Expectation

» Recall. Expectation for univariate random variable.

* Theorem. For random variables X=(X,, ... , X)) with joint pmf
px/pdf fx, the expectation of a univariate random variable Y, where

Y=g(X,, ..., X,), gR'—=R

Y EY) =Y,y v ®) (1)
= Zx:(ml,...,xn)eX g($1,...,$n) pX(xlw"axn) (2)
= E[g(Xla 7Xn)]

if Xy, ..., X, are discrete and the sum converges absolutely, or

EY)= [T yfv(y) dy 3)

[ g, ) fx(@, . ) doy - dz, (4)
= FElg(Xy1,...,X,)]

ifYand X, ..., X X are continuous and the integrals converges
absolutely

. . . p. 8-2
Proof. Like the univariate case.

»Q: What if Yis discrete and
X, ..., X, are continuous?

» Notation.

= Shorthand notation. Combine (1) and (3) by writing

oo

> ey ¥ Ppyly), for discrete case,
E(Y) :/ y dFy (y) = { IS ag_

ffooo y fy(y) dy, for continuous case,

and combine (2) and (4) by writing

i .2

X x), for discrete case,
BlgX)) = | 9 dFX<X):{ Se 90) px (%) :

Jgn 9(%) fx(x) dx, for continuous case.

= Riemann-Stieltjes Integral.

y=9(z) y=9(z) ymo(w)




" For example, for non-negative g, and

non-decreasing, right-continuous F,

“Wf

' ‘1 v J, 9 =lim 7", g(2:)[F(2:) — F(zia)].
" where the limit is taken over all a= T<a,<---<x,=b as n— 00
y=—97(z)
and max;—1,_ n(z; —x;—1) — 0.

T

[Recall. The integral of g over (a, b] is defined as
b : n
J, 9(z) de =1lim 7" | g(z;)(zs — 2i1).]

» Note.
“9(Xy, ..., X,)=X= E[g(X,, ..., X,)]FE(X,) = px,.
«g(Xys s X)=(Xmpx)* S Elg(X,, .., X,)]=Var(X,) =0%,.
» Example (Average distance between two points). Suppose that
X, Yare 1.1.d. ~ Uniform(0, 1).
Let D=|X-Y]. Find E(D).

« The joint pdf of (X, ) is

Y
J 1L, 0f2x<1,0<y <1,
fla,y) = { 0, otherwise. X

= Jo Jo lz =yl dyde = [ [fo —y)dy+ [, (y— ) dy} da
fo Ly o+ By —o]]

1
03 [+ (=] do = § [2° = (1-2)°]],_, = 5.
* Theorem (Mean of Sum). For jointly distributed r.v.’s X, ... , X

and constants —oco < a,, a,, ..., a,< 00,

E(agta, X +---+a,X,) = agta; E(X))*--+a, E(X,).

Proof. F(ag+ a1 X1+ -+ a,Xy)
= Jpu(ao+ a1z + -+ apzy) dFx (%)
= Jon a0 dFx(X) + a1 [, z1 dFx(x)
+ o+ ap [pn Tn dFx(X)
= at+arBE(X1)+ - +aE(X,).




» Corollary. Suppose that p=FE(X,)=---=E( XQ)- Let .85

X, = XatotX,

n Y

then, E(X,) = pu.
» Corollary. If X and Yare r.v.’s
with finite means and
X <Y)=1,
then E(X) < E(Y).

Proof. First, if Z is a random variable with finite mean and
RZ 2 0)=1,
then E(Z) = [,° 2z dFz(z) > 0.
For the general case, let Z=Y=X, then Z > 0 with probability
one, and therefore, 0 < E(Z) = E(Y=-X) = E(Y)-E(X).
» Corollary. If A{a < X < b)=1 for some constants a, b, then
a < E(X) L.

* Theorem. If two random vectors X (€R™) and Y (€R") are
independent (i.e., Fyxy(X,y) = Fx(X)XFy(y), or

Jxx(X YE/x(X)X fy(¥), or pxy(X, Y)=px(X)Xpy(y) ),
then for g: R”—=R and h: R"— R,
ElgX)xn(Y)] = E[g(X)]XE[A(Y)].

