
NTHU MATH 2820 Midterm Solution May 19, 2020

1. (14pts, 2pts for each)
(a) True (b) False (c) False (d) True (e) False (f) False (g) True

2. (12pts, 4pts for each)

(a) Let N be the total number of objects that had been manufactured by the company. Then,
X1, . . . , Xn are i.i.d. ∼ uniform(1, 2, . . . , N) (they are independent because of sampling
with replacement), where N is an unknown parameter.

(b) Let p be the probability of obtaining a head when the coin is tossed, then X1 ∼
binomial(3, p) and X2 ∼ geometric(p) (or negative binomial(1, p)), and X1 and X2 are
independent. The probability p is an unknown parameter.

(c) Let pW be the proportion of patients in the population whose race is White and other,
and let p1 be the proportion of patients in the population who had been advised by
the physicians to stop smoking. Because whether a patient was advised by the physi-
cians is independent of the race of the patient, the probabilities that a patient falls
in each of the 4 categories (W, 1), (W, 2), (A, 1), and (A, 2) are pWp1, pW (1 − p1),
(1 − pW )p1, and (1 − pW )(1 − p1), respectively. Then, (XW,1, XW,2, XA,1, XA,2) ∼
multinomial(311, 4, pWp1, pW (1− p1), (1− pW )p1, (1− pW )(1− p1)), where the probabil-
ities pW and p1 are unknown parameters in the model.

3. (18pts)

(a) (3pts) Because for i = 1, . . . , n,

µ = E(Yi) = θ +
1

2
⇒ θ = µ− 1

2
,

the moment estimator is θ̂1 = Y − 1
2
. The estimator θ̂1 is unbiased because

E(θ̂1) = E(Y − 1

2
) = E(Y )− 1

2
=
nµ

n
− 1

2
=

(
θ +

1

2

)
− 1

2
= θ.

(b) (2pts) The variance of θ̂1 is

Var(θ̂1) = Var

(
Y − 1

2

)
= Var(Y ) =

1

n
Var(Y1) =

1

n
× [(θ + 1)− θ]2

12
=

1

12n
.

The standard error of θ̂1 is 1√
12n

.

(c) (4pts) From the hints (i)(ii) and Thm 2.8 in LN, Ch1-6, p.35, the pdf of T(n) is

f(t) = ntn−1, 0 < t < 1. (I)

The mean of T(n) is

E(T(n)) =

∫ 1

0

t · ntn−1dt =
n

n+ 1
, (II)

and θ̂2 is unbiased because

E(θ̂2) = E(Y(n) − θ) + θ − n

n+ 1
= E(T(n)) + θ − n

n+ 1
= θ.
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(d) (4pts) From equation (I),

E
(
T 2
(n)

)
=

∫ 1

0

t2 · ntn−1dt =
n

n+ 2
. (III)

From hint (ii) and equations (II) and (III),

Var(θ̂2) = Var(Y(n)) = Var(T(n)) = E(T 2
(n))− (E(T(n)))

2 =
n

(n+ 1)2(n+ 2)
.

The standard error of θ̂2 is
√

n
(n+1)2(n+2)

.

(e) (2pts) The relative efficiency is:

effn(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

12n2

(n+ 1)2(n+ 2)
.

The asymptotic relative efficiency is

lim
n→∞

effn(θ̂1, θ̂2) = 0,

which shows θ̂2 has a much smaller variance than θ̂1 when the sample size is large.

(f) (3pts) Because θ̂1 and θ̂2 are unbiased, MSE(θ̂i) = Var(θ̂i), for i = 1, 2. We know that
effn(θ̂1, θ̂2) < 1 for n > 7, which implies Var(θ̂1) > Var(θ̂2) when the sample size is greater
than 7. In the case, θ̂2 has a smaller MSE and is better.

4. (17pts)

(a) (4pts) The joint pdf is:

n∏
i=1

f(yi|θ) =
1

θn
rn

(
n∏
i=1

yi

)r−1

e−
∑n
i=1 y

r
i

θ = g(t, θ)h(y1, . . . , yn),

where

t =
n∑
i=1

yri , g(t, θ) =
1

θn
e−

t
θ , and h(y1, . . . , yn) = rn

(
n∏
i=1

yi

)r−1

.

By the factorization theorem, the statistic T =
∑n

i=1 Y
r
i is sufficient.

(b) (4pts) The log-likelihood function is:

l(θ) = −n log(θ)−
∑n

i=1 y
r
i

θ
+ log(h(y1, . . . , yn)).

By solving the normal equation:

l′(θ) = −n
θ

+

∑n
i=1 y

r
i

θ2
= 0,

we obtain the solution:
∑n
i=1 y

r
i

n
. Because

l′′(θ) = − n
θ2
− 2

∑n
i=1 y

r
i

θ3
< 0,

for any θ, this solution is MLE.
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(c) (4pts) Let X = Y r, then Y = X
1
r and X > 0. Because |J | = | dy

dx
| = 1

r
x

1
r
−1, for x > 0, the

pdf of X is

f(x|θ) =

(
1

θ

)
rx

r−1
r e−

x
θ × 1

r
x

1
r
−1 =

1

θ
e−

x
θ ,

which is the pdf of exponential(1/θ).

(d) (5pts) Because
d2

dθ2
log(f(y|θ)) =

1

θ2
− 2

θ3
yr,

and E(Y r) = E(X) = θ (from (c)), we can get the Fisher information of one observation:

I(θ) = −E

(
1

θ2
− 2

θ3
Y r

)
= − 1

θ2
+

2

θ3
E(Y r) = − 1

θ2
+

2

θ3
θ =

1

θ2
.

