Expectation

» Recall. Expectation for univariate random variable.

* Theorem. For random variables X=(X,, ... , X)) with joint pmf
px/pdf fx, the expectation of a univariate random variable Y, where

Y=g(X,, ..., X,), gR'—=R

P EY)=Y,0ypr(y) (1)
= Zx:(ml,...,wn)eX g(xh"’?a?n) pX(xlv”'axn) (2)
= Flg(X1,...,Xn)]

if Xy, ..., X, are discrete and the sum converges absolutely, or

EY)= " yfv(y) dy 3)

[ [T g, m) fx(, ., @) day -+ day, (4)
= FElg(Xy,...,X,)]

ifYand X, ..., X X are continuous and the integrals converges
absolutely

Proof. Like the univariate case.

»Q: What if Yis discrete and
X, ..., X, are continuous?

» Notation.
= Shorthand notation. Combine (1) and (3) by writing

0o > ey ¥ Pyl(y), for discrete case,
| varri) - { e

Jo v fy(y) dy, for continuous case,
and combine (2) and (4) by writing

{ > xex 9(x) px(x), for discrete case,

Jan 9(x) fx(x) dx, for continuous case.

Blg(X)) = | g(x) dFx(x) =

= Riemann-Stieltjes Integral.

y=g(w)

y=9() y=g()
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vmo) For example, for non-negative g, and

non-decreasing, right-continuous F,

*75

‘”‘1 v J, 9 =lim 7", g(2:)[F(2:) — F(zia)].
" where the limit is taken over all a= T<a,<---<x,=b as n— 00
y=—97(z)
and max;—1,_ n(z; —x;—1) — 0.

75

[Recall. The 1 'ntegral of g over (a, b] is defined as
f g(z x_hmz_lg(%)(xz_xz 1)-]

» Note.
" Q(Xla sy ‘Xvn)zggz> E[g(Xla cee o Xn)]:E(Xg) = lu’Xz
«9(X,, . X)=(Xmpx )P S Elg(X,, ..., X,)]=Var(X)) = 0%, -

» Example (Average distance between two points). Suppose that
X, Yare 1.1.d. ~ Uniform(0, 1).
Let D=|X-Y]. Find E(D).

« The joint pdf of (X, ) is

Y
J 1L, 0f2x<1,0<y <1,
fla,y) = { 0, otherwise. X

= Jo Jo lz =yl dyde = [} | [ (2 —y) dy+ [} (y — =) dy| da
x 1
- fo -2+ 3w -2, ] de
= h3lP+ -0 de= gl - (-2, =%
* Theorem (Mean of Sum). For jointly distributed r.v.’s X, ... , X

and constants —oco < a,, a,, ..., a,< 00,

E(agta, X +---+a,X,) = agta; E(X))*--+a, E(X,).

Proof. E(ag+ a1 X1+ -+ a,Xy)
= Jeu(ao+ a1z + -+ apzy) dFx (%)
= fRn ag dFx(x) + ap fRn r1 dFx(x)
+ o+ an [pn Tn dFx(X)
= at+arBE(X1)+ - +aBE(X,).




» Corollary. Suppose that p=FE(X,)=---=E( XQ)- Let .85

X, = XatotX,

n Y

then, E(X,) = pu.
» Corollary. If X and Yare r.v.’s
with finite means and
X <Y)=1,
then E(X) < E(Y).

Proof. First, if Z is a random variable with finite mean and
RZ 2 0)=1,
then E(Z) = [,° 2z dFz(z) > 0.
For the general case, let Z=Y=X, then Z > 0 with probability
one, and therefore, 0 < E(Z) = E(Y=-X) = E(Y)-E(X).
» Corollary. If A{a < X < b)=1 for some constants a, b, then
a < E(X) <Lb.

* Theorem. If two random vectors X (€R™) and Y (€R") are
independent (i.e., Fyxy(X,y) = Fx(X)XFy(y), or

Jxxy(X YE/x(X)X fy(¥), or px y(X, Y)=px(X)Xpy(y) ),
then for g: R™—=R and h: R"— R,
Elg(X)xh(Y)] = E[g(X)]XE[A(Y)].