Proof. We only prove it for the continuous case:

Elg(X me fRn Y)[xy(x,y) dydx
- me fRn ( )fY( ) dydx
= Jgm 9( URn (y) dy] dx
= | Jgm 9( x) dx| U}Rn y)fy(y) dy]

= E[Q(X)]E[h(Y)]-
» Corollary. For 2 independentr.v.’s X and Y,
E(XY)=ECO)XE(Y).

Proof. Let g(X)=X and h(Y)=Y.




»Q: For independent r.v.’s X and Y,
E(X/Y)=E(X)/E(Y)?

> Note. E[h(Y)]2zh(E(Y)) in general, e.g., %;«

E(1/Y) # E(Y). .Y

* Covariance and Correlation between 2 random variables

» Definition. Suppose that X and Y are two random variables with
finite means Wy, L and variances 02, Oy 2, respectively.

1.Let g(z, y)=(x—Hx)(y—Hy), then E
Cov(X,Y) = E[g(X,Y)]

El(X — px)(Y = piy)]

1s called the covariance between X and Y, denoted by Oyy-

2.The correlation (coefficient) between X and Yis defined as "

COT’(X, Y) = ny/(O'Xo'y)
and denoted by Q-

3. X and Yare called uncorrelated if p4=0.

= A special case of covariance:
Cov(X, X) = Var(X).

» Intuitive explanation of covariance and correlation

= Covariance is the average value of the product of the deviation
of X from its mean and the deviation of Y from its mean.

= Covariance is a measure of the joint variability of X and Y, or
their degree of association.

= Positive Covariance and Negative Covariance
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COVOXTONG.  CovONNR  COVONONCe

= Correlation Coefficient is unit free. (why?)

= Correlation coefficient measures the strength of the /inear
relationship between X and Y.

p=0 Y p=0.999

» Theorem. Cov(X, Y) = E(XY)— LUy
Proof. Cov(X,Y) = E[(X — pux)(Y — py)]
= BE(XY —pxY — py X + pxpy)
= EXY) - uxE(Y) — py E(X) + pxpy
= FE(XY)—pxpy — pypx + pxpy-
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» Corollary. If X and Y are independent,
then Cov(X, Y)=0, i.e., X and Yare
uncorrelated.

Proof. When X, Y are independent,
E(XY)=EQ)E(Y) =tk

Y, o However, the converse statement
is not necessarily true.

T
3333333

X

»
»

(e.g., let X~Uniform(-1, 1) and Y=X?, then .
Cov(X, Y)=0, B
but X and Y are not independent).

= Corollary.
X —px\ (Y —py
= F — .
por=E|(F) (5]

Proof. By definition.
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»Example. If (X, ..., X m) ~ Multinomial(n, m, p,, ..., p,,), then
Cov(X;, X;) = —np;p;, forl<i#j<m.
= Because (X, X,, X5+---+X )~
Multinomial(n, 3, p,, p,, p;r- --+p, ), and
Xyt X, ==X, =Xy, pstetp, = 17pipy,
we have

E(—X1X2> = lezUQ (;cl T2, nn—;cl—m2>p:flpg2(1 — P1— p2)n_x1 —r2

= 2331332 1x2|(nn'$1 x2)1p1 p22(1_p1 _p2)n_wl_x2

= (- D Y oot

X (p1)2=L (p2)22=L(1 — py — po)=tr=22]

e n(n — 1)p1p2.
= WLOG, we can get E(X, X ;) =n(n=Dp;p,, fori # j.

Therefore, Coy(X;, X,) = E(X;X;) — E(X;)E(X;)
= n(n—1L)pip; — (npi) (np;) = —npip;-
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» And, for: # 7,

—npip; _ piPj
Cor(Xi, X;) = et = =\ [ty

* Cov & Cor for Sums of Random Variables
» Notation. In the following, let X Xy oo0n X X and

Y,...Y,berv’sand —oo <ayay, ..., a,,
bO, bl, ..., b, <00 are constants.
»Recall. E(a0+a1X1+ +a,X,) = agta, B(X )t +a, B(X,).
» Theorem (covariance of two sums).
Cov(ag+ a1 X1+ -4+ anXn,bo +01Y1 + -+ b, Ye)
= i Z;n:l aibjCov(X;,Yj).

