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Expectation

• Recall. Expectation for univariate random variable.

• Theorem. For random variables X=(X1, … , Xn) with joint pmf 

pX/pdf fX, the expectation of a univariate random variable Y, where

Y=g(X1, … , Xn), g:ℝn→ℝ1,

is

if X1, … , Xn are discrete and the sum converges absolutely, or

if Y and X1, … , Xn are continuous and the integrals converges 

absolutely.

(1)

(2)

(3)

(4)
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Proof. Like the univariate case.

Q: What if Y is discrete and 

X1, … , Xn are continuous?

Notation. 

 Shorthand notation. Combine (1) and (3) by writing

and combine (2) and (4) by writing

 Riemann-Stieltjes Integral. 

x

y=g(x)

x

y=g(x)
y=g(w)
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For example, for non-negative g , and 
non-decreasing, right-continuous F,

where the limit is taken over all a=x0<x1<L<xn=b as n→ ∞

and

[Recall. The integral of g over (a, b] is defined as

maxi=1,...,n(xi − xi−1) → 0.

b

a
g(x) dF (x) = lim

n

i=1
g(xi)[F (xi)− F (xi−1)].

b

a
g(x) dx = lim

n

i=1
g(xi)(xi − xi−1).]

Note.

 g(X1, … , Xn)=Xi⇒ E[g(X1, … , Xn)]=E(Xi) ≡

 g(X1, … , Xn)=(Xi −a a  a)2 ⇒E[g(X1, … , Xn)]=Var(Xi) ≡

µXi
.

µXi
σ2Xi

.

Example (Average distance between two points). Suppose that 

X, Y are i.i.d. ~ Uniform(0, 1).

Let D=|X−Y|. Find E(D).

x

y=g(x)

x

y=g+(x)

x

y=−g−(x)
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f(x, y) =
1, 0 � x � 1, 0 � y � 1,
0, otherwise.

 The joint pdf of (X, Y) is

and constants −∞ < a0, a1, …, an < ∞, 

E(a0+a1X1+L+anXn) = a0+a1 E(X1)+L+anE(Xn).

Proof.

X

Y

• Theorem (Mean of Sum). For jointly distributed r.v.’s X1, … , Xn
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Corollary. Suppose that µ=E(X1)=L=E(Xn). Let

E(Xn) = µ.then, 

Corollary. If X and Y are r.v.’s 

with finite means and 

P(X � Y)=1, 

then E(X) � E(Y).

Corollary. If P(a � X � b)=1 for some constants a, b, then 

a � E(X) � b.

then

For the general case, let Z=Y−X, then Z ≥ 0 with probability 

one, and therefore, 0 � E(Z) = E(Y−X) = E(Y)−E(X).

E(Z) =
∞

0
z dFZ(z) ≥ 0.

Xn =
X1+···+Xn

n
,

Ω
P

X

Y

Proof. First, if Z is a random variable with finite mean and

P(Z ≥ 0)=1,
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• Theorem. If two random vectors X (∈ℝm) and Y (∈ℝn) are 

independent (i.e., FX,Y(x, y) = FX(x)×FY(y), or

fX,Y(x, y)=fX(x)×fY(y),  or pX,Y(x, y)=pX(x)×pY(y) ),

then for g: ℝm→ℝ and h: ℝn→ ℝ, 

E[g(X)×h(Y)] = E[g(X)]×E[h(Y)].

Proof. We only prove it for the continuous case:

Corollary. For 2 independent r.v.’s X and Y, 

E(XY)=E(X)×E(Y). 

Proof. Let g(X)=X and h(Y)=Y.
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Q: For independent r.v.’s X and Y, 

E(X/Y)=E(X)/E(Y)?

 Note. E[h(Y)]≠h(E(Y)) in general, e.g., 

• Covariance and Correlation between 2 random variables

Definition. Suppose that X and Y are two random variables with 

finite means µX, µY and variances σX
2, σY

2, respectively. 

1.Let g(x, y)=(x−µX)(y−µY), then

is called the covariance between X and Y, denoted by σXY.

Y

h(Y)

≠
E(1/Y) ≠ 1/E(Y).
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2.The correlation (coefficient) between X and Y is defined as

and denoted by ρXY. 

Cor(X, Y ) = σXY /(σXσY )

3. X and Y are called uncorrelated if ρXY=0.

 A special case of covariance: 

Cov(X, X) = Var(X).

Intuitive explanation of covariance and correlation

 Covariance is the average value of the product of the deviation

of X from its mean and the deviation of Y from its mean.

 Covariance is a measure of the joint variability of X and Y, or 

their degree of association.

 Positive Covariance and Negative Covariance
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 Correlation coefficient measures the strength of the linear 

relationship between X and Y.