Proof. We only prove it for the continuous case:

Elg(X me fRn Y)fxy(x,y) dydx
- me f]Rn ( )fY( ) dydx
= Jgm 9( URn (y) dy] dx
= |Jgm 9( x) dx| URn y)fy(y) dy]

= E[Q(X)]E[h(Y)]-
» Corollary. For 2 independentr.v.’s X and Y,
E(XY)=ECO)XE(Y).

Proof. Let g(X)=X and h(Y)=Y.




»Q: For independent r.v.’s X and Y,
E(X/Y)=E(X)/E(Y)?

> Note. E[h(Y)]2zh(E(Y)) in general, e.g., %;«

E(1/Y) # E(Y). .Y

* Covariance and Correlation between 2 random variables

» Definition. Suppose that X and Y are two random variables with
finite means Wy, L and variances 02, Oy 2, respectively.

1.Let g(z, y)=(x—Hx)(y—Hy), then E
Cov(X,Y) = E[g(X,Y)]

El(X = px)(Y — py)]

1s called the covariance between X and Y, denoted by Oyy-

2.The correlation (coefficient) between X and Yis defined as "

COT’(X, Y) = ny/(O'Xo'y)
and denoted by Q-

3. X and Yare called uncorrelated if p4=0.

= A special case of covariance:
Cov(X, X) = Var(X).

» Intuitive explanation of covariance and correlation

= Covariance is the average value of the product of the deviation
of X from its mean and the deviation of Y from its mean.

= Covariance is a measure of the joint variability of X and Y, or
their degree of association.

= Positive Covariance and Negative Covariance
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218 e o do Sf .
3 No A My regitme | 0|0 ‘Q
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COVOXTONG.  CovONNR  COVONONCe

= Correlation Coefficient is unit free. (why?)

= Correlation coefficient measures the strength of the /inear
relationship between X and Y.

p=0 'Y p=0.999

» Theorem. Cov(X, Y) = E(XY)— LUy
Proof. Cov(X,Y) = E[(X — pux)(Y — py)]
= BE(XY —pxY — py X + pxpy)
= EXY) - puxE(Y) — py E(X) + pxpy
= FE(XY)—pxpy — pypx + pxpy-
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» Corollary. If X and Y are independent,
then Cov(X, Y)=0, i.e., X and Yare
uncorrelated.

Proof. When X, Y are independent,
E(XY)=EQ)E(Y) =tk

Y, o However, the converse statement
is not necessarily true.

T
3333333

X

»
»

(e.g., let X~Uniform(-1, 1) and Y=X?, then .
Cov(X, Y)=0, B
but X and Y are not independent).

= Corollary.
X —px\ (Y —py
= F = .
nor = |(F) (5]

Proof. By definition.
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»Example. If (X, ..., X m) ~ Multinomial(n, m, p,, ..., p,,), then
Cov(X;, X;) = —np;p;, forl<i#j<m.
= Because (X, X,, X5+---+X )~
Multinomial(n, 3, p,, p,, p;r- --+p, ), and
Xyt X, ==X, =Xy, pstetp, = 17pipy,
we have

n!

— 25’715’32 Tz (n—a1— x2)|p1 pz (1_p1_p2)n_xl_x2

= n(n—1)p1p2 [Z (x1_1)|(x2(n1—)?27!1_x1_x2)!

X (p1)Z=L (p2)22=L(1 — py — pa)P=ta—22]

= n(n—1)pips.
= WLOG, we can get E(X, X ;) =n(n=Dp;p,, fori # j.

Therefore, Coy(X;, X,) = E(X;X;) — E(X;)E(X;)
= n(n—1L)pip; — (npi) (np;) = —npip;-
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» And, for: # 7,

—npip; _ piPj
Cor(Xi, X;) = et = =\ [ty

* Cov & Cor for Sums of Random Variables
» Notation. In the following, let X Xy oo0n X X and

Y,...Y,berv’sand —oo <ayay, ..., a,,
bO, bl, ..., b, <00 are constants.
»Recall. E(a0+a1X1+ +a,X,) = agta, B(X )t +a, B(X,).
» Theorem (covariance of two sums).
Cov(ag+ a1 X1+ -4+ anXn,bo+01Y1 + -+ b, Y)
= i ZT:l a;bjCov(X;,Y;).

