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—d
Exy[Y - g(X)f° =2 Exy[Y — Eyx(Y|X)]* £ Ex[Vary x (Y]X)]

The equality holds if and only if g(z)=Fyx(Y]z)._ - () (s

Proof. Exy [Yz":_g(_X)]2 T-[a_ﬁﬂctt‘on of X only | [~ oo

= By (V|- Byix (Y1X)] + [Byix (VX) — g(X)]}? X0l

= ExylYV —EY|X(Y|X)]2 +EX‘Y§£[EY]X(Y|X) — Q(X)ﬁ__}
+ 2 Exy{lY — Evix(Y|X)|[Eyx(Y|X) — g(X)]}

last ="} & By Y — Byx (YIX)]? + Ex[Byix(Y]X) — g(X)2 =9
2 EX,Y [Y — Ey|X(Y|X)]2 =0 l’ﬁ 9(X)= Eylx(YIX)
where the last “=" comes from - 8-28
Exy{[Y — Eyvix(YIX)][Evix(Y|X) — g(X)]} r—ﬁ(x,Y)
mt @
[ Lxbnx {Y ~ By (Y1X) By (V1Y) —g(X)] x}
By the law of total expectation (LNp8-22) this ts & cansz_ézcgz when.
y Exy[£(x.)]= E %[ﬂxml X1 conditioned on X
mporbant | = DxUEvix(Y[X) = 9(X)] Eyix[Y — Eyix(Y|X)|X]} = 0.
concept:

mean is | T urthermore, ($or (%) in LNp.8-2%) T_= E vix(Y1X)-Eyix(YIX)
;f'%sd%c'br Exy[Y — Eyix(Y|X)]?

under MSE = Ex Evix{[Y — Eyx(Y|X)*|X} = Ex[Varyx(Y]X)]

» Some notes for the best predictor in G

R
®Ey, x(Y|z) is the best predictor of Y'based on X, in the sense
of mean square prediction error cl\ed: the graph in LNp8-20

Its calculation requires to know the joint distribution of X
and Y, or at least By, x(Y]x)

" EH_X(Y[SI}) is called the regregsion function of Y on Xj BE2
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*®Theorem (best /inear predictor under MSE).
Ga

ExylY — (a+0bX)]* >

[|< Orr <)
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¢ oy

minimum

= .U%f(l — PXY)

EX,Y{Y [MY+pXY—(X MX)}F
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The equality holds if and only if a=— by and b=py0y/ Ox-eJunit ="
- _ - ]|
Proof. Exy(Y —a—bX)’ ~RixY)=2
‘.‘V'ar(Z) j VaTxyy(Y—a—bX)—i—[Exvy(Y—~a—-bX)]2
=E(Z‘) 2 = VCLT)(’}/(Y — bX) - (,LLY —a — b,ux)z
(B2 >| Varxy (Y — bX) (= setting a = py — bux)
Thm in j 012/4—@0?(—260)(3/
LNp-8'13 _ o2 e oxXy O'Xy Lo Ug(Y
X 0% UX v 0%
9 OXxXy 2
= Ox (b_—z) + oy (1 = pxy)
Ox
>| 02 (1 — piy) ( = setting b = XY = U";(UYY X Z—; = PXYZ_; )

X

»Some notes for the best /inear predictor in G,

p. 8-30

= Byx(Y2) = ty + (Oxy Oyl Ox)(x—py) If (X, Y) is distributed as

blvarlate normal.

Uinaan, veqresiion, andlys’s

@st in GFJ

" Its calculation requires to know the means, Variances, and

covariance of X and Y.<<£,

in(g3,G]

MSE=0

if Guyzt ) -é JY (1-pxy?) is small if ,Qxyls close to +1 or —1, and large if

MSE =€Y

m,fo one :egjure more 1

i Pey=o QXY is close to Os{

check the conrelation

intuition?

more mﬁrmd:ww

* A comparison of these minimum MSEs

plots in LNp,8'9

better predictor

G,
n
G2

G3

min,, Ey[Y=(a+bX)]* < min, Ey,(Y=c)* and the equality

holds if and only if Pxy=0.
N —émmg Eyx {Y=g(X)]* <min, , Ey[Y=(a+bX)]* and the equality

holds if and only if Eyx(Y|z) = th+ (0xFy/ Ox)(T=Ly).

% Reading: textbook, Sec 7.6

Moment Generating Function

* Definition (Moment and Central Moment). If a random variable X

has a cdf FK’ then
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o ke 00 k . p. 8-31
we = E(XF) = [ dFx(z), k=1,2,3,...,

X
0o L—

are called the k" moments of X provided that the integral converges
absolutely, and

a constant
are called k™ moment about the mean [y or central moment of X

provided that the integral converges absolutely.
» Some notes.

= BIX = px)] = B |28 (5) (—px)*~ X
= Yine (=) EXY) = Y0, (?)(—Mx)k_iu_f'-
= fE = E(kX_k)k: E{[(X-_MX)‘FMX]E} Ho=E(X°)=1
= Yo (Dux) " TE(X — px)’]
_ Z?:O (l;t)(lux)k:—zlu_; Ao=1 /“52 T
= In particular, e mi=0 ,
E(X) = px =, and, R L
Var(X) = ox == pi2 — i1 = E6®) - [EX)]>
—% ¥ 5

p. 8-32

Recall. FP®The (central) moments give a lot of useful information

mean , var, [about the distribution in addition to mean and variance, e.g.,
Ccov, cor X - M
o Skewness (a measure of the asymmetry): ps/o® = (55~
defined by ——— o, )4 X=-M\¥
expectation]  Kyrtosis (a measure of the “heavy tails”): py/0 -=E( S )
kurtosis
After
Stendardization,
mean =0
vanance = |

therefore, kx = p1=1/2, and, 2* 7

My=0% = po—pi=1/3—-(1/2)" =1/12. 0 ? 1 l

And, pi = fol (z —1/2)F dx = f_lﬁ2 2" dz -k 0 hz
skewness=0 o b1 ki1l [0, k is odd,
kurtosis=1.8 ] — k1 [(1/_2)— B (ﬂ)—} - m, k is even.
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p. 8-33

» Recall. How to characterize a distribution?

