes:
kCD Beta function: B(« fo te=1(1 —4)B-1dt = ((OE(BB))
2. 6(1,1) = U(0, 1%‘”’“’”3 oJcax(@)

\@)ﬁet X1 ~T'(ag,\), Xy ~ I'(ag, \), and X7, X5 independent.

L ; Yi= yl 2 ﬁﬂdeO"WPdf'OS'
Then, =l ~ beta(an, ag) e Yi= Yha ] r fndthe gt o o8,
of v, (Ec)

made by S.-W. Cheng (NTHU, Taiwan)