Proof. Let S = ay+a,X,+:--+a,X,, and
T'=by+b, Y+ +b Y then

S—E(©S) = T, a(Xi—px),
T-B(T) = X0 - my,),

[S—EW@IT-EM)] = 3o 25 abi(Xi — ux,)(Y; — py,).
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Therefore, Cov(S,T) = E{[S — E(S)||[T — E(T)]}
= i1 2je1 @b B[(X — px, ) (Y — py;)]
= > Z;rll ab;Cov(X53,Yj).
» Theorem (variance of sum).
Var(ag+ a1 X1+ -+ a, Xy)
= 12? L aia;Cov(X;, X;)
= Y16 Var(Xi)
23 1cicjen 0ia;Cov(Xi, Xj).
Proof. Cov(X;, X,)=Var(X,;) and Cov(X;, X ;)= Cov(X, X)).
= Corollary. If X, ..., X, are uncorrelated, then
Var(ag+ a1 X1 + -+ a,X,) =Y 0 a:Var(X;).
= Corollary. If X, ..., X, are uncorrelated and
Var(Xl)— =Var(X,) = 0% < oo,
then Var(X,) = o2 /n.

p. 8-14
X
Cov(X1,Xa)| 2 Var(X1 + Xo)
_ = Var(X1)+ Var(X2)
_____ Var(Xl - XQ)
I _____ = Var(X1)+ Var(Xs)
:
1
| I > Xl
4 ¢ o L 4

CO’U(Xl, XQ)

V(ZT(Xl + X2)
= Var(X1)+ Var(Xy)

+ QCO’U(Xl, XQ)

VCLT(Xl — XQ)
= Var(Xy) + Var(Xs)
—QCOU(Xl,XQ)

:Xl




5

= Corollary. Suppose that X, ..., X, are uncorrelated and have™
same mean 4/ and variance 7. Let

n ¥ \2
S_2 _ Zz—l(:’b__l Xn )_7
then E(S?)=c.
Proof. (n—1)5% =" (X; — X,)?
= YialXi—p) — (Xn—p)?
= [CiiXi— P+ [ (X e — w)?

Therefore,

(n—1)E(S?) = {ZE (X — w)?] } —nE [(X, — p)?]
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= Note. The previous three corollaries also hold if
X, ..., X, are “uncorrelated” is replaced by

“independent.”

» Theorem (p of linear transformation).

Cor(ayta, X, bytb, Y)=sign(a,b,)xCor(X, Y),
and - o

1.., |Oxyl 1s Invariant under location and scale

changes. 1
Proof. Let S=a;+a, X and T=b,+b,Y, then P

Covu(S, T)=Cov(ayta, X, by+b,Y)=a,b,Cov(X, Y),
Var(S)= &2 Var(X), and Var(T)= b_fVar(Y).

Therefore,

Cov(S,T)  a1b1Cov(X,Y)  aiby

PST =

osoT B \alel\axay —]albly
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» Theorem (some properties of p).
(D) -1 <Py <1 (& [Cou(X,Y)| < oxoy) y
(2) pxy=*1 if and only if there exist a, bLIR

X
such that P(Y=a X+b)=1.
(3) Furthermore, pxy =1, if a>0 and pyy,=-1, if a<0.
Proof of (1).
0 <Var ( + = )
= Va,r( )+Var< )—l—QC’ov (i %)
_ Va;)((X) + VCZ;EY) +9 C’(;U}S)U(Y}/)
= 1+1+2pxy = pxy =>—L
Similarly,
OSVCW(%—J_};) =1+4+1-2pxy = pxy < L.
Proof of (2) and (3). We see from the proof of (1),
pxy =1 Var <£ _ %) — 0, o
& P(X-X=c)=1,

where ¢ is a constant.

o P(ng—;X—l—cay> — 1.

Similarly, pxy=-1 & P (Y =—2XX + cay) =1.
* Q: How to use expectations to (roughly) characterize the
distribution of random variables X, ..., X ?

> 9(Xy, .o, X=X, = E[g(X)]= 1. mean of X,
»9( Xy, ..., X=X, — 14X, > = E[g(X)]= UX variance of X .
»9( Xy, ..., Xn)—(X@- px )X, — px,) for iz j
= E[g9(X)]= 0X,X;: covariance of X; and X ..
»g( Xy, ..., X)=I(X, - ,UXZ-)/O'XZ.][(X]‘ - MX)/UXj] for i# j
= E[g(X)]= PX.X;: correlation coefficient of X; and X .

