- Corollary. If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$, i.e., X and Y are uncorrelated. $e_{X Y}=0$
Proof. When X, Y are independent,

$$
\frac{E(X Y)=E(X) E(Y)=\mu_{X} \mu_{Y \cdot}}{2}\left\{\begin{array}{l}
\text { by Corollary } \\
\text { in } \begin{array}{l}
\text { N } N_{p} .8 \cdot 6
\end{array}
\end{array}\right.
$$

a However, the converse statement is not necessarily true. \rightarrow "uncorrelated" is a weaker condition than "indep." (e.g., let $X \sim \operatorname{Uniform}(-1,1)$ and $Y=X^{2}$, then $\operatorname{Cov}(X, Y)=0, \stackrel{\leftarrow}{-E(x Y)=E\left(x^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} d x=0} \begin{array}{r}E(X)=0(Y)=0(Y 3)=0\end{array}$ but X and Y are not independent).
standardization

$>$ Example. If $\left(X_{\underline{1}}, \ldots, X_{\underline{m}}\right) \sim \operatorname{Multinomial}\left(n, \underline{m}, p_{1}, \ldots, p_{m}\right)$, then ${ }^{\text {prs. }}$

$$
\underline{\operatorname{Cov}\left(X_{i}, X_{j}\right)}=\underline{-n p_{i} p_{j}}, \quad \text { for } 1 \leq i \neq j \leq m .
$$

- Because $\left(X_{1}, X_{2}, \underline{X}_{3}+\cdots+X_{\underline{m}}\right) \sim$

Multinomial $\left(n, \underline{3}, p_{1}, p_{2}, p_{3}+\cdots+p_{m}\right)$, and

$$
\underline{X_{3}+\cdots+X_{m}=n-X_{1}-X_{2}, \quad \underline{p_{3}+\cdots+p_{m}=1-p_{1}-p_{2}}, ~}
$$

we have

$$
\begin{aligned}
& \begin{array}{l}
2 \leqslant x_{1}+x_{2} \leqslant \pi \\
1 \leqslant x_{1} \leqslant n-1
\end{array}=\sum_{0} x_{1} \not x_{2} \frac{n!}{x_{1}!x_{2}!\left(n-x_{1}-x_{2}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}}\left(1-p_{1}-p_{2}\right)^{n-x_{1}-x_{2}}
\end{aligned}
$$

Therefore, $\underline{\operatorname{Cov}\left(X_{i}, X_{j}\right)}=\underline{E\left(X_{i} X_{j}\right)}-\underline{E\left(X_{i}\right)} \underline{E\left(X_{j}\right)}$

$$
=n(n-1) p_{i} p_{j}-\underline{\left(n p_{i}\right)}\left(\underline{n p_{j}}\right)=-n p_{i} p_{j}
$$

- And, for $i \neq j, \begin{aligned} & \text { Note } \\ & \underline{x_{1}}+x_{2}+\underline{x}_{3}+\cdots+x_{n}=n\end{aligned} \rightarrow$ Why negative
- Gov \& Cor for Sums of Random Variables
$>\underline{\text { Notation. In }}$ the following, let $\underline{X}_{1}, \ldots, X_{n}$ and
$\underline{Y_{1}}, \ldots, Y_{\underline{m}}$ be r.v.'s and $-\infty<\underline{a_{0}}, a_{\underline{1}}, \ldots, a_{\underline{n}} \underline{2}$ LN P8-4 $b_{0}, b_{1}, \ldots, b_{m}<\infty$ are constants.

Q: When larger? When smaller? Hint. $\frac{p}{1-p} \uparrow$ as $p \uparrow$ Note. $0 \leqslant P_{i}+P_{j} \leqslant 1$

Recall. $\underline{E}\left(\overline{a_{0}}+a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{0}+a_{1} E\left(X_{1}\right)+\cdots+a_{n} E\left(X_{n}\right)$.
Theorem (covariance of two sums).

$$
\underline{\operatorname{Cov}}\left(\underline{\underline{a_{0}}+a_{1} X_{1}+\cdots+a_{n} X_{n}}, \underline{\underline{b_{0}}+b_{1} Y_{1}+\cdots+b_{m} Y_{m}}\right)
$$

Therefore, $\operatorname{Cov}(S, T)=E\{[S-E(S)][T-E(T)]\}$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} E\left[\left(X_{i}-\mu_{X_{i}}\right)\left(Y_{j}-\mu_{Y_{j}}\right)\right]
$$

$$
(\operatorname{LNp.8-4})=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Theorem (variance of sum) $\cdot C \operatorname{Cov}\left(a_{0}+a_{1} X_{1}+\cdots+a_{n} X_{n}, a_{0}+a_{1} X_{1}+\cdots+a_{n} X_{n}\right)$

$$
+2 \sum_{1 \leq i<j \leq n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \cdot \dot{j}=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)
$$

Proof. $\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left(X_{i}\right)$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right)$.
Cf. \rightarrow Corollary. If X_{1}, \ldots, X_{n} are uncorrelated, then Var (Ti)] [exchange of
 $i \neq j,-$ Corollary. If X_{1}, \ldots, X_{n} are uncorrelated and
$\left.\frac{x_{1}+\cdots+x_{n}}{n} \Rightarrow a_{1}=\cdots=a_{n}=\frac{1}{n}\right] \operatorname{Var}\left(X_{1}\right)=\cdots=\operatorname{Var}\left(X_{n}\right) \equiv \underline{\sigma}^{2}<\infty$, + Law of Large Number then $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n \approx 0$ when $n \uparrow \infty \quad \begin{aligned} & \text { ie. } \bar{X}_{n} \approx \frac{C_{n}}{} \text { when } n \text { large enough. } \\ & a \text { constant }{ }^{5} \rightarrow C_{n}=? E\left(X_{n}\right)=?\end{aligned}$