Proof. Let S = ay+a,X,+:--+a,X,, and
T'=by+b, Y+ +b Y then

S—B(S) = LiaiXi—px.),
T-E(T) = XY - py),

[S—EGNT - ET)] = 3o 2jm aibi(Xi — px,) (Y — py,)-
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Therefore, Cov(S,T) = E{[S — E(S)||[T — E(T)]}
= i1 2 @b El(XG — px, ) (Y — py; )]
= i ZT:l ab;Cov(X3,Yj).
» Theorem (variance of sum).
Var(ag+ a1 X1+ -+ a, Xy)
—_— 12? L aia;Cov(X;, X;)
= i1 Var(Xi)
23 1cicjen 0i0;Cov(Xi, Xj).
Proof. Cov(X;, X,)=Var(X,;) and Cov(X;, X ;)= Cov(X, X)).
= Corollary. If X, ..., X, are uncorrelated, then
Var(ag+ a1 X1 + -+ a,X,) =Y 0 a:Var(X;).
= Corollary. If X, ..., X, are uncorrelated and
Var(Xl)— =Var(X,) = 0% < oo,
then Var(X,) = o2 /n.

p. 8-14
CO’U(X X ) X2 Var(Xl + XQ)
_ b = Var(X1)+ Var(Xsy)
_____ Var(Xl - XQ)
I _____ = Var(X1)+ Var(Xs)
:
|
| I > Xl
4 * ¢ ¢

CO’U(Xl, XQ)

V(IT(Xl -+ X2)
= Var(X1)+ Var(Xy)

+ QCOU(Xl, XQ)

VCLT(Xl — XQ)
= Var(Xy)+ Var(Xs)
—QCOU(Xl,XQ)

:Xl




5

= Corollary. Suppose that X, ..., X, are uncorrelated and have™
same mean // and variance 7. Let

_ n—1

then E(S?)=c.
Proof. (n—1)S?=>" (X; — X,)?

= Diml(Xi—p) — (Xn — w))?
- [Z?:l(Xi M)ﬂ + [Z?:ﬂyn - N)ﬂ
—2(Xn — ) 225 (X5 — )]
= [ (X = 0)?] + (X — p)? = 20(Xp — )
= X (X —p)?] = (X — p)?

Therefore,

(n—1)E(S?) = {ZE (X — 1)?] } —nE [(X, — p)?]
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= Note. The previous three corollaries also hold if
X, ..., X, are “uncorrelated” is replaced by

“independent.”

» Theorem (p of linear transformation).

Cor(ayta, X, bytb, Y)=sign(a,b,)xCor(X, Y),
and - o

1.., |Oxyl 1s Invariant under location and scale

changes. 1
Proof. Let S=a;+a, X and T=b,+b,Y, then P

Covu(S, T)=Cov(ayta, X, by+b,Y)=a,b,Cov(X, Y),
Var(S)= &2 Var(X), and Var(T)= b_fVar(Y).

Therefore,

Cov(S,T) a1b:Cov(X,Y)  aiby

PST =

osoT B \alel\axay _]albl
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» Theorem (some properties of p).
(D) -1 <Py <1 (& [Cov(X,Y)| < oxoy) y
(2) pxy=*1 if and only if there exist a, bLIR

X
such that PA(Y=a X+b)=1.
(3) Furthermore, pxy =1, if a>0 and pyy,=-1, if a<0.
Proof of (1).
0 < Var (Ji + JL)
= Var( )—I—Var( )—l—?C’ov (i %)
_ Vaar)((X) + VCZ;EY) +9 C’OUU}E)U(Y}/)
= 1+1+2pxy = pxy > —L
Similarly,
OSVCW(%—J_};) =1+4+1-2pxy = pxy < L.
Proof of (2) and (3). We see from the proof of (1),
pxy =1 Var (% —%) =0, P
= P(%—%zg)zl,

where ¢ is a constant.

o P(Y:g—;XJrcay) — 1.

Similarly, pxy=-1 < P (Y =—2ZXX + 00y) =1.
* Q: How to use expectations to (roughly) characterize the
distribution of random variables X, ..., X ?

> 9(Xy, .o, X=X, = E[g(X)]= 1. mean of X,
»9( Xy, ..., X=X, — 14X, > = E[g(X)]= UX variance of X .
»9( Xy, ..., Xn)—(X@- px )X, — px,) for iz j
= E[g9(X)]= 0X,X;: covariance of X; and X ..
»g( Xy, ..., X)=I(X, - ,UXZ-)/O'XZ.][(X]‘ - MX)/UXj] for i# j
= E[g9(X)]= PX.X;: correlation coefficient of X; and X .

