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Expectation

• Recall. Expectation for univariate random variable.

• Theorem. For random variables X=(X1, … , Xn) with joint pmf 

pX/pdf fX, the expectation of a univariate random variable Y, where

Y=g(X1, … , Xn), g:ℝn→ℝ1,

is

if X1, … , Xn are discrete and the sum converges absolutely, or

if Y and X1, … , Xn are continuous and the integrals converges 

absolutely.

(1)

(2)

(3)

(4)
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Proof. Like the univariate case.

Q: What if Y is discrete and 

X1, … , Xn are continuous?

Notation. 

 Shorthand notation. Combine (1) and (3) by writing

and combine (2) and (4) by writing

 Riemann-Stieltjes Integral. 

x

y=g(x)

x

y=g(x)
y=g(w)
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For example, for non-negative g , and 
non-decreasing, right-continuous F,

where the limit is taken over all a=x0<x1<L<xn=b as n→ ∞

and

[Recall. The integral of g over (a, b] is defined as

maxi=1,...,n(xi − xi−1) → 0.

b

a
g(x) dF (x) = lim

n

i=1
g(xi)[F (xi)− F (xi−1)].

b

a
g(x) dx = lim

n

i=1
g(xi)(xi − xi−1).]

Note.

 g(X1, … , Xn)=Xi⇒ E[g(X1, … , Xn)]=E(Xi) ≡

 g(X1, … , Xn)=(Xi −a a  a)2 ⇒E[g(X1, … , Xn)]=Var(Xi) ≡

µXi
.

µXi
σ2Xi

.

Example (Average distance between two points). Suppose that 

X, Y are i.i.d. ~ Uniform(0, 1).

Let D=|X−Y|. Find E(D).

x

y=g(x)

x

y=g+(x)

x

y=−g−(x)

p. 8-4



f(x, y) =
1, 0 � x � 1, 0 � y � 1,
0, otherwise.

 The joint pdf of (X, Y) is

and constants −∞ < a0, a1, …, an < ∞, 

E(a0+a1X1+L+anXn) = a0+a1 E(X1)+L+anE(Xn).

Proof.

X

Y

• Theorem (Mean of Sum). For jointly distributed r.v.’s X1, … , Xn
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Corollary. Suppose that µ=E(X1)=L=E(Xn). Let

E(Xn) = µ.then, 

Corollary. If X and Y are r.v.’s 

with finite means and 

P(X � Y)=1, 

then E(X) � E(Y).

Corollary. If P(a � X � b)=1 for some constants a, b, then 

a � E(X) � b.

then

For the general case, let Z=Y−X, then Z ≥ 0 with probability 

one, and therefore, 0 � E(Z) = E(Y−X) = E(Y)−E(X).

E(Z) =
∞

0
z dFZ(z) ≥ 0.

Xn =
X1+···+Xn

n
,

Ω
P

X

Y

Proof. First, if Z is a random variable with finite mean and

P(Z ≥ 0)=1,
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• Theorem. If two random vectors X (∈ℝm) and Y (∈ℝn) are 

independent (i.e., FX,Y(x, y) = FX(x)×FY(y), or

fX,Y(x, y)=fX(x)×fY(y),  or pX,Y(x, y)=pX(x)×pY(y) ),

then for g: ℝm→ℝ and h: ℝn→ ℝ, 

E[g(X)×h(Y)] = E[g(X)]×E[h(Y)].

Proof. We only prove it for the continuous case:

Corollary. For 2 independent r.v.’s X and Y, 

E(XY)=E(X)×E(Y). 

Proof. Let g(X)=X and h(Y)=Y.
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Q: For independent r.v.’s X and Y, 

E(X/Y)=E(X)/E(Y)?

 Note. E[h(Y)]≠h(E(Y)) in general, e.g., 

• Covariance and Correlation between 2 random variables

Definition. Suppose that X and Y are two random variables with 

finite means µX, µY and variances σX
2, σY

2, respectively. 

1.Let g(x, y)=(x−µX)(y−µY), then

is called the covariance between X and Y, denoted by σXY.

Y

h(Y)

≠
E(1/Y) ≠ 1/E(Y).
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2.The correlation (coefficient) between X and Y is defined as

and denoted by ρXY. 

Cor(X, Y ) = σXY /(σXσY )

3. X and Y are called uncorrelated if ρXY=0.

 A special case of covariance: 

Cov(X, X) = Var(X).

Intuitive explanation of covariance and correlation

 Covariance is the average value of the product of the deviation

of X from its mean and the deviation of Y from its mean.

 Covariance is a measure of the joint variability of X and Y, or 

their degree of association.

 Positive Covariance and Negative Covariance
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 Correlation coefficient measures the strength of the linear 

relationship between X and Y.