 Correlation Coefficient is unit free. (why?)

Theorem. Cov(X, Y) = E(XY)−µXµY.

Proof.

X

Y
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 Corollary. If X and Y are independent, 

then Cov(X, Y)=0, i.e., X and Y are 

uncorrelated. 

Proof. When X, Y are independent, 

E(XY)=E(X)E(Y)=µXµY.

X

Y

(e.g., let X~Uniform(−1, 1) and Y=X2, then 

Cov(X, Y)=0, 

but X and Y are not independent).

 However, the converse statement 

is not necessarily true. 

 Corollary. 

Proof. By definition.
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Example. If (X1, …, Xm) ~ Multinomial(n, m, p1, …, pm), then

 Because (X1, X2, X3+L+Xm) ~ 

Multinomial(n, 3, p1, p2, p3+L+pm), and 

X3+L+Xm = n−X1−X2, p3+L+pm = 1−p1−p2, 

Cov(Xi, Xj) = −npipj, for 1 � i 
= j � m.

we have

 WLOG, we can get E(XiXj) = n(n−1)pipj, for i ≠ j. 

Therefore,
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 And, for i ≠ j, 

• Cov & Cor for Sums of Random Variables

Notation. In the following, let X1, …, Xn and 

Y1, …, Ym be r.v.’s and −∞ < a0, a1, …, an, 

b0, b1, …, bm < ∞ are constants.

Theorem (covariance of two sums). 

Proof. Let S = a0+a1X1+L+anXn, and 

T = b0+b1Y1+L+bmYm, then 

Recall. E(a0+a1X1+L+anXn) = a0+a1E(X1)+L+anE(Xn).
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Therefore,

Theorem (variance of sum). 

Proof. Cov(Xi, Xi)=Var(Xi) and Cov(Xi, Xj)= Cov(Xj, Xi).

 Corollary. If X1, …, Xn are uncorrelated and

Var(X1)=L = Var(Xn) ≡ σ2 < ∞,

then 

V ar(a0 + a1X1 + · · ·+ anXn) =
n

i=1 a
2
iV ar(Xi).

V ar(Xn) = σ2/n.

 Corollary. If X1, …, Xn are uncorrelated, then
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X1

X2

X1

X2
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 Corollary. Suppose that X1, …, Xn are uncorrelated and have 

same mean µ and variance σ2. Let 

then E(S2)=σ2.

Proof.

Therefore,
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 Note. The previous three corollaries also hold if 

X1, …, Xn are “uncorrelated” is replaced by 

“independent.” 

Theorem (ρ of linear transformation). 

Cor(a0+a1X, b0+b1Y)=sign(a1b1)×Cor(X, Y), 

and 

|Cor(a0+a1X, b0+b1Y)|=|Cor(X, Y)|,

i.e., |ρXY| is invariant under location and scale 

changes.

Proof. Let S=a0+a1X and T=b0+b1Y, then

Cov(S, T)=Cov(a0+a1X, b0+b1Y)=a1b1Cov(X, Y), 

Var(S)= a1
2 Var(X),    and Var(T)= b1

2 Var(Y).

Therefore,
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 Theorem (some properties of ρ).

(1) −1 � ρXY � 1.

(2) ρXY = ±1 if and only if there exist a, b ∈ℝ 

such that P(Y=aX+b)=1. 

(3) Furthermore, ρXY =1, if a>0 and ρXY =−1, if a<0.

Proof of (1).

Similarly,

0 � V ar X
σX

− Y
σY

= 1 + 1− 2ρXY ⇒ ρXY � 1.

X

Y

Proof of (2) and (3). We see from the proof of (1),
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Similarly,

 Reading: textbook, Sec 7.1, 7.2, 7.4, 7.9

• Q: How to use expectations to (roughly) characterize the 

distribution of random variables X1, …, Xn?

g(X1, … , Xn)=Xi ⇒ E[g(X)]=       : mean of Xi.

g(X1, … , Xn)=(Xi − )2 ⇒ E[g(X)]=       : variance of Xi.

g(X1, … , Xn)=(Xi − )(Xj − ) for i ≠ j 

⇒ E[g(X)]=           : covariance of Xi and Xj.

g(X1, … , Xn)=[(Xi − )/      ][(Xj − )/      ] for i ≠ j 

⇒ E[g(X)]=           : correlation coefficient of Xi and Xj.

Notes.                                         are constants, not random

µXi

µXi
, σ2Xi

, σXiXj
, ρXiXj

µXi

µXi
σ2Xi

σXiXj

µXi

µXj

µXjσXi
σXj

ρXiXj
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Conditional Expectation

• Recall. pY|X(y|x) or fY|X(y|x) is a pmf/pdf for y (y: random, x: fixed).