(1) pdffpmf, (2) cdf, (3) mgf

* Definition (Moment Generating Function). If X is a random

variable with the cdf F'y, then _ Soo €5 ody, Sor
o -00 X
&(D — E(g) = ffoooﬁ dF'x (SC),—r conkinuous case

is called the moment generating function (mgf) of X provided that
the integral converges absolutely in some non-degenerate interval

of t. LI ¢ = ¥
: dBET antt (08, f@) (D de
Q:how to|  g(t) e 31
axpress a Taylor expansion Q Laplace transformation
function ? ‘)/ k=
*) w5 5@
el Ll )8 | AT
0O 2 2--~- ; s 5‘, %v' 1:_... f
Py SR
> Some Notes. cf.
= The mgf is a function of the variable ¢. ie,not all t € R
mgrt Tunction 3 not_all

» The mgf may only exist for some particular values of ¢.
n M (t) always exists at t=0 and M x(0)=1 e—{Thm in LN5&-36)

p. 8-34

» Example.

=« If X 1s a discrete r.v. taking on values x;’s with probability p,’s,
i=1, 2,3, ..., then . :
Mx(t) = E(e?) = Zf; e'5pi.
» [f X ~ Poisson(A), then for —oo<t<oo,

—A)\w

Mx(t) = E(e) = 302 €% x o=
A (xet 0o e~ (aet)® A )e Alet—1)

= e (e )Zx:0 p —=e et =¢ :

pmf of ston(g )

» [f X ~ exponential(A), then for ¢<A,
Mx(t) = E(e') = [7 " x Xe™?" dua <70

= A (5) [ g = 2

and M ,(t) does not exist for ¢ > )\def @C@Wnﬁ‘al a-8)
= A list of some mgfs (exercise) (7his must be >0

o If X ~ binomial(n, p), —{ 4ot binomial expansion (LNp $-23) |
Mx(t) = (1 —p+ pet)™, for t < —log(1 — p).
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- '&'Ve bl / l p. 8-35
;;.mj;ér - If X negatlvei binomial(r, p), w2 "> earnsion (wp”g_'f ;.‘q)
‘drs{:ribub'on, Mx(t) L [ﬁ] for t < —log(1 — p).
él N . . e,Bt eat
| %ﬂn alf X ~ uniform(a, B, M () = ACE N 0 Lk
) %If X ~ gamma(a, A), :.luaz 5"'3 | Fu& e"‘=g=:° %
@i% Mx(t) L (ﬁ) for t < A, | &STO
e’ _ .
@y, [a1f X ~ beta(o, B), (1) £1+ 552, (T2 2 ) &
Fw -Fix-) |
o If X ~ normal(y, &?), Mx (i) = ent+(@/2)t*  |uae STO

Theorem (Uniqueness Theorem). Suppose that the mgfs M y(¢) and
M(t) of random variables X and Y exist for all |¢|<h for some h>0.

If— _ R/ 3 distribction ~—> =3
My(t)= My(t), | i anomen ol | 50000 278

for |t|<h, th B B 1

does ooy Ix(2) = I(2) o 5ome £ o R e

for all zeR, where FX and F are the cdfs of X and Y, respectively.
Proof. Skipped (by the uniqueness theorem of Laplace transform.)

p. 8-36

» Application of the uniqueness theorem

» When a mgf exists for all [¢|<h for some h>0, there is a

unique distribution corresponding to that mgf. Find dist. of

. . . . X| +-- ""Xl'l
= This allows us to use mgfs to find distributions of (Check he

transformed random variables in some cases. Thms in

» This technique is most commonly used for /inear LNp8-38)
combinations of independent random variables X, ..., X, 3

> Example. If Mx (t) _plgf-,lt +- +pk§3— » where
J2) +-- +pk 1, then X is a discrete r.v. and its pmf is

by unigueness {&, forx =a;,0=1,...,k,

Thm & m px(x) = )
Tn LNp. 333‘:4 0, otherwise.

* Theorem (Moments and MGF). If M X(t) exists for [t|<h for some

h>0, then related T The J-|know all moments > know dist]

l—-’ }O.k d ) ‘b‘ e M 0 :1, Coefﬁc\evlts in
z%n‘t = g erivaav X (_) — the Taylor expansion 71”‘5 QJ(«PlamS W‘by

and, k th derivative (k) { 2l it's cafled moment
M_(O) = %, k = 1,2,3, ‘—1 MM‘M.
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Proof. First, Mx(0) = [~ 2% dFx(x) = [~ 1dFx(x) =1

— 56 S 1. e—
{ d d [® _tr L= (x)oo_J
M_X(Q) = EMX(t)‘ = [@ f_ooe_dFX(x)” =
L= —lt=0
= g (éem o dFx(z) = foooo (xemlﬂ) dFx(x)
= [z -1dFx(z) = Ex(X) = m
(k) d” | dF poo g8
Mx"(0) = Gw Mx(t)‘tzo [E Jooe® dFX(x)HtZO

»Example. If X ~ exponential(\), then Mx(t) = /\L_E 4—{LNp.8-3¢
Because M)((i)(t) =B 'ma,cw? wan. kh monents
(A—t)—/— to obtain mean ,veriane,
we get (k) ! skewness, kurtosis, --- ,
_k:MX (Q) Ve kth central moments,--.
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