» Notes. [ X, O'%(i yOX; X,y PX; X, are constants, not random
% Reading: textbook, Sec 7.1, 7.2, 7.4, 7.9




p. 8-19

Conditional Expectation

* Recall. pyx(y[x) or fyx(y[x) is a pmf/pdf for y (y: random, x: fixed).

* Definition. For random vectors X and Y, the conditional expectation
of Z=h(Y) given X=x, where h: R™ - R!, is

Byx (h(Y)| X =x) = ¢y h(y) pyix (v])

in the discrete case, or,
Byix (A(Y)| X =x) = fo. hy) frix(vIx) dy,

in the continuous case,

provided that the sum or integral converges absolutely.

»Some Notes. X)
= Eyx(R(Y) | X=x): a function of x and free of Y.
« Byl h(X) | X=x 1=h(x). 1
» [f X and Y are independent, then oy
Eyx(h(Y)X=x)=Ey[A(Y)]. 7/ x

p. 8-20

= Let g(x)=Eyx[A(Y)|X=x], where g:R" R, then we write

Eyx(h(Y)IX)
when x 1n g 1s replaced by X (a fixed value replaced by a r.v.).

o Notice that g(X) is a random variable.

f(x, ): joint pdf » f(x, y): a joint pdf.
1 >Fix z*, isf(z*, y) a pdf of y? i.e.,
fx (@)= [ f(z*,y) dy

> fyx(lz)=f(z", y)/ fx(x”) is
df of y since .
SRS f_oo f(z*y) dy

fx(z*)

= 1.

» Eyx(Y |z"): mean of fyy(y|z).

»Do it for any z=2", and get a
function of x = By (Y |2)
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» Example. Sample a student from an elementary school. Let

X=age (unit: year), Y=height (unit: cm) e
of the student. Population: all students of the school. ¥ | l |

» Y] X=2: a random variable (unit: cm) that represents
the height distribution of students with age=x.

= g(x)=Eyx x(YX=z) or Eyx x(Y]x): a function maps |
from age (unit: year) to average height (unit: cm) T |
of students with age=z. | |

Note. EY[_X(Y[x) is not a random variable.

- g(X):EH +(Y]X): a random variable because it 1s a .
function of age X, where X is a random variable. | | | |

Note. g(X)=Eyx(Y|X) 1s height, its unit is “cm”.
= Vary, X(Y[X=x)—& Vary, x(Y]X) defined similarly. -
. EX(YT average height&all students; y | l ;

Vary(Y): variation of height of all students.

p. 8-22

* Theorem (Law of Total Expectation). For two random vectors
X (eR™) and Y (eR"),

Ex{Eyx[P)X]I=Ey[A(Y)]
In particular, let A(Y)=Y;, we have
Ex[Eyx(YiIX)]=Ey(Y).

Proof. Ya

(only prove it for the continuous case) | ‘ |
Bx { Eyix[h(Y)[X]} | X
= Jom Byix (M(Y)[x) fx(x) dx
= me [fRn (V) fyix(ylx) dy] fx(x) dx
- fRn me _) f:zg;:)y)f (x) dxdy
= Jpn M URm fxx(x,y) dX} dy

= fRnh(Yf()
= Ey[n(Y)].
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»Example. If a sample of n balls is drawn without replacement
from a box containing R red balls, W white balls, and N-R-W
blue balls. Let

X =1# of red balls in the sample,

Y =# of white balls in the sample,
then, the joint pmf of (X, Y) is

px.y(z,y) = (5)(?)((}\1]\:);—12:‘;/)7
Find E(Y). -
Sol. Because Y|.X=x ~ hypergeometric(n—z, N—R, W),
9(@)=Ey x (Y X=2)=(n—z)[W/(N-R)].
Because X ~ hypergeometric(n, N, R) = EX(X) n(R/N), and
then gy (v) = Bx[Byx(Y|X)] = Ex|g(X)]
Ex |(n - X) 7% | = 500 — Bx (X))
vk (n—ny) =

Note that Y~ hypergeometric(n, N, W) = Y(Y) n(W/N).