 Correlation Coefficient is unit free. (why?)

Theorem. Cov(X, Y) = E(XY)−µXµY.

Proof.

X

Y
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 Corollary. If X and Y are independent, 

then Cov(X, Y)=0, i.e., X and Y are 

uncorrelated. 

Proof. When X, Y are independent, 

E(XY)=E(X)E(Y)=µXµY.

X

Y

(e.g., let X~Uniform(−1, 1) and Y=X2, then 

Cov(X, Y)=0, 

but X and Y are not independent).

 However, the converse statement 

is not necessarily true. 

 Corollary. 

Proof. By definition.
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Example. If (X1, …, Xm) ~ Multinomial(n, m, p1, …, pm), then

 Because (X1, X2, X3+L+Xm) ~ 

Multinomial(n, 3, p1, p2, p3+L+pm), and 

X3+L+Xm = n−X1−X2, p3+L+pm = 1−p1−p2, 

Cov(Xi, Xj) = −npipj, for 1 � i 
= j � m.

we have

 WLOG, we can get E(XiXj) = n(n−1)pipj, for i ≠ j. 

Therefore,
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 And, for i ≠ j, 

• Cov & Cor for Sums of Random Variables

Notation. In the following, let X1, …, Xn and 

Y1, …, Ym be r.v.’s and −∞ < a0, a1, …, an, 

b0, b1, …, bm < ∞ are constants.

Theorem (covariance of two sums). 

Proof. Let S = a0+a1X1+L+anXn, and 

T = b0+b1Y1+L+bmYm, then 

Recall. E(a0+a1X1+L+anXn) = a0+a1E(X1)+L+anE(Xn).
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Therefore,

Theorem (variance of sum). 

Proof. Cov(Xi, Xi)=Var(Xi) and Cov(Xi, Xj)= Cov(Xj, Xi).

 Corollary. If X1, …, Xn are uncorrelated and

Var(X1)=L = Var(Xn) ≡ σ2 < ∞,

then 

V ar(a0 + a1X1 + · · ·+ anXn) =
n

i=1 a
2
iV ar(Xi).

V ar(Xn) = σ2/n.

 Corollary. If X1, …, Xn are uncorrelated, then
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X1

X2

X1

X2
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 Corollary. Suppose that X1, …, Xn are uncorrelated and have 

same mean µ and variance σ2. Let 

then E(S2)=σ2.

Proof.

Therefore,
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 Note. The previous three corollaries also hold if 

X1, …, Xn are “uncorrelated” is replaced by 

“independent.” 

Theorem (ρ of linear transformation). 

Cor(a0+a1X, b0+b1Y)=sign(a1b1)×Cor(X, Y), 

and 

|Cor(a0+a1X, b0+b1Y)|=|Cor(X, Y)|,

i.e., |ρXY| is invariant under location and scale 

changes.

Proof. Let S=a0+a1X and T=b0+b1Y, then

Cov(S, T)=Cov(a0+a1X, b0+b1Y)=a1b1Cov(X, Y), 

Var(S)= a1
2 Var(X),    and Var(T)= b1

2 Var(Y).

Therefore,
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 Theorem (some properties of ρ).

(1) −1 � ρXY � 1.

(2) ρXY = ±1 if and only if there exist a, b ∈ℝ 

such that P(Y=aX+b)=1. 

(3) Furthermore, ρXY =1, if a>0 and ρXY =−1, if a<0.

Proof of (1).

Similarly,

0 � V ar X
σX

− Y
σY

= 1 + 1− 2ρXY ⇒ ρXY � 1.

X

Y

Proof of (2) and (3). We see from the proof of (1),
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Similarly,

 Reading: textbook, Sec 7.1, 7.2, 7.4, 7.9

• Q: How to use expectations to (roughly) characterize the 

distribution of random variables X1, …, Xn?

g(X1, … , Xn)=Xi ⇒ E[g(X)]=       : mean of Xi.

g(X1, … , Xn)=(Xi − )2 ⇒ E[g(X)]=       : variance of Xi.

g(X1, … , Xn)=(Xi − )(Xj − ) for i ≠ j 

⇒ E[g(X)]=           : covariance of Xi and Xj.

g(X1, … , Xn)=[(Xi − )/      ][(Xj − )/      ] for i ≠ j 

⇒ E[g(X)]=           : correlation coefficient of Xi and Xj.

Notes.                                         are constants, not random

µXi

µXi
, σ2Xi

, σXiXj
, ρXiXj

µXi

µXi
σ2Xi

σXiXj

µXi

µXj

µXjσXi
σXj

ρXiXj
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Conditional Expectation

• Recall. pY|X(y|x) or fY|X(y|x) is a pmf/pdf for y (y: random, x: fixed).