» Notes. [ X, O'%(i yOX; X,y PX; X, are constants, not random
% Reading: textbook, Sec 7.1, 7.2, 7.4, 7.9
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Conditional Expectation

* Recall. pyx(y[x) or fyx(y[x) is a pmf/pdf for y (y: random, x: fixed).

* Definition. For random vectors X and Y, the conditional expectation
of Z=h(Y) given X=x, where h: R™ - R!, is

Byx (Y)| X =x) = ¥,cy h(y) pyix(v1x)
in the discrete case, or,

Evyx (@‘ b) = Jgm B(y) fyix(y]x) dy,

in the continuous case,

provided that the sum or integral converges absolutely.

»Some Notes. h(X)
= Eyx(R(Y) | X=x): a function of x and free of Y.
« Byl h(X) | X=x 1=h(x). 1
» [f X and Y are independent, then oy
Eyx(h(Y)X=x)=Ey[A(Y)]. 7/ x
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= Let g(x)=Eyx[A(Y)|X=x], where g:R" - R, then we write

Eyx(h(Y)IX)
when x 1n g 1s replaced by X (a fixed value replaced by a r.v.).

o Notice that g(X) is a random variable.

f(x, ): joint pdf » f(x, y): a joint pdf.
1 >Fix z*, isf(z*, y) a pdf of y? i.e.,
fx (@)= [ _f(z*,y) dy

> fyx(lz)=f(z", y)/ fx(x”) is
a pdf of y since ..
SRR [T 1@y dy

fx(z*)

= 1.

» Eyx(Y |z"): mean of fyy(y|z).

»Do it for any z=2", and get a
function of x = By (Y |2)
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» Example. Sample a student from an elementary school. Let

X=age (unit: year), Y=height (unit: cm) e
of the student. Population: all students of the school. ¥ | l |

» Y] X=2: a random variable (unit: cm) that represents
the height distribution of students with age=x.

= g(x)=Eyx x(YX=z) or Eyx x(Y]x): a function maps |
from age (unit: year) to average height (unit: cm) T |
of students with age=z. | |

Note. EY[_X(Y[x) is not a random variable.

- g(X):EH +(Y]X): a random variable because it 1s a .
function of age X, where X is a random variable. | | | |

Note. g(X)=Eyx(Y|X) 1s height, its unit is “cm”.
= Vary, X(Y[X=x)—& Vary, x(Y]X) defined similarly. -
. EX(YT average height&all students; y | l ;

Vary(Y): variation of height of all students.
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* Theorem (Law of Total Expectation). For two random vectors
X (eR™) and Y (eR"),

Ex{Eyx[P)X]I=Ey[A(Y)]
In particular, let A(Y)=Y;, we have
Ex[Eyx(YiIX)]=Ey(Y).

Proof. Ya

(only prove it for the continuous case) | ‘ |
Bx { Evix[h(Y)[X]} | Y
= Jrm Byx (M(Y)[x) fx(x) dx
- me URn Y)fYIX y|x) dY} fx(x) dx
= Jrn Jm _) ng:)y)f (x) dxdy
= Jp- I [me fxy(x,y) dx| dy

— fRn y f )
= By [h(Y)].
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»Example. If a sample of n balls is drawn without replacement
from a box containing R red balls, W white balls, and N-R-W
blue balls. Let

X =1# of red balls in the sample,

Y =# of white balls in the sample,
then, the joint pmf of (X, Y) is
R\ (W N—-—R-—-W
pX,Y(CU, y) — (w)( Y )((Nr)z—w—y ) :
Find E(Y). -
Sol. Because Y|.X=x ~ hypergeometric(n—z, N—R, W),
9(2)=Ey (Y| X=2)~(n—2)[W/(N-R)].
Because X ~ hypergeometric(n, N, R) = F X@q@(R/N), and

thet By (v) = Ex[Byix(Y|X)] = Exlg(X)]
Ex |(n = X) 75| = gln - Ex(X)
Nog (n— _% =ny
Note that Y~ hypergeometric(n, N, W) = E(Y)=n(W/N)
» Theorem (Variance Decomposition). For * y e
two random vectors X and Y, ‘ [ ‘ I ‘
Vary (1) L T o | I
= Vary[ By (Y{X)] | ‘
T EX[VCWY\X(YZ'|X)]-
Proof. Varyx(Yilx) = Evx(¥7|x) — [Eyx(Yilx)]3

and, FEx[Varyx(Yi|X)]

= Bx[Byx(Y71X)] - Ex{[Byx (Yi|X)]*}.
Also, Varx[Eyx(Y:|X)]

= Ex{[Byx(Yi|X)]*} — {Ex[Eyx (Y| X)]}2.
Now, Vary(Yi) = By (Y?) - [Ex(Y:)]?