• Definition. For random vectors X and Y, the conditional expectation

of Z=h(Y) given X=x, where h: ℝm→ℝ1, is

in the discrete case, or,

in the continuous case, 

provided that the sum or integral converges absolutely.

Some Notes.

 EY|X(h(Y) | X=x ): a function of x and free of Y.

 EY|X[ h(X) | X=x ]=h(x).

 If X and Y are independent, then 

EY|X(h(Y)|X=x)=EY[h(Y)].

X

h(X)

X

Y
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f(x, y): a joint pdf.

Fix x*, isf(x*, y) a pdf of y? i.e.,

fY|X(y|x*)=f(x*, y)/fX(x*) is 

a pdf of y since

EY|X(Y |x*): mean of fY|X(y|x*).

Do it for any x=x*, and get a 

function of x EY|X(Y |x)

X

Y

f(x, y): joint pdf

 Let g(x)=EY|X[h(Y)|X=x], where g:ℝn →ℝ1, then we write 

EY|X(h(Y)|X)

when x in g is replaced by X (a fixed value replaced by a r.v.). 

 Notice that g(X) is a random variable.
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Example. Sample a student from an elementary school. Let

X=age (unit: year), Y=height (unit: cm)

of the student. Population: all students of the school.

 Y|X=x: a random variable (unit: cm) that represents 

the height distribution of students with age=x.

 g(x)=EY|X(Y|X=x) or EY|X(Y|x): a function maps 

from age (unit: year) to average height (unit: cm) 

of students with age=x. 

Note. EY|X(Y|x) is not a random variable. 

 g(X)=EY|X(Y|X): a random variable because it is a 

function of age X, where X is a random variable. 

Note. g(X)=EY|X(Y|X) is height, its unit is “cm”. 

 VarY|X(Y|X=x) & VarY|X(Y|X) defined similarly.

 EY(Y): average height of all students; 

VarY(Y): variation of height of all students.
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• Theorem (Law of Total Expectation). For two random vectors

X (∈ℝm) and Y (∈ℝn),

EX{EY|X[h(Y)|X]}=EY[h(Y)].

In particular, let h(Y)=Yi, we have

EX[EY|X(Yi|X)]=EY(Yi).

Proof. 

(only prove it for the continuous case)

X

Y
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Example. If a sample of n balls is drawn without replacement

from a box containing R red balls, W white balls, and N−R−W
blue balls. Let

X = # of red balls in the sample,

Y = # of white balls in the sample,

then, the joint pmf of (X, Y) is

Find EY(Y).

Sol. Because Y|X=x ~ hypergeometric(n−x, N−R, W),

g(x)≡EY|X(Y|X=x)=(n−x)[W/(N−R)].

Because X ~ hypergeometric(n, N, R) ⇒ EX(X)=n(R/N), and 

then

Note that Y ~ hypergeometric(n, N, W) ⇒ EY(Y)=n(W/N).
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• Theorem (Variance Decomposition). For 
two random vectors X and Y,

VarY(Yi)

= VarX[EY|X(Yi|X)]

+ EX[VarY|X(Yi|X)].

and,

Also,

Now,

Proof.

X

Y

X

Y
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Corollary.

 VarY(Yi) ≥ EX[VarY|X(Yi|X)] and the 

equality holds if and only if 

EY|X(Yi|X)=EY(Yi) 

with probability one.

 VarY(Yi) ≥ VarX[EY|X(Yi|X)] and the 

equality hold if and only if 

VarY|X(Yi|X)=0 (⇒ Yi=EY|X(Yi|X) )

with probability one.

 Reading: textbook, Sec 7.5

X

Y

X

Y

Conditional Expectation and Prediction

• Problem formulation: predicting the value of a r.v. Y on the basis of 

the observed value of a r.v. X

Data: X and Y (example?)
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Statistical modeling: assigning (X, Y) a (known) joint 

distribution (cdf F(x, y), pdf f(x, y), or pmf p(x, y))

Objective: predicting Y by using a function of X, i.e., 

g(X) ← predictor

Note. 

Question: Within each group, what is the “best” predictor?

Criterion: minimizing mean square error

Predictor: considering the following three groups of g’s

(i) 

(ii)

(iii)
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• Theorem (best constant predictor under MSE). 

The equality holds if and only if c=EY(Y).

Proof. 

• Theorem (best predictor under MSE). 

The equality holds if and only if g(x)=EY|X(Y|x).

Proof. 
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Furthermore,

Some notes for the best predictor in G3

 EY|X(Y|x) is the best predictor of Y based on X, in the sense 

of mean square prediction error

 Its calculation requires to know the joint distribution of X
and Y, or at least EY|X(Y|x) 

 EY|X(Y|x) is called the regression function of Y on X
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• Theorem (best linear predictor under MSE). 

