NTHU MATH 2820 - Statistics (undergraduate level)

清華大學 學系 統計學 (大學部課程)

Feb 2025 ~ Jun 2025


Notes

 (Jun 08)

作業總成績、期末考成績、學期總成績成績統計

 (Jun 04)

期末考考題解答

 (May 27)

下周二(6/3)因期末考無法上課。課方式:將於6/3前,把以往錄製之一小時上課影音檔,放置於課程網頁上,供同學們觀看學習。

提醒: 下周四(6/5)仍會上課,課後會發回期末考答案卷。

 (May 21) 期末考考古題及其解答。
 (May 21) 期末考資訊及注意事項
 (May 11) 廣告: 中央研究院統計科學所將於8/26-8/27為大學生舉辦2025統計科學營,對統計學或資料科學有興趣的同學,可考慮報名參加(報名截止日:731日)
 (Apr 26) 期中考考題解答成績統計
 (Apr 16) 下周二(4/22)因期中考無法上課。課方式:將於4/22前,把以往錄製之一小時上課影音檔,放置於課程網頁上,供同學們觀看學習。
 (Apr 15) 廣告: 中央研究院統計科學所將於7/14-7/25為大學生舉辦2025統計研習營,對統計學或資料科學有興趣的同學,可考慮報名參加(報名截止日:514日)
 (Apr 10) 中考考古題及其解答。劃紅色刪除線的題目,屬於期中考不考的範圍
 (Apr 10) 期中考資訊及注意事項
 (Mar 27) 下周四上課日(4/3),適逢兒童節補假,學校停課一天。課方式:將於4/3前,把一小時上課影音檔,放置於課程網頁上,供同學們觀看學習。
 (Feb 23) 有關助教及其office hour的資訊, 請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Introduction - what is statistics?

Feb 18


(375 views)

(156 views)
02

 Probability

Pre-course


(331 views)

(185 views)

(182 views)

(169 views)

(193 views)

(154 views)

(192 views)
Feb 20

(282 views)
Feb 25

(178 views)

(164 views)
Feb 27

(192 views)
Mar 04

(189 views)

(172 views)
03

 Point Estimation

Mar 06


(247 views)
Mar 11

(200 views)

(170 views)
Mar 13

(182 views)
Mar 18

(170 views)

(144 views)
Mar 20

(321 views)
Mar 25

(176 views)

(137 views)
Mar 27

(169 views)
Apr 01

(168 views)

(143 views)
Apr 03

(176 views)
Apr 08

(137 views)

(123 views)
Apr 10

(137 views)
04

 Interval Estimation 

Apr 10


(168 views)
Apr 15

(137 views)

(96 views)
05

 Hypotheses Testing 

Apr 17


(148 views)
Apr 22

(157 views)
Apr 24

(165 views)
Apr 29

(154 views)

(144 views)
May 01

(148 views)
May 06

(129 views)

(143 views)
May 08

(132 views)
May 13

(89 views)

(76 views)
May 15

(87 views)
06  Decision Theory and Bayesian Inference May 20

(88 views)

(71 views)
May 22

(84 views)
May 27

(69 views)

(81 views)
May 29

(35 views)
Jun 03

(38 views)
Jun 05

(36 views)
Homework Question Due Day Solution Grader
1

Ch 2. #67

Ch 3. #7#10#21#64, #66 [Hint: Let {T1, T2}, {T3, T4}, and {T5, T6} be the lifetimes of the top two, middle two, and bottom two components, respectively. Then, the system's lifetime is given by max{min(T1, T2), min(T3, T4), min(T5, T6)}.], #70

Ch 4. #54#60, #61, #67, #75 [Hint: Use the means and variances given in LNp.70 and p.71. Apply law of total expectation and variance decomposition to find the mean and the variance of U, respectively.]

Mar 04 Sol 林宸緯、馬翌翔
2

(turn-in questions)

Ch 2. #21 (Note. This is called memoryless property) [Hint: check LNp.62 for the cdf of geometric distribution], #31, #48 [Hint: check LNp.71 for the cdf of exponential], #61 [Hint: You can show it by using mgf].

Ch 3.  #22 [Hint: You can first show that: If X1~P(λ1), X2~P(λ2), and X1, X2 are independent, then the conditional distribution of X1 given that X1+X2=n is binomial distribution B(n, λ1/(λ1+λ2)).], #26 [Hint: use beta function in LNp.75].

Ch 4. #20 [Hint: try sum-to-one method], #42 [Hint: Use the cdf, mean, variance equations given in LNp.71 to find the probability], #76, #80, #92 [Hint: use the law of total expectation to find the mgf of X (check LNp.71 and LNp.73 for the mgf of exponential and gamma, respectively), and compare it with the mgf of negative binomial distribution given in LNp.63], #100 [Hint. Apply δ-method to find the approximate mean and variance.].

 

 

(no-need-to-turn-in question)

Please practice the exercises (i.e., those marked as "Ec") given in Lecture Notes with Hand-Written Notices, Ch 1-6, p.58-83, as many as possible.