= Ex[Eyx(Y?X)] — {Ex[Eyx (Yi|X)]}?
Ex[Eyx (Y7|X)] —Ex{[Eyx(Yi|X)]*}
+Ex{[Evix (Yi|X)]*} = {Ex[Eyx (Yi|X)]}?

= Ex[Varyx(Yi|X)] + Varx[Eyix (Y| X)].
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» Corollary. v
= Vary(Y)) > Ex[Varyx(Y;|X)] and the _
equality holds if and only if ‘ ‘

X
EY]X(}/AX):EY(Y;) | ]
with probability one.
e Vary(Y) > Vary[ Eyx(Y/X)] and the "y ‘
equality hold if and only if | ‘ ‘

{'N

Varyx(YX)=0 (= Y=Eyx(YilX) ) .
with probability one.

% Reading: textbook, Sec 7.5

Conditional Expectation and Prediction

* Problem formulation: predicting the value of a r.v. Y on the basis of
the observed value of ar.v. X

»Data: X and Y (example?)

p. 8-26

» Statistical modeling: assigning (X, Y) a (known) joint
distribution (cdf F{x, y), pdf f(x, y), or pmf p(z, y))

» Objective: predicting Y by using a function of X, i.c.,

g(X) « predictor

» Predictor: considering the following three groups of g’s
(1) G1 ={g9(x) : g(x) = ¢, where c € R}
(ii) G2 = {g9(=) : g(x) = a + bz, where a,b € R}
(iii) Gz = {g(x) : g is an arbitrary function}}

Note. G1 C G5 C Gs.

» Question: Within each group, what is the “best” predictor?

» Criterion: minimizing mean square error

MSE = Exy{[Y — ¢(X)*}
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* Theorem (best constant predictor under MSE).
Exy (Y —¢)?=Ey(Y —¢)* 2 Ey[Y - Ey(Y)]* = Vary(Y)
The equality holds if and only if c=E(Y).
Proof. By (Y —¢)?

i 8 0 )
> Vary(Y)

* Theorem (best predictor under MSE).

Exy[Y —g(X)]? > Exy[Y — By x(Y|X)]? = Ex[Varyx (Y|X)]
The equality holds if and only if g(x)=Ey,x(Y|z).
Proof. Exy[Y — g(X))?

= Exy{[Y —Eyx(Y|X)]+[Eyx(Y]X) - g(X)]}?

= Exy[Y — Eyx(Y|X)?+ Ex[Eyx(Y|X) - g(X)]”
+ 2 Exy{lY — Evix(Y|X)|[Eyx(Y|X) — g(X)]}

= ExylY — Eyx(Y|X)]” + Ex[Eyx(Y|X) — g(X)]?

> ExylY — Eyvix(Y|X)]?

where the last “=" comes from p. 8-28

Exy{lY — Evix(Y|X)][Eyix(V]X) — 9(X)]}

= Bx Bypx { [V~ Byix (Y1) [Bvix (Y]X) — g(X)]| X }

= Ex{[Evix(Y1X) — g(X)] Byx[Y - By (VIX)IX]} = 0.

Furthermore,
Exy[Y = Byx(Y[X)]
- &%{[Y - EYlX(Y|X)]2|X} = Ex|[Varyx(Y|X)]

»Some notes for the best predictor in G

= By x(Y]z) 1s the best predictor of Y'based on X, in the sense
of mean square prediction error

= [ts calculation requires to know the joint distribution of X
and Y, or at least By, x(Y]x)

. EY[_X(Y[:I:) is called the regression function of Y on X
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* Theorem (best /inear predictor under MSE).