The equality holds if and only if a=µY − bµX and b=ρXYσY/σX.

Proof. 
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Moment Generating Function
• Definition (Moment and Central Moment). If a random variable X

has a cdf FX, then

Some notes for the best linear predictor in G2

 EY|X(Y|x) = µY + (ρXYσY/σX)(x−µX) if (X, Y) is distributed as 

bivariate normal.

 Its calculation requires to know the means, variances, and 

covariance of X and Y.

 σY
2(1−ρXY

2) is small if ρXY is close to +1 or −1, and large if 

ρXY is close to 0.

 Reading: textbook, Sec 7.6

• A comparison of these minimum MSEs

 mina,b EX,Y[Y−(a+bX)]2 ≤ minc EX,Y(Y−c)2 and the equality 

holds if and only if ρXY = 0.

 ming EX,Y[Y−g(X)]2 ≤ mina,b EX,Y[Y−(a+bX)]2 and the equality 

holds if and only if EY|X(Y|x) = µY + (ρXYσY/σX)(x−µX).
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Some notes.





 In particular, 

are called the kth moments of X provided that the integral converges 

absolutely, and 

are called kth moment about the mean µX or central moment of X

provided that the integral converges absolutely. 
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 The (central) moments give a lot of useful information

about the distribution in addition to mean and variance, e.g., 

 Skewness (a measure of the asymmetry):

 Kurtosis (a measure of the “heavy tails”):

therefore, 

And, 

Example (Uniform). If X ~ Uniform(0, 1), then
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Laplace transformation

• Recall. How to characterize a distribution? 

(1) pdf/pmf, (2) cdf, (3) mgf

• Definition (Moment Generating Function). If X is a random 

variable with the cdf FX, then

is called the moment generating function (mgf) of X provided that 

the integral converges absolutely in some non-degenerate interval

of t.

t

g(t)

Some Notes. 

 The mgf is a function of the variable t.
 The mgf may only exist for some particular values of t.
 MX(t) always exists at t=0 and MX(0)=1

Taylor expansion

k x
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 If X ~ Poisson(λ), then for −∞<t<∞,

 If X ~ exponential(λ), then for t<λ,

and MX(t) does not exist for t ≥ λ.

 A list of some mgfs (exercise)

 If X ~ binomial(n, p),

 If X is a discrete r.v. taking on values xi’s with probability pi’s, 

i=1, 2, 3, …, then

Example.
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 If X ~  negative binomial(r, p),

• Theorem (Uniqueness Theorem). Suppose that the mgfs MX(t) and 

MY(t) of random variables X and Y exist for all |t|<h for some h>0. 

If
MX(t) = MY(t),

for |t|<h, then

FX(z) = FY(z)

for all z∈ℝ, where FX and FY are the cdfs of X and Y, respectively. 

Proof. Skipped (by the uniqueness theorem of Laplace transform.)

 If X ~  uniform(α, β),

 If X ~ gamma(α, λ),

 If X ~ normal(µ, σ2),

 If X ~ beta(α, β),
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Application of the uniqueness theorem

 When a mgf exists for all |t|<h for some h>0, there is a 

unique distribution corresponding to that mgf.

 This allows us to use mgfs to find distributions of 

transformed random variables in some cases.

 This technique is most commonly used for linear 

combinations of independent random variables X1, …, Xn

Example. If                                                        where 

p1+L+pk=1, then X is a discrete r.v. and its pmf is 

• Theorem (Moments and MGF). If MX(t) exists for |t|<h for some 
h>0, then 

MX(0)=1, 

and,
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Proof. First,

· · · = · · ·

Example. If X ~ exponential(λ), then 

Because

we get

p. 8-38• Theorem (MGF for linear transformation). For constants a and b, 

Proof.

• Theorem (MGF for SUM of independent r.v.’s). If X1, …, Xn are 

independent each with mgfs MX1
(t) , …, MXn

(t), respectively, then 

the mgf of S=X1+⋅⋅⋅+Xn is

Proof.

Example. If X1, …, Xn are i.i.d. ~ geometric(p), then

S=X1+L+Xn ~ negative binomial(n, p).

Proof.
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Example. If X1, …, Xn are independent and 

Xi ~ normal(µi, σi
2), for i=1, …, n. 

Let S = a0+a1X1+L +anXn, then

Proof.

• Definition (Joint Moment Generating Function). For random 

variables X1, …, Xn, their joint mgf is defined as

provided that the expectation exists.

Example. If X1, …, Xm ~ multinomial(n, m, p1, …, pm), the 

joint pmf is:
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• Some Properties of Joint mgf



 uniqueness theorem 

X1, …, Xn are independent if and only if



 Reading: textbook, Sec 7.7