The Fisher information contained in Y1, . . . , Yn is nI(θ) = n/θ2, and the asymptotic
variance of the MLE is

1

nI(θ)
=
θ2

n
.

5. (27pts)

(a) (4pts) Because

P (z|identical twins) =


1/2, if z = MM ,
1/2, if z = FF ,
0, if z = MF ,

and

P (z|non-identical twins) =


1/4, if z = MM ,
1/4, if z = FF ,
1/2, if z = MF ,

by the law of total probability, we have

P (MM) = P (identical twins)P (MM |identical twins)

+P (non-identical twins)P (MM |non-identical twins)

= α× (1/2) + (1− α)× (1/4) = (1 + α)/4.

Similarly, we can get P (FF ) = (1 + α)/4 and P (MF ) = (1− α)/2.

(b) (2pts) (X1, X2, X3) ∼ multinomial
(
n, 3, 1+α

4
, 1+α

4
, 1−α

2

)
.

(c) (4pts) The joint pmf of (X1, X2, X3) is(
n

x1 x2 x3

)(
1 + α

4

)x1+x2 (1− α
2

)x3
= exp

[
(x1 + x2) log

(
1 + α

4

)
+ (n− x1 − x2) log

(
1− α

2

)](
n

x1 x2 x3

)
= exp

[
(x1 + x2) log

(
1 + α

2(1− α)

)
+ n log

(
1− α

2

)](
n

x1 x2 x3

)
, (IV)

for xi = 0, . . . , n, i = 1, 2, 3, and x1 + x2 + x3 = n. This is a one-parameter exponential

family with c(α) = log
(

1+α
2(1−α)

)
and T (x1, x2, x3) = x1 + x2. So, X1 + X2 is a sufficient

and complete statistic for α.
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(d) (4pts) From equation (IV), we can get the log-likelihood of (X1, X2, X3):

l(α) = (x1 + x2) log

(
1 + α

4

)
+ x3 log

(
1− α

2

)
+ log

((
n

x1 x2 x3

))
.

The normal equation is

0 = l′(α) =
x1 + x2
1 + α

− x3
1− α

=
(x1 + x2)(1− α)− x3(1 + α)

1− α2

=
(x1 + x2 − x3)− (x1 + x2 + x3)α

1− α2
=

(x1 + x2 − x3)− nα
1− α2

, (V)

which gives the solution (i.e., MLE)

α̂ =
X1 +X2 −X3

n
.

It can be easily checked that l′′(α) < 0 at α = α̂ (by the equation (VI) in the solution of
(g).)

(e) (2pts) The MLE α̂ is unbiased because

E(α̂) =
E(X1) + E(X2)− E(X3)

n

=
n(1 + α)/4 + n(1 + α)/4− n(1− α)/2

n
= α.

(f) (4pts) The variance of α̂ is

Var(α̂) =
Var(X1 +X2 −X3)

n2
=

Var(n− 2X3)

n2
=

4Var(X3)

n2

=
4

n2
× n

(
1− α

2

)(
1− 1− α

2

)
=

1− α2

n
.

(g) (5pts) From equation (V), we can get the second derivative of log-likelihood l(α):

l′′(α) =
−n(1− α2) + (nα̂− nα)(−2α)

(1− α2)2
= − n

1− α2
− 2nα(α̂− α)

(1− α2)2
. (VI)

The Fisher information contained in (X1, X2, X3) is

−E[l′′(α)] =
n

1− α2
+

2nα [E(α̂)− α]

(1− α2)2

=
n

1− α2
+

2nα(α− α)

(1− α2)2
(because α̂ is unbiased)

=
n

1− α2
.

So, the Cramer-Rao lower bound is 1
−E[l′′(α)] = 1−α2

n
.

(h) (2pts) No unbiased estimators can have a variance smaller than the Cramer-Rao lower
bound. Because α̂ is an unbiased estimator and its variance achieves the Cramer-Rao
lower bound (i.e., (1−α2)/n), α̂ has the smallest variance among all unbiased estimators.
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6. (12pts)

(a) (2pts) For θ < y <∞,

FY (y|θ) = P (Y ≤ y)

= 1− P (X1 > y, . . . , Xn > y)

= 1−
n∏
i=1

P (Xi > y)

= 1−
[
e−(y−θ)

]n
= 1− e−n(y−θ).

(b) (4pts) For 0 < t <∞, the cdf of Tn(θ) is:

P (Tn(θ) ≤ t) = P (2n(Y − θ) ≤ t)

= P

(
Y ≤ t

2n
+ θ

)
= 1− e−n(

t
2n

+θ−θ) = 1− e−
t
2 ,

which is irrelevant to θ. Because Tn(θ) is a function of parameter θ and data X1, . . . , Xn,
and the distribution of Tn(θ) is irrelevant to θ, Tn(θ) is a pivotal quantity. [Note: The
distribution of Tn(θ) is exponential

(
1
2

)
.]

(c) (6pts) Let a and b satisfy:

α

2
= P

(
E

(
1

2

)
< a

)
= 1− e−

a
2

⇒ a = −2 log
(

1− α

2

)
,

α

2
= P

(
E

(
1

2

)
> b

)
= e−

b
2

⇒ b = −2 log
(α

2

)
.

Then, from (b), we know

1− α = P (a ≤ 2n(Y − θ) ≤ b)

= P

(
Y − b

2n
≤ θ ≤ Y − a

2n

)
.

Therefore, [
Y +

log(α/2)

n
, Y +

log(1− α/2)

n

]
is a 100(1− α)% confidence interval for θ.
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