2
0}
E’X’y[Yv—(CL—|-I))()]2 > EX,Y {Y— [MY_l_pXYé(X_MX)}}

= oy(l—pky)

The equality holds if and only if a=4— bty and b=py 0,/ Oy.
Proof. Exy(Y —a— bX)? —— ——
= Varxy(Y —a—bX)+ [Exy(Y —a—bX)]?

= Varxy (Y —bX)+ (py —a — bux)?
> Varxy(Y —bX) (= setting a = py — bux)

— 0'12/‘}—@0%(—2@0')(3/

2
ox [V —20—+2L ) + 07—
o o
X X

2

OXy \

= ok (0= 2 ot )
X

Vv

oy (1 = pxy) ( = setting b= XX = ZXY » T¥ — py Y_ )

O'X oxXoy
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»Some notes for the best /linear predictor in G,

« Byx(Yz) = ly + (Oxy Oyl Ox)(x—Hx) 1f (X, Y) is distributed as

bivariate normal.

= [ts calculation requires to know the means, variances, and
covariance of X and Y.

. JY (1=pyy?) is small if Pxy1s close to +1 or —1, and large if
,QXY is close to 0.

» A comparison of these minimum MSEs
» min,, Ey[Y=(atbX)]* < min, Ey,(Y=c)* and the equality
holds if and only if Pxy=0.
» min, Ex [Y=-g(X)]* <min,, Fx[Y=(a+bX)]* and the equality
holds if and only if Ey, +(Y2) = ti+ (v Gy Ox)(x— ).

% Reading: textbook, Sec 7.6

Moment Generating Function
* Definition (Moment and Central Moment). If a random variable X

has a cdf FK’ then
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p = E(XF) = [°
are called the k" moments of X provided that the integral converges
absolutely, and

i = El(X — px)") = [ (¢ — px)* dFx(x), k=2.3.....

are called k™ moment about the mean [y or central moment of X
provided that the integral converges absolutely.
» Some notes.

" M_;e: E(X - NX)E] =

k

X
0o L—

dFx(z), k=1,2,3,...,

L [Zf:o N (—px)k ﬁ}

k —i i k —i
= D i=0 (f)(_“X)k E(X") =2 i @)(_“X)k Jhe
- e = BXY) = B{{(X —px) +px]|*}
k —i i
= Yito () ux) T E[(X — px)'
I S
» In particular, LN
E(X) = px=m, and, it
Var(X) OX = [y = p2 — i1
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» The (central) moments give a lot of useful information
about the distribution in addition to mean and variance, e.g.,

o Skewness (a measure of the asymmetry): ps/o”.

o Kurtosis (a measure of the “heavy tails”): f#4/c =

INRVIIRETS

b [ - cyzen] - §

_/ N
»Example (Uniform). If X ~ Uniform(0, 1), then
HEk = fol 2t dw = E}-p
therefore, K“x p1=1/2, and,
ok = pme—pi=1/3-(1/2)" =1/12.
And, s = 2 =2 o= [ 2
0, k is odd,

1
(k+1)2F "

k is even.
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» Recall. How to characterize a distribution?

(1) pdffpmf, (2) cdf, (3) mgf

* Definition (Moment Generating Function). If X is a random
variable with the cdf FY, then

Mx(t) = E(eX) = [7 e dFx (),

is called the moment generating function (mgf) of X provided that
the integral converges absolutely in some non-degenerate interval

of t.
- 9(t) =27 jaxtt  g(t) = [ f(z) ()" dz
g9(t)
Taylor expansion Laplace transformation
t » k > L

» Some Notes.
= The mgf is a function of the variable ¢.
» The mgf may only exist for some particular values of ¢.
» M (t) always exists at t=0 and M (0)=1
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» Example.
=« If X 1s a discrete r.v. taking on values z;’s with probability p;’s,
i=1,2,3, ..., then

Mx(t) = B(e) =372, e“ip;.
» [f X ~ Poisson(A), then for —oo<t<oo,

Mx(t) = B(eX) = 720 & x “57-
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» [f X ~ exponential(A), then for ¢<A,

Mx(t) = E(e"Y) = [T el® x X\ e™?® du

- (A t) fo —A be dx:év
and M «(t) does not exist for ¢ > A.

= A list of some mgfs (exercise)
o If X ~ binomial(n, p),

Mx(t) = (1 —p+pet)”, for t < —log(l —p).
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o If X ~ negative binomial(r, p),
Mx(t) = {p—ei] , for t < —log(1 — p).