Mar 11 Sol (corrected) 孫利東、高童玄
3

Ch 5. #1 [Hint: use Chebyshev's inequality and imitate the proof in LNp.93], #2 [Hint:

], #4, #5 [Hint: use the theorem: if an→a, then (1+an/n)n→ea. The mgfs of binomial and Poisson are given in LNp.60 and LNp.67, respectively.], #11, #13 [Hint: use normal approximation to binomial], #16 , #17 [Hint: use CLT], #21 [Hint: For (c), by Cauchy-Schwarz inequality, we have

], #28.

Ch 6. #8 [Hint: You can use mgf to relate the distributions of 2X and 2Y to the chi-square distribution], #11.

Mar 18 Sol  劉馨隃、陳家桓
4

Ch 8. #7(a)(b) [Hint: the 1st moment of geometric distribution is given in LN, ch1-6, p.62], #[Hint: check the diagram in LNp.12], #16(a)(b) [Hint: The 1st moment is zero, and you can use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find the 2nd moment], #18(a)(b), #21(a)(b) [Hint: For (a), let Y=X-θ, then Y~exponential(1), i.e., 1=E(Y)=E(X-θ). For (b), note that x≥ θ for i=1,...,n, i.e., x(1) ≥ θ.], #26 [Hint: Try to use the hypergeometric distribution given in LN, ch1-6, p.68, to model the data.], #51 [Hint: In this case, median is the (m+1)th smallest observation, i.e., X(m+1). You can first show that if X(m+2)θX(m) , then Σ|Xi-θ|=|X(m+1)-θ|+(X(m+2)-X(m))+(X(m+3)-X(m-1))+...+(X(2m+1)-X(1)). Then, try to generalize the result to obtain a general statement.], #60(a)(b)(c)(d) [Hint: For (b) and (d), use the results given in LN, ch1-6, p.73&74].

Mar 27 Sol 林宸緯、馬翌翔
5

Ch 8. #7(c), also, obtain the Fisher information of X and identify the asymptotic sampling distribution of the MLE [Hint: the mean of geometric distribution is given in LN, ch1-6, p.62]#16(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE [Hint: you can use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find E|Xi| or E(Xi2).]#18(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE#53(a)(b)(d) [Hint: (i) the MLE and moments estimator are given in  LN with Hand-Written Notices, Ch8, p.22. (ii) For (d), find an estimator which is a function of the MLE and is unbiased], #58(a)(b), also, identify the asymptotic sampling distribution of the MLE [Hint: the log-likelihood function is given in LNp.25 and notice that the marginal distributions are X1~B(n, (1-θ)2),  X2~B(n, 2θ(1-θ)),  X3~B(n, θ2).

Apr 08 Sol 孫利東、高童玄
6

Ch 8. #16(d), also, show that the pdfs form an exponential family and find a sufficient and complete statistic#18(d), also show that the pdfs form an exponential family and find a sufficient and complete statistic; #21(c), also show that X(1) is complete by definition and examine whether the pdfs form an exponential family#49; #53(c)#57; #60(e), also find the Cramer-Rao lower bound and show the MLE achieves the lower bound; #72, also show that the gamma distribution form a 2-parameter exponential family and show that ΠXi and ΣXi are sufficient and complete.

Apr 15 Sol 劉馨隃、陳家桓
7

Homework 7 problem

Apr 22 Sol 林宸緯、馬翌翔
8

Homework 8 problem

May 01 Sol 孫利東、高童玄
9

Ch 9. #1#2#3#4(a)(b) [Hint: apply Neyman-Pearson lemma.]#5, also if false, please explain why#21, #29.

May 13 Sol 劉馨隃、陳家桓
10

Homework 10 problem

May 20 Sol 林宸緯、馬翌翔
11

Ch 9. #12, #22, #24

 ,

#26, also if false, please explain why. #40 [Hint: p1+p2=1 and X1+X2=n], #41 [Hint: Under Ω0, the MLE of pi is Σi Xi/N, where N=Σi ni, for i=1, 2, ..., m. Under Ω, the MLE of pi is Xi/ni, i=1, 2, ..., m.], #43 [Hint: you can use GLR test statistic or Pearson's Chi-square for goodness-of-fit test.], #44 [Hint: Let O1O2, and O3 be the numbers of AA, Aa, and aa, respectively. Then, (O1O2O3)~Multinomial(n,  (1-θ)2, 2θ(1-θ), θ2). The MLE of θ, where 0<θ<1, is (2X3+X2)/(2n) (see LN, CH8, p.25). Use O1O2O3 to derive the likelihood ratio test statistic. By the way, you may compare this question with the Example 7.19 given in LN, CH9, p.43. Try to find the differences on their H0 and HA (or the differences on their Ω0 and Ω).].

May 27 Sol 孫利東、高童玄
12

textbook (2nd ed.) Ch 15. (Problem statements) #1, #6, #9, #11, #13, #15, #23, #24, #29(blue-colored problems are not included in final exam).

此作業不計分

無需繳交

(no need to turn in this HW)

Sol 劉馨隃、陳家桓