NTHU MATH 2810, 2023

made by S.-W. Cheng (NTHU, Taiwan)

NTHU MATH 2810, 2023 Lecture Notes • And, for $i \neq j$, NoteXI + X2 + X3 + ... + Xm=n Why negative p. 8-12 $\underline{Cor(X_i, X_j)} = \frac{-n \overline{p_i} \overline{p_j}}{\sqrt{n p_i (1 - p_i)} \sqrt{n p_j (1 - p_j)}}$ $\sqrt{\frac{p_i p_j}{(1-p_i)(1-p_j)}}$ • Cov & Cor for Sums of Random Variables Q: When larger? When smaller? Notation. In the following, let X_1, \ldots, X_n and Hint. $\frac{P}{1-P}$ t as pt Y_1, \ldots, Y_m be <u>r.v.'s</u> and $-\infty < \underline{a_0, a_1, \ldots, a_n}$. Note. 0≤ Pi+Pj≤1 [Np8-4] $b_0, b_1, \dots, b_m < \infty$ are constants. $\blacktriangleright \bigcirc \underline{\text{Recall}}. \underline{E}(\overline{a_0} + a_1X_1 + \dots + a_nX_n) = a_0 + a_1E(X_1) + \dots + a_nE(X_n).$ Theorem (covariance of two sums) $\underline{Cov}(a_0 + a_1X_1 + \dots + a_nX_n, b_0 + b_1Y_1 + \dots + b_mY_m)$ ao, bo $= \underline{\sum_{i=1}^{n} \underline{\sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j)}}_{\text{arm}} \Rightarrow [a_1 \cdots a_n] \left[\text{cov}(X_i, Y_j) \right]_{a_1 \cdots a_n} \left[\frac{b_1}{b_1} \right]_{a_1 \cdots a_n} \left[\frac{b_1}{b_$ are gone. Xi Xi X2 Proof. Let $S = a_0 + a_1 X_1 + \dots + a_n X_n$, and $\underline{T} = b_0 + b_1 Y_1 + \dots + b_m Y_m$, then $\begin{array}{cccc} \textbf{Ao+Ai} & \textbf{Mx_i+\dots+An} & \textbf{Mx_n} & S - E(S) \\ \textbf{bo+bi} & \textbf{My_i+\dots+bm} & \textbf{My_m} & T - E(T) \end{array} = & \sum_{j=1}^n a_i (X_i - \mu_{X_i}), \\ \textbf{bo+bi} & \textbf{My_i+\dots+bm} & \textbf{My_m} & T - E(T) \end{array}$ (_____ cov(xi,Yj) $[S - E(S)][T - E(T)] = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j (X_i - \mu_{X_i}) (Y_j - \mu_{Y_j}).$ p. 8-13 Therefore, $Cov(S,T) = E\{[S - E(S)]|[T - E(T)]\}$ $= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j E[(X_i - \mu_{X_i})(Y_j - \mu_{Y_j})]$ mean of sum $= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j).$ cf (LNp.8-4) $\textcircled{Theorem (variance of sum)} (\textcircled{Cov(a_0+a_1X_1+\cdots+a_nX_n,a_0+a_1X_1+\cdots+a_nX_n)})$ Covariance matrix $Var(\underline{a_0 + a_1 X_1 + \cdots + a_n X_n})$ Var(Xi) ⁻ 'a $= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j Cov(X_i, X_j) \longrightarrow [a_i, \dots, a_n] \quad \text{cov}(X_i, X_j) \longrightarrow [a_i, \dots, a_n]$ **Q**2 gone $= \underbrace{\sum_{i=1}^{n} a_i^2 Var(X_i)}_{+2\sum_{1 \le i < j \le n} a_i a_j} \operatorname{Var}(Y_i) \qquad \text{symmetric matrix } \bullet$ Proof. $Cov(X_i, X_i) = Var(X_i)$ and $Cov(X_i, X_i) = Cov(X_i, X_i)$. cf. • Corollary. If X_1, \ldots, X_n are uncorrelated, then $\overline{Var(Yc)}$ exchange of $\overline{Var} \in \Sigma$ $Var(a_0 + \underline{a_1 X_1} + \cdots + \underline{a_n X_n}) = \sum_{i=1}^n \underline{a_i^2 Var(X_i)}.$ cor(Xi,Xj) =0, 4 c.J • Corollary. If X_1, \ldots, X_n are <u>uncorrelated</u> and - Variance exists i=aJ $\underbrace{X_{1}, \dots, +X_{n}}_{n} \Rightarrow a_{1} = \dots = a_{n} = \frac{1}{n} \qquad Var(X_{1}) = \dots = Var(X_{n}) \equiv \underline{\sigma}^{2} < \infty, \quad Law of Large Number$ then $\underline{Var}(\overline{X_n}) = \sigma^2/n \approx 0$ when $n \to \infty$ i.e. $\overline{X_n} \approx C_n$ when n large enough a constant $\rightarrow C_n = 2E(X_n) = ?$

made by S.-W. Cheng (NTHU, Taiwan)

NTHU MATH 2810, 2023

Lecture Notes