1—(1—p)et

ot

o If X ~ uniform(a, B), My (t) = f(g‘—_a)
o If X ~ gamma(a, A),
Myx(t) = (i) - for <
1

oo k—1 o+r tk
+ 2 i1 (HTZQ OHFEJFT) Ak
o If X ~ normal(y, ¢?), Mx(t) = et (% /2)t"

* Theorem (Uniqueness Theorem). Suppose that the mgfs M (?) and
M(t) of random variables X and Y exist for all |¢|<h for some h>0.

If

M () = My(),
for |t|<h, then
Fy(2) = Fy(2)

for all zeR, where F'y and Iy are the cdfs of X and Y, respectively.
Proof. Skipped (by the uniqueness theorem of Laplace transform.)
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» Application of the uniqueness theorem
» When a mgf exists for all [¢|<h for some h>0, there is a
unique distribution corresponding to that mgf.

= This allows us to use mgfs to find distributions of
transformed random variables in some cases.

» This technique is most commonly used for /inear
combinations of independent random variables X, ..., X

»Example. If Mx (t) = pre®’ 4 - 4 pre®", where
p;+---+tp, =1, then X is a discrete r.v. and its pmf is

_J pi, forz=ua;,1=1,...,k,
px(z) = { 0, otherwise.

* Theorem (Moments and MGF). If M (%) exists for |t[<h for some
h>0, then B

Mx(0)=1,
and,

k
ME0) = pyy k=1,2,3,...




»Example. If X ~ exponential(A), then Mx(t) = ,\L_E :
Because (k) k! X\
Mx—(t) = 5=
we get
e = M (0) = £

* Theorem (MGF for linear transformation). For constants @ and b, ***
Mg ypx () = e2* Mx (bt).

PI‘OOf. Ma—l—bX (t) = E&[et(ﬂ)] = ea—t EX [6(@))(] = eatMX (@)

* Theorem (MGF for SUM of independent r.v.’s). If X, ..., X are
independent each with mgfs My (¢), ..., My (1), respectlvely, then
the mgf of S=X +[#X, is o

Ms(t) = Mx, () x -+ X Mx, (1)

Proof. Mg(t) = Eg(e'®) = Ex, ... x, [HXt = 2n)]

= FEx, .x, (e x-

= Ex, (e'21) x -+ x Bx, (e!22) = Mx, () x -+ x Mx, (1).

(2

><etX)

»Example. If X, ..., X, are i.i.d. ~ geometric(p), then
S—X +---+X ~ negative binomial(n, p).

Proof. Ms(t) = MXI( ) x -+ x My, (t) .

_ pe' ..y __pet pe =
— 1—(1—p)et 1—(1—p)et = | 1—(1—p)et | -
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»Example. If X, ..., X, are independent and

X, ~ normal(,gz, g?), for =1,

Let S =ayta; X+ +a,X,, then

§~n0rmal(a0+a1ﬂ+---+an@,a_%a_%—|—---—l—a%02).

Proof. Mi( ) — ea_ot X H?—l eﬁ(ﬂ)+(0_?/2)(ﬂ)2

plaotarpnt - Fanpn)t+ [(a2af+ +a2o? )/2}

* Definition (Joint Moment Generating Function). For random
variables X, ..., X, their joint mgf is defined as

Mx, .. x,(t1,. . tn) = Ex, . x, (2212 indn)

provided that the expectation exists.
»Example. If X, ..., X, ~ multinomial(n, m, Pis oo p,,), the

joint pmfis: .
(CCl, xm)pl Pm

MM(t_h e 7t_ﬂ1) p. 8-40

— E el Zit - Flim Tm < " )plx—l- C D
Llyewesm /)

0<z;<n, i=1,...,m
i1+ +Tm=n

* Some Properties of Joint mgf
> Mﬁ(é) — MXl,Xg,...,Xn (Ea 07 il 70)

» uniqueness theorem

»X,, ..., X, are independent if and only if
MXl, L X (tl,... ):Mﬁ(t_l) XMX (_n)

ak1+...+kn

mela---’Xn (0,...,0) = Ex, . x, (Xlk:—1 Koo X Xnk—”)-
L Om -

% Reading: textbook, Sec 7.7