• Definition. For random vectors X and Y, the conditional expectation

of Z=h(Y) given X=x, where h: ℝm→ℝ1, is

in the discrete case, or,

in the continuous case, 

provided that the sum or integral converges absolutely.

Some Notes.

 EY|X(h(Y) | X=x ): a function of x and free of Y.

 EY|X[ h(X) | X=x ]=h(x).

 If X and Y are independent, then 

EY|X(h(Y)|X=x)=EY[h(Y)].

X

h(X)

X

Y
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f(x, y): a joint pdf.

Fix x*, isf(x*, y) a pdf of y? i.e.,

fY|X(y|x*)=f(x*, y)/fX(x*) is 

a pdf of y since

EY|X(Y |x*): mean of fY|X(y|x*).

Do it for any x=x*, and get a 

function of x EY|X(Y |x)

X

Y

f(x, y): joint pdf

 Let g(x)=EY|X[h(Y)|X=x], where g:ℝn →ℝ1, then we write 

EY|X(h(Y)|X)

when x in g is replaced by X (a fixed value replaced by a r.v.). 

 Notice that g(X) is a random variable.
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Example. Sample a student from an elementary school. Let

X=age (unit: year), Y=height (unit: cm)

of the student. Population: all students of the school.

 Y|X=x: a random variable (unit: cm) that represents 

the height distribution of students with age=x.

 g(x)=EY|X(Y|X=x) or EY|X(Y|x): a function maps 

from age (unit: year) to average height (unit: cm) 

of students with age=x. 

Note. EY|X(Y|x) is not a random variable. 

 g(X)=EY|X(Y|X): a random variable because it is a 

function of age X, where X is a random variable. 

Note. g(X)=EY|X(Y|X) is height, its unit is “cm”. 

 VarY|X(Y|X=x) & VarY|X(Y|X) defined similarly.

 EY(Y): average height of all students; 

VarY(Y): variation of height of all students.
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• Theorem (Law of Total Expectation). For two random vectors

X (∈ℝm) and Y (∈ℝn),

EX{EY|X[h(Y)|X]}=EY[h(Y)].

In particular, let h(Y)=Yi, we have

EX[EY|X(Yi|X)]=EY(Yi).

Proof. 

(only prove it for the continuous case)

X

Y
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Example. If a sample of n balls is drawn without replacement

from a box containing R red balls, W white balls, and N−R−W
blue balls. Let

X = # of red balls in the sample,

Y = # of white balls in the sample,

then, the joint pmf of (X, Y) is

Find EY(Y).

Sol. Because Y|X=x ~ hypergeometric(n−x, N−R, W),

g(x)≡EY|X(Y|X=x)=(n−x)[W/(N−R)].

Because X ~ hypergeometric(n, N, R) ⇒ EX(X)=n(R/N), and 

then

Note that Y ~ hypergeometric(n, N, W) ⇒ EY(Y)=n(W/N).
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• Theorem (Variance Decomposition). For 
two random vectors X and Y,

VarY(Yi)

= VarX[EY|X(Yi|X)]

+ EX[VarY|X(Yi|X)].

and,

Also,

Now,

Proof.

X

Y

X

Y
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Corollary.

 VarY(Yi) ≥ EX[VarY|X(Yi|X)] and the 

equality holds if and only if 

EY|X(Yi|X)=EY(Yi) 

with probability one.

 VarY(Yi) ≥ VarX[EY|X(Yi|X)] and the 

equality hold if and only if 

VarY|X(Yi|X)=0 (⇒ Yi=EY|X(Yi|X) )

with probability one.

 Reading: textbook, Sec 7.5

X

Y

X

Y

Conditional Expectation and Prediction

• Problem formulation: predicting the value of a r.v. Y on the basis of 

the observed value of a r.v. X

Data: X and Y (example?)
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Statistical modeling: assigning (X, Y) a (known) joint 

distribution (cdf F(x, y), pdf f(x, y), or pmf p(x, y))

Objective: predicting Y by using a function of X, i.e., 

g(X) ← predictor

Note. 

Question: Within each group, what is the “best” predictor?

Criterion: minimizing mean square error

Predictor: considering the following three groups of g’s

(i) 

(ii)

(iii)
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• Theorem (best constant predictor under MSE). 

The equality holds if and only if c=EY(Y).

Proof. 

• Theorem (best predictor under MSE). 

The equality holds if and only if g(x)=EY|X(Y|x).

Proof. 
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Furthermore,

Some notes for the best predictor in G3

 EY|X(Y|x) is the best predictor of Y based on X, in the sense 

of mean square prediction error

 Its calculation requires to know the joint distribution of X
and Y, or at least EY|X(Y|x) 

 EY|X(Y|x) is called the regression function of Y on X
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• Theorem (best linear predictor under MSE). 