Z2|=

%%

. .. . 8-24
» Theorem (Variance Decomposition). For * v
two random vectors X and Y, ‘

Vary(Y))
= M[EWX(YAX)]
+ Ex[Varyx(Y;[X)].

» ‘ »
| ‘ » I T | »

Proof.  Varyx(Yilx) = Byx(YP[x) - [Eyx(Yilx)?,
and, Ex[Varyx(YiX)]
= Ex[Byx(Y[X)] - Ex{[Eyx(Yi[X)]*}.
Also, Varx[Eyx(Y:|X)]
= Ex{[BEyx(Yi|X)]*} — {Ex[Eyx (Yi|X)]}2.
Now, Vary(Yi) = Ex(Y?) - [Ex(Yi)]?

= Ex[BEyx (Y7 1X)] — {Ex[Eyx (Y| X)]}?
Ex[Eyx (Y7 1X)] —Ex{[Byx(Y;|X)]*}
+Ex{[Eyx (Yi|X)]*} — {Ex[Eyx (Y| X)]}?

= Ex[Varyx(Yi|X)] + Varx[Eyx (Y| X)].
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» Corollary. v
= Vary(Y)) > Ex[Varyx(Y;|X)] and the _
equality holds if and only if ‘ ‘

X
EY]X(}/AX):EY(Y;) | ]
with probability one.
e Vary(Y) > Vary[ Eyx(Y/X)] and the "y ‘
equality hold if and only if | ‘ ‘

{'N

Varyx(YiX)=0 (= Y=Eyx(YilX) ) .
with probability one.

% Reading: textbook, Sec 7.5

Conditional Expectation and Prediction

* Problem formulation: predicting the value of a r.v. Y on the basis of
the observed value of ar.v. X

»Data: X and Y (example?)

p. 8-26

» Statistical modeling: assigning (X, Y) a (known) joint
distribution (cdf F{x, y), pdf f(x, y), or pmf p(z, y))

» Objective: predicting Y by using a function of X, i.c.,

g(X) « predictor

» Predictor: considering the following three groups of g’s
(i) G1={9(z) : g(z) = ¢, where c € R}
(ii) G2 = {g9(=) : g(x) = a + bz, where a,b € R}
(iii) Gz = {g(x) : g is an arbitrary function}}

Note. G1 C G, C Gs.

» Question: Within each group, what is the “best” predictor?

» Criterion: minimizing mean square error

MSE = Exy{[Y — ¢(X)*}
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* Theorem (best constant predictor under MSE).
Exy (Y —¢)?=Ey(Y —¢)* 2 Ey[Y - Ey(Y)]* = Vary(Y)
The equality holds if and only if c=E(Y).
Proof. Ey (Y —¢)?

= Vary(Y) + (py —¢)°
> Vary(Y)

* Theorem (best predictor under MSE).

ExylY —g(X)]? > Exy[Y — BEy|x(Y|X)]* = Ex[Vary x (Y|X)]
The equality holds if and only if g(x)=Ey,x(Y|z).
Proof. Exy[Y — g(X))?

= Exy{[Y —Eyx(Y|X)]+[Eyx(Y]X) - g(X)]}?

= Exy[Y — Byx(YIX)P+ Ex[Byix(Y]X) - g(X)]”
+ 2 Exy{lY — Evix(Y|X)|[Eyx(Y|X) — g(X)]}

= Exy[Y — Eyix(Y|X)]? + Ex[By|x (Y]X) — g(X)2

> ExylY — Eyix(Y|X)]?

where the last “=" comes from p. 8-28

Exy{lY — Evix(YIX)][Evx(V|X) — g(X)]}

= Bx Bypx { [V~ Byx (Y1) [Bvix (Y|X) — g(X)]| X }

= Ex{[Evix(Y1X) = g(X)] Byx[Y - By (VIX)IX]} = 0.

Furthermore,
Exy[Y = By;x(Y]X)]
- &%{[Y - EYlX(Y|X)]2|X} = Ex[Varyx(Y|X)]

»Some notes for the best predictor in G

= By x(Y]z) 1s the best predictor of Y'based on X, in the sense
of mean square prediction error

= [ts calculation requires to know the joint distribution of X
and Y, or at least By, x(Y]x)

. EH_X(Y[SI}) is called the regression function of Y on X
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* Theorem (best /inear predictor under MSE).

