Chapter 1

Question

There are many random phenomena (example?) in our real life. What is the language/mathematical structure that we use to depict them?

Outline

- sample space
- event
- probability measure
 - conditional probability
 - independence
- three theorems
 - multiplication law
 - law of total probability
 - Bayes’ rule

Website of My Probability Course

Definition (sample space, TBp. 2)

A sample space Ω is the set of all possible outcomes in a random phenomenon.

Example 1.1 (throw a coin 3 times, TBp. 35)

$\Omega = \{ hhh, hht, hth, thh, htt, tht, tth, ttt \}$ h: head t: tail

Ω is a finite set

Example 1.2 (number of jobs in a print queue, Ex. B, TBp. 2)

$\Omega = \{ 0, 1, 2, \ldots \}$

Ω is an infinite, but countable, set

Example 1.3 (length of time between successive earthquakes, Ex. C, TBp. 2)

$\Omega = \{ t \mid t \geq 0 \} = [0, \infty)$

Ω is an infinite, but uncountable, set

Question

What are the differences between the Ω in these examples?
Definition (event, TBp. 2)

A particular subset of Ω is called an **event**.

Example 1.4 (cont. Ex. 1.1)

Let A be the event that total number of heads equals 2, then $A = \{hht, hth, thh\}$.

Example 1.5 (cont. Ex. 1.2)

Let A be the event that fewer than 5 jobs in the print queue, then $A = \{0, 1, 2, 3, 4\}$.

- **union.** $C = A \cup B \Rightarrow C$: at least one of A and B occur.
- **intersection.** $C = A \cap B \Rightarrow C$: both A and B occur.
- **complement.** $C = A^c \Rightarrow C$: A does not occur.
- **disjoint.** $A \cap B = \emptyset \Rightarrow A$ and B have no outcomes in common.

Definition (probability measure, TBp. 4)

A **probability measure** on Ω is a function P from subsets of Ω to the real numbers that satisfies the following axioms:

1. $P(\Omega) = 1$. ← total prob. = 1
2. If $A \subset \Omega$, then $P(A) \geq 0$. ← non-negativity
3. If A_1 and A_2 are disjoint, then ← additivity

$$P(A_1 \cup A_2) = P(A_1) + P(A_2).$$

More generally, if A_1, A_2, \ldots are mutually disjoint, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Example 1.6 (cont. Ex. 1.1)

Suppose the coin is fair. For every outcome $\omega \in \Omega$, $P(\omega) = \frac{1}{8}$.

$$\Omega = \{h\text{hh}, h\text{ht}, h\text{th}, \text{thh}, h\text{tt}, \text{tht}, \text{tht}, \text{ttt}\} \quad \sum P(\Omega) = [0, 1]$$
Property A. \(P(A^C) = 1 - P(A). \)

Property B. \(P(\emptyset) = 0. \)

Property C. If \(A \subset B, \) then \(P(A) \leq P(B). \)

Property D. \(P(A \cup B) = P(A) + P(B) - P(A \cap B). \)

Definition (conditional probability, TBp. 17)

Let \(A \) and \(B \) be two events with \(P(B) > 0. \) The **conditional probability** of \(A \) given \(B \) is defined to be

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}.
\]

Example 1.7 (Ex. B, TBp. 18)

Suppose that the first throw is \(h. \) What is the probability that we can get exact two \(h \)'s in the three trials?

\[
\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}
\]

\[
B = \{hhh, hht, hth, htt\}
\]

\[
A = \{hht, htt, thh\}
\]

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3/8}{4/8} = \frac{3}{4} = \frac{6}{8}
\]

Theorem (Multiplication Law, TBp. 17)

Let \(A \) and \(B \) be events and assume \(P(B) > 0. \) Then

\[
P(A \cap B) = P(A|B)P(B).
\]

Example 1.7 (Ex. B, TBp. 18)

Suppose if it is cloudy \((B)\), the probability that it is raining \((A)\) is 0.3, and that the probability that it is cloudy is \(P(B) = 0.2. \)

The probability that it is cloudy and raining is

\[
P(A \cap B) = P(A|B)P(B) = 0.3 \times 0.2 = 0.06.
\]
Theorem (Law of Total Probability, TBp. 18)
Let B_1, B_2, \ldots, B_n be such that $\bigcup_{i=1}^{n} B_i = \Omega$ and $B_i \cap B_j = \emptyset$ for $i \neq j$, with $P(B_i) > 0$ for all i. Then, for any event A, $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$.