The equality holds if and only if a=µY − bµX and b=ρXYσY/σX.

Proof. 
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Moment Generating Function
• Definition (Moment and Central Moment). If a random variable X

has a cdf FX, then

Some notes for the best linear predictor in G2

 EY|X(Y|x) = µY + (ρXYσY/σX)(x−µX) if (X, Y) is distributed as 

bivariate normal.

 Its calculation requires to know the means, variances, and 

covariance of X and Y.

 σY
2(1−ρXY

2) is small if ρXY is close to +1 or −1, and large if 

ρXY is close to 0.

 Reading: textbook, Sec 7.6

• A comparison of these minimum MSEs

 mina,b EX,Y[Y−(a+bX)]2 ≤ minc EX,Y(Y−c)2 and the equality 

holds if and only if ρXY = 0.

 ming EX,Y[Y−g(X)]2 ≤ mina,b EX,Y[Y−(a+bX)]2 and the equality 

holds if and only if EY|X(Y|x) = µY + (ρXYσY/σX)(x−µX).
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Some notes.





 In particular, 

are called the kth moments of X provided that the integral converges 

absolutely, and 

are called kth moment about the mean µX or central moment of X

provided that the integral converges absolutely. 

p. 8-32

 The (central) moments give a lot of useful information

about the distribution in addition to mean and variance, e.g., 

 Skewness (a measure of the asymmetry):

 Kurtosis (a measure of the “heavy tails”):

therefore, 

And, 

Example (Uniform). If X ~ Uniform(0, 1), then
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Laplace transformation

• Recall. How to characterize a distribution? 

(1) pdf/pmf, (2) cdf, (3) mgf

• Definition (Moment Generating Function). If X is a random 

variable with the cdf FX, then

is called the moment generating function (mgf) of X provided that 

the integral converges absolutely in some non-degenerate interval

of t.

t

g(t)

Some Notes. 

 The mgf is a function of the variable t.
 The mgf may only exist for some particular values of t.
 MX(t) always exists at t=0 and MX(0)=1

Taylor expansion

k x
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 If X ~ Poisson(λ), then for −∞<t<∞,

 If X ~ exponential(λ), then for t<λ,

and MX(t) does not exist for t ≥ λ.

 A list of some mgfs (exercise)

 If X ~ binomial(n, p),

 If X is a discrete r.v. taking on values xi’s with probability pi’s, 

i=1, 2, 3, …, then

Example.
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 If X ~  negative binomial(r, p),

• Theorem (Uniqueness Theorem). Suppose that the mgfs MX(t) and 

MY(t) of random variables X and Y exist for all |t|<h for some h>0. 

If
MX(t) = MY(t),

for |t|<h, then

FX(z) = FY(z)

for all z∈ℝ, where FX and FY are the cdfs of X and Y, respectively. 

Proof. Skipped (by the uniqueness theorem of Laplace transform.)

 If X ~  uniform(α, β),

 If X ~ gamma(α, λ),

 If X ~ normal(µ, σ2),

 If X ~ beta(α, β),
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Application of the uniqueness theorem

 When a mgf exists for all |t|<h for some h>0, there is a 

unique distribution corresponding to that mgf.

 This allows us to use mgfs to find distributions of 

transformed random variables in some cases.

 This technique is most commonly used for linear 

combinations of independent random variables X1, …, Xn

Example. If                                                        where 

p1+L+pk=1, then X is a discrete r.v. and its pmf is 

• Theorem (Moments and MGF). If MX(t) exists for |t|<h for some 
h>0, then 

MX(0)=1, 

and,
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Proof. First,

· · · = · · ·

Example. If X ~ exponential(λ), then 

Because

we get

p. 8-38• Theorem (MGF for linear transformation). For constants a and b, 

Proof.

• Theorem (MGF for SUM of independent r.v.’s). If X1, …, Xn are 

independent each with mgfs MX1
(t) , …, MXn

(t), respectively, then 

the mgf of S=X1+⋅⋅⋅+Xn is

Proof.

Example. If X1, …, Xn are i.i.d. ~ geometric(p), then

S=X1+L+Xn ~ negative binomial(n, p).

Proof.
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Example. If X1, …, Xn are independent and 

Xi ~ normal(µi, σi
2), for i=1, …, n. 

Let S = a0+a1X1+L +anXn, then

Proof.

• Definition (Joint Moment Generating Function). For random 

variables X1, …, Xn, their joint mgf is defined as

provided that the expectation exists.

Example. If X1, …, Xm ~ multinomial(n, m, p1, …, pm), the 

joint pmf is:
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• Some Properties of Joint mgf



 uniqueness theorem 

X1, …, Xn are independent if and only if



 Reading: textbook, Sec 7.7