2
o
Exy[Y — (a+bX)]? > EX,Y{Y—[uwpxyé(X—ux)]}

= oy (1 - pxy)

The equality holds if and only if a=4— bty and b=py 0,/ Oy.
Proof. Exy(Y —a—bX)? —— ——
= Varxy(Y —a—-bX)+ [Exy(Y —a— bX))?

= Varxy(Y —bX) + (uy — a — bux)?
> Varxy(Y —bX) (= setting a = py — bux)

- U%;‘FEO"%(—QQO'XY

2
OXy | Oxy OXxy
oy | 0® —2b—=—+22 | + 07—
o o
X X

I

2

OxXy \

= o4 (0= 2 ot )
X

Vv

oy (1 = pxy) (= setting b = XX = ZXX x IX — py Y_ )

O’X oOxXoy
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»Some notes for the best /linear predictor in G,

« Byx(Yz) = ly + (Oxy Oyl Ox)(x—Hx) 1f (X, Y) is distributed as

bivariate normal.

= [ts calculation requires to know the means, variances, and
covariance of X and Y.

. JY (1=pyy?) is small if Pxy1s close to +1 or —1, and large if
,QXY is close to 0.

» A comparison of these minimum MSEs
» min,, Ey[Y=(atbX)]* < min, Ey,(Y=c)* and the equality
holds if and only if Pxy=0.
» min, Ex [Y=-g(X)]* <min,, Fx[Y=(a+bX)]* and the equality
holds if and only if Ey, +(Y2) = ti+ (v Gy Ox)(x— ).

% Reading: textbook, Sec 7.6

Moment Generating Function
* Definition (Moment and Central Moment). If a random variable X

has a cdf FK’ then
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pr = BE(X*?) = [T 2% dFx(z), k=1,2,3,...,

are called the k" moments of X provided that the integral converges
absolutely, and

iy = BIX — px)¥) = [, (@ — px)* dFx(x), k=2,3,....

are called k™ moment about the mean [y or central moment of X
provided that the integral converges absolutely.
» Some notes.

i = BI(X = )] = B |2 (5) (—px)" 7 X
= S () (m) B = g () (—px) s

« = B(XP) = B{{(X —px) +px]*}
k — i
= Yo () ux)" T B((X — px)]
_ ko (K k=i, fyt o e g
» In particular, LA
E(X) = px=pm, and, it M
Var(X) = o% =py=pa — .
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» The (central) moments give a lot of useful information
about the distribution in addition to mean and variance, e.g.,

o Skewness (a measure of the asymmetry): ps/o®.

o Kurtosis (a measure of the “heavy tails”): f4/c =

INRVIIRETS

_ N
»Example (Uniform). If X ~ Uniform(0, 1), then
= Jo 2t do = .
therefore, kx = p1=1/2, and,
ok = we-pi=1/3-(1/2)°=1/12.
And, = [} (z = /2 de = 12, 2 d:

(RS NI

k1)2k> k is even.
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» Recall. How to characterize a distribution?

(1) pdffpmf, (2) cdf, (3) mgf

* Definition (Moment Generating Function). If X is a random
variable with the cdf FY, then

Mx(t) = E(eX) = [7 e dFx (),

is called the moment generating function (mgf) of X provided that
the integral converges absolutely in some non-degenerate interval

of t.
- 9() =X, axt®  g(t) = [, fz) ()" dx
g9(t)
Taylor expansion Laplace transformation
t » k > L

» Some Notes.
= The mgf is a function of the variable ¢.
» The mgf may only exist for some particular values of ¢.
= M (t) always exists at t=0 and M (0)=1
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» Example.
=« If X 1s a discrete r.v. taking on values z;’s with probability p;’s,
i=1,2,3, ..., then

Mx(t) = B(e) =32, eip;.
= [f X ~ Poisson(A), then for —oo<t<oo,

Mx(t) = B(@X) = S22 & x “5-
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=« [f X ~ exponential(A), then for ¢<A,

Mx(t) = E(e"*) = [T el® x A e™?® dx

= A (55) O - e AT g = 2
and M «(t) does not exist for ¢ > A.