Theorem (Bayes’ Rule, TBp. 20)
Let A and B_1, \ldots, B_n be events where the B_i are disjoint, $\bigcup_{i=1}^{n} B_i = \Omega$ and $P(B_i) > 0$ for all i. Then $P(A \cap B_j) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$.

Definition (independence, TBp. 24)
Two events A and B are said to be independent if $P(A \cap B) = P(A)P(B)$. A collection of events A_1, A_2, \ldots, A_n are said to be mutually independent if for any subcollection, A_{i_1}, \ldots, A_{i_m}, $P(A_{i_1} \cap \cdots \cap A_{i_m}) = P(A_{i_1}) \cdots P(A_{i_m})$.

When A and B are independent, $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$, and $P(A^c|B) = P(A^c)$. Furthermore, $P(A|B^c) = P(A)$ and $P(A^c|B^c) = P(A^c)$.

Reading: textbook, Sections 1.1, 1.2, 1.3, 1.5, 1.6, 1.7

Further Reading: Roussas, Chapters 1 and 2

made by Shao-Wei Cheng (NTHU, Taiwan)
Chapters 2 and 3

Outline

- random variables
- distribution
 - discrete and continuous
 - univariate and multivariate
 - cdf, pmf, pdf
- conditional distribution
- independent random variables
- function of random variables
 - distribution of transformed r.v.
 - extrema and order statistics

random variable

Definition 2.1 (random variable, TBp. 33)

A random variable is a function from Ω to the real numbers.

$\Omega \rightarrow \mathbb{R}$

- statistical modeling usually starts from here.

Example 2.1 (cont. Ex. 1.1)

1. X_1 = the total number of heads
2. X_2 = the number of heads on the first toss
3. X_3 = the number of heads minus the number of tails

$\Omega = \{hhh, hht, hth, thh, htt, ttt\}$

- \[x_1 : \frac{1}{8} \quad \frac{1}{8} \]
- \[x_2 : \frac{1}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{1}{8} \]
- \[x_3 : \frac{1}{8} \quad \frac{1}{8} \]

Question 2.1

Why statisticians need random variables? Why they map to real line?

We need random variable because...
Question 2.2

A random variable have a sample space on real line. Does it bring some special ways to characterize its probability measure?

<table>
<thead>
<tr>
<th>/univariate r.v.</th>
<th>discrete</th>
<th>continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>cdf</td>
<td></td>
<td>cdf</td>
</tr>
<tr>
<td>mgf/chf</td>
<td></td>
<td>mgf/chf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/multivariate r.v.'s</th>
<th>discrete</th>
<th>continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>joint pmf</td>
<td></td>
<td>joint pdf</td>
</tr>
<tr>
<td>joint cdf</td>
<td></td>
<td>joint cdf</td>
</tr>
<tr>
<td>joint mgf/chf</td>
<td></td>
<td>joint mgf/chf</td>
</tr>
</tbody>
</table>

pmf: probability mass function, pdf: probability density function, cdf: cumulative distribution function

mgf (moment generating function) and chf (characteristic function) will be defined in Chapter 4

Definition 2.2 (discrete and continuous random variables, TBp. 35 and 47)

A discrete random variable can take on only a finite or at most a countably infinite number of values. A continuous random variable can take on a continuum of values.

e.g.

<table>
<thead>
<tr>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \in {0,1,2,3}$</td>
<td>$X \in [0,1]$</td>
</tr>
<tr>
<td>$X \in \mathbb{Z}_+$</td>
<td>$X \in (-\infty, \infty)$</td>
</tr>
</tbody>
</table>

Definition 2.3 (cumulative distribution function, TBp. 36)

A function F is called the cumulative distribution function (cdf) of a random variable X if

$$F(x) = P(X \leq x), \ x \in \mathbb{R}.$$
Definition 2.4 (probability mass function/frequency function, TBP. 36)

A function $p(x)$ is called a **probability mass function** (pmf) or a **frequency function** if and only if (1) $p(x) \geq 0$ for all $x \in X$, and (2) $\sum_{x \in X} p(x) = 1$.

For a **discrete** random variable X with pmf $p(x)$, we have:

$$P(X = x) = p(x),$$

and

$$P(X \in A) = \sum_{x \in A} p(x).$$

The **cumulative distribution function** is defined as:

$$F(x) = \sum_{t \leq x} P(X = t) = \sum_{t \leq x} p(t).$$

Also, for any $a < b$,

$$p(x) = P(X = x) = F(x) - F(x-) = \lim_{x \uparrow a} F(t).$$