NTHU MATH 2820 - Statistics (undergraduate level)

清華大學 學系 統計學 (大學部課程)

Feb 2025 ~ Jun 2025


Notes

 (Apr 26) 期中考解答成績統計
 (Apr 16) 下周二(4/22)因期中考無法上課。課方式:將於4/22前,把以往錄製之一小時上課影音檔,放置於課程網頁上,供同學們觀看學習。
 (Apr 15) 廣告: 中央研究院統計科學所將於7/14-7/25為大學生舉辦2025統計研習營,對統計學或資料科學有興趣的同學,可考慮報名參加(報名截止日:514日)
 (Apr 10) 中考考古題及其解答劃紅色刪除線的題目,屬於期中考不考的範圍
 (Apr 10) 期中考資訊及注意事項
 (Mar 27) 下周四上課日(4/3),適逢兒童節補假,學校停課一天。課方式:將於4/3前,把一小時上課影音檔,放置於課程網頁上,供同學們觀看學習。
 (Feb 23) 有關助教及其office hour的資訊, 請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Introduction - what is statistics?

Feb 18


(264 views)

(117 views)
02

 Probability

Pre-course


(278 views)

(162 views)

(163 views)

(145 views)

(167 views)

(131 views)

(164 views)
Feb 20

(236 views)
Feb 25

(138 views)

(132 views)
Feb 27

(161 views)
Mar 04

(159 views)

(149 views)
03

 Point Estimation

Mar 06


(206 views)
Mar 11

(182 views)

(148 views)
Mar 13

(162 views)
Mar 18

(154 views)

(130 views)
Mar 20

(256 views)
Mar 25

(156 views)

(118 views)
Mar 27

(150 views)
Apr 01

(151 views)

(123 views)
Apr 03

(153 views)
Apr 08

(117 views)

(104 views)
Apr 10

(115 views)
04

 Interval Estimation 

Apr 10


(122 views)
Apr 15

(92 views)

(63 views)
05

 Hypotheses Testing 

Apr 17


(81 views)
Apr 22

(90 views)
Apr 24

(67 views)
Apr 29

(36 views)

(32 views)
May 01

(30 views)
May 06

(13 views)

(6 views)
   
   
Homework Question Due Day Solution Grader
1

Ch 2. #67

Ch 3. #7#10#21#64, #66 [Hint: Let {T1, T2}, {T3, T4}, and {T5, T6} be the lifetimes of the top two, middle two, and bottom two components, respectively. Then, the system's lifetime is given by max{min(T1, T2), min(T3, T4), min(T5, T6)}.], #70

Ch 4. #54#60, #61, #67, #75 [Hint: Use the means and variances given in LNp.70 and p.71. Apply law of total expectation and variance decomposition to find the mean and the variance of U, respectively.]

Mar 04 Sol 林宸緯、馬翌翔
2

(turn-in questions)

Ch 2. #21 (Note. This is called memoryless property) [Hint: check LNp.62 for the cdf of geometric distribution], #31, #48 [Hint: check LNp.71 for the cdf of exponential], #61 [Hint: You can show it by using mgf].

Ch 3.  #22 [Hint: You can first show that: If X1~P(λ1), X2~P(λ2), and X1, X2 are independent, then the conditional distribution of X1 given that X1+X2=n is binomial distribution B(n, λ1/(λ1+λ2)).], #26 [Hint: use beta function in LNp.75].

Ch 4. #20 [Hint: try sum-to-one method], #42 [Hint: Use the cdf, mean, variance equations given in LNp.71 to find the probability], #76, #80, #92 [Hint: use the law of total expectation to find the mgf of X (check LNp.71 and LNp.73 for the mgf of exponential and gamma, respectively), and compare it with the mgf of negative binomial distribution given in LNp.63], #100 [Hint. Apply δ-method to find the approximate mean and variance.].

 

 

(no-need-to-turn-in question)

Please practice the exercises (i.e., those marked as "Ec") given in Lecture Notes with Hand-Written Notices, Ch 1-6, p.58-83, as many as possible.

Mar 11 Sol (corrected) 孫利東、高童玄
3

Ch 5. #1 [Hint: use Chebyshev's inequality and imitate the proof in LNp.93], #2 [Hint:

], #4, #5 [Hint: use the theorem: if an→a, then (1+an/n)n→ea. The mgfs of binomial and Poisson are given in LNp.60 and LNp.67, respectively.], #11, #13 [Hint: use normal approximation to binomial], #16 , #17 [Hint: use CLT], #21 [Hint: For (c), by Cauchy-Schwarz inequality, we have

], #28.

Ch 6. #8 [Hint: You can use mgf to relate the distributions of 2X and 2Y to the chi-square distribution], #11.

Mar 18 Sol  劉馨隃、陳家桓
4

Ch 8. #7(a)(b) [Hint: the 1st moment of geometric distribution is given in LN, ch1-6, p.62], #[Hint: check the diagram in LNp.12], #16(a)(b) [Hint: The 1st moment is zero, and you can use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find the 2nd moment], #18(a)(b), #21(a)(b) [Hint: For (a), let Y=X-θ, then Y~exponential(1), i.e., 1=E(Y)=E(X-θ). For (b), note that x≥ θ for i=1,...,n, i.e., x(1) ≥ θ.], #26 [Hint: Try to use the hypergeometric distribution given in LN, ch1-6, p.68, to model the data.], #51 [Hint: In this case, median is the (m+1)th smallest observation, i.e., X(m+1). You can first show that if X(m+2)θX(m) , then Σ|Xi-θ|=|X(m+1)-θ|+(X(m+2)-X(m))+(X(m+3)-X(m-1))+...+(X(2m+1)-X(1)). Then, try to generalize the result to obtain a general statement.], #60(a)(b)(c)(d) [Hint: For (b) and (d), use the results given in LN, ch1-6, p.73&74].

Mar 27 Sol 林宸緯、馬翌翔
5

Ch 8. #7(c), also, obtain the Fisher information of X and identify the asymptotic sampling distribution of the MLE [Hint: the mean of geometric distribution is given in LN, ch1-6, p.62]#16(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE [Hint: you can use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find E|Xi| or E(Xi2).]#18(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE#53(a)(b)(d) [Hint: (i) the MLE and moments estimator are given in  LN with Hand-Written Notices, Ch8, p.22. (ii) For (d), find an estimator which is a function of the MLE and is unbiased], #58(a)(b), also, identify the asymptotic sampling distribution of the MLE [Hint: the log-likelihood function is given in LNp.25 and notice that the marginal distributions are X1~B(n, (1-θ)2),  X2~B(n, 2θ(1-θ)),  X3~B(n, θ2).

Apr 08 Sol 孫利東、高童玄
6

Ch 8. #16(d), also, show that the pdfs form an exponential family and find a sufficient and complete statistic#18(d), also show that the pdfs form an exponential family and find a sufficient and complete statistic; #21(c), also show that X(1) is complete by definition and examine whether the pdfs form an exponential family#49; #53(c)#57; #60(e), also find the Cramer-Rao lower bound and show the MLE achieves the lower bound; #72, also show that the gamma distribution form a 2-parameter exponential family and show that ΠXi and ΣXi are sufficient and complete.

Apr 15 Sol 劉馨隃、陳家桓
7

Homework 7 problem

Apr 22 Sol 林宸緯、馬翌翔
8

Homework 8 problem

May 01 Sol 孫利東、高童玄
9

Ch 9. #1#2#3#4(a)(b) [Hint: apply Neyman-Pearson lemma.]#5, also if false, please explain why#21, #29.

May 13