= A list of some mgfs (exercise)
o If X ~ binomial(n, p),

Mx(t) = (1 —p+ pet)", for t < —log(l —p).
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o If X ~ negative binomial(r, p),
Mx(t) = {p—ei] , for t < —log(1 — p).

1—(1—p)et

ot

. 653—6
olf X ~ uniform(a, B), Mx(t) = “i(B—a)
o If X ~ gamma(a, A),
Mx(t) = (ﬁ) , for t < A.
=1

oo k—1 a+r tk
_I_ Zk:l (Hr:O Oé+g+’l”> ?.
o If X ~ normal(y, ¢?), Mx(t) = et (% /2)t"

* Theorem (Uniqueness Theorem). Suppose that the mgfs M (?) and
M(t) of random variables X and Y exist for all |¢|<h for some h>0.

If

M () = My(),
for |t|<h, then
Fy(2) = Fy(2)

for all zeR, where F'y and Iy are the cdfs of X and Y, respectively.
Proof. Skipped (by the uniqueness theorem of Laplace transform.)
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» Application of the uniqueness theorem
» When a mgf exists for all [¢|<h for some h>0, there is a
unique distribution corresponding to that mgf.

= This allows us to use mgfs to find distributions of
transformed random variables in some cases.

» This technique is most commonly used for /inear
combinations of independent random variables X, ..., X

»>Example. If Mx(t) = pre®’ + - 4 pre®", where
p;+---+tp, =1, then X is a discrete r.v. and its pmf is

_J pi, forz=ua;,i=1,...,k,
px(z) = { 0, otherwise.

* Theorem (Moments and MGF). If M (%) exists for |t[<h for some
h>0, then B

Mx(0)=1,
and,

k
ME0) = pyy k=1,2,3,...




Proof. First, Mx(0) = ffooo el dFx (z) = ffoool dFx(z) = 1.

»Example. If X ~ exponential(A), then Mx(t) = ,\L_z :
Because K)o kI
My—=(t) = )L
we get

e = M (0) = £

* Theorem (MGF for linear transformation). For constants @ and b, ***
Mg ypx () = e2* Mx (bt).

Proof. My px (t) = Ex[e!ettX)] = eat By [e@)X] = e M (bt).

* Theorem (MGF for SUM of independent r.v.’s). If X, ..., X are
independent each with mgfs My (¢), ..., My (1), respectlvely, then
the mgf of S=X +[#X, is o

Mg(t) = Mx, (t) x --- X Mx, (¢).

Proof. Mg(t) = Eg(e'8) = Ex, ... x, [HXt 0]

><etX)

= BEx, (e!22) x -+ x Bx, (e!22) = My, (t) x --- x Mx, (1).

n

»Example. If X, ..., X, are i.i.d. ~ geometric(p), then
S—X +---+X ~ negative binomial(n, p).

Proof. Ms(t) = Mxl( ) x -+ x M, (b)

_ pet .y __pet pe
— 1—-(1—p)et 1—(1—p)et = | 1—(1—p)et | -
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»Example. If X, ..., X, are independent and

X, ~ normal(,gz, g?), for =1,

Let S =ayta; X+ +a,X,, then

§~n0rma1(a0+a1&+---+an@,a_%a_%—|—---—|—a%02).

Proof. Ms(t) = e%! x [, pli(ait)+(o7/2)(ait)”

plaotarpntFanpn)t+ [(aQJf—I- +aZo? )/2]

* Definition (Joint Moment Generating Function). For random
variables X, ..., X, their joint mgf is defined as

MX1, o Xn (tla . ) = FEx,. .. x, (et_lei"'it_an)

provided that the expectation exists.
» Example. If{l, ..., X, ~ multinomial(n, m, Pis oo p,,), the

joint pmf is:
L1, Lm, 1 m

Mle"'aXm (t_17 + s o 7t_m) "o

0<z,;<n, i=1,...,m
1+ FTm=n

= (pre>+ -+ ppelm)™.
* Some Properties of Joint mgf
> Mﬁ(t) — MXl,Xg,...,Xn (i) 07 TR 70)

» uniqueness theorem

»X,, ..., X, are independent if and only if
MXl, L X (tl,... ):M&(t_l) XMX (_n)

ak1+...+kn

WMXl,...,Xn (0, e ,0) = EX1,...,Xn (Xlk—l X X Xnk—”)-
O E—

% Reading: textbook, Sec 7.7




