$>$ Example. If X and Y have a joint pdf

$$
f(x, y)=\frac{2}{(1+x+y)^{3}},\left\{\begin{array}{l}
\text { examine whether } \\
\text { its a joint pdf. }
\end{array}\right.
$$

for $0 \leq x, y<\infty$, then

$$
f_{X}(\underline{\underline{x}})=\int_{0}^{\infty} f(\underline{\underline{x}}, \underline{\underline{\underline{y}}}) d \underline{\underline{y}}=-\left.\frac{1}{(1+x+y)^{2}}\right|_{0} ^{\infty}=\frac{1}{(1+x)^{2}}
$$

for $0 \leq x<\infty$. So,

$$
\stackrel{\tau \text { fixed }}{x})^{=} \frac{f(x, y)}{f_{X}(x)}=\frac{2(1+x)^{2}}{(1+x+y)^{3}},
$$

random -

- Mixed Joint Distribution: Definition of conditional distribution can be similarly generalized to the case in which some random variables are discrete and the others continuous (see a later example).

Recall. The 3 laws in $L N_{p} \cdot 4-\left||\sim 13| P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdots \cdot P\left(A_{n} \mid A_{1} \cap \cdots A_{n}\right)\right.$ Theorem (Multiplication Law). Let \mathbf{X} and \mathbf{Y} be random vectors and $(\underline{\mathbf{X}, \mathbf{Y}})$ have a joint pdf $\underline{f}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) / \mathrm{pmf} \underline{p}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then
 $\underline{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}=\underline{f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})} \times \underline{f_{\mathbf{X}}(\mathbf{x})} . \stackrel{\text { similare etension }}{P_{\mathbf{P}_{2}}\left(x_{\mathbf{x}}\left(x_{2} \mid x_{1}\right) \times \cdots \mathbf{x}\right.}$
(20

Proof. By the definition of conditional distribution. \rightarrow Pmf ($\operatorname{LN}_{0} 7-51$). Pdf ($\operatorname{LN}_{p} 7-53$)

- Theorem (Law of Total Probability). Let \mathbf{X} and \mathbf{Y} be randompartition vectors and $(\underline{\mathbf{X}, \mathbf{Y}})$ have a joint pdf $\underline{f}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) / \mathrm{pmf} p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

 - Theorem (Bayes Theorem). Let $\underline{\mathbf{X}}$ and \mathbf{Y} be random Vectors $P_{P_{Y \mid x}\left(y|x| x_{2}\right)}^{P_{1 \times}\left(y x_{1}\right)}$ and $(\underline{\mathbf{X}, \mathbf{Y}})$ have a joint $\underline{\text { pdf }} \underline{f}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) / \mathrm{pmf} \underline{p}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$Y_{1}, \cdots, Y_{n}:$ discrete
$p_{\mathbf{Y} \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=x^{y_{1}+\cdots+y_{n}}(1-x)^{n-\left(y_{1}+\cdots+y_{n}\right)}$,
for $y_{1}, \ldots, y_{n} \in\{0,1\}$. fixed
joint dist:- - By the multiplication law, for $y_{1}, \ldots, y_{n} \in\{0,1\}$ and $0<x<1$,
 Intuition. \int Suppose that we observed $Y_{1}=1, \ldots, Y_{n}=1$. (or $Y_{1}=y_{1}, \cdots, Y_{n}=y_{n}$) What values of \underline{x} are $\left[\begin{array}{l}\text { By the law of total probability, }\end{array}\right.$
more probable? $\rightarrow P\left(Y_{1}=1,\right.$. .,$Y_{n}=1$
$\begin{aligned} & \text { marginal } \\ & \text { dist. of } \\ & Y_{1}, \cdots, Y_{n}\end{aligned}=\int_{0}^{1} p_{\mathbf{Y} \mid X}(1, \ldots, 1 \mid x) f_{X}(x) d x$
$=\int_{0}^{1} x^{n} d x=\left.\frac{1}{n+1} x^{n+1}\right|_{0} ^{1}=\frac{1}{n+1}$.

1) $P_{Y}\left(y_{1}, \cdots, y_{n}\right)$
$k " 1 ", n-k$ " 0 " $\Rightarrow k=\sum_{i=1}^{n} y_{i}$
$\overline{\text { 米 }} \frac{\Gamma(k+1) \Gamma(n-k+1)}{\Gamma(n+2)}=\frac{k!(n-k)!}{(n+1)!}$
$=\frac{\left(\sum_{i=1}^{n} y_{i}\right)!\left(n-\sum_{i=1}^{n} y_{i}\right)!}{(n+1)!}$

β

 And, by Bayes' Theorem,

Why is X (cf., marginal distribution of $X \sim \underline{U n i f o r m}(0,1)=\operatorname{Beta}(1,1) . f$
still random?
$Y_{n+1} \mid Y_{1}=y_{1}, \cdots, Y_{n}=y_{n}$
 random vectors and $(\underline{\mathbf{X}, \mathbf{Y}})$ have a joint $\operatorname{pdf} f_{\underline{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \mathbf{y}) / \operatorname{pmf} \underline{p}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$. Then, $\underline{\mathbf{X} \text { and } \mathbf{Y}}$ are independent, ie.,

$$
\begin{aligned}
& {\underset{\mathbf{Y}}{\mathbf{Y}}}(\mathbf{y} \mid \mathbf{x}) \times P_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})=p_{\mathbf{X}}(\mathbf{x}) \times{ }_{x} p_{\mathbf{Y}}(\mathbf{y}), \\
& f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})=f_{\mathbf{X}}(\mathbf{x}) \times f_{\mathbf{Y}}(\mathbf{y}),
\end{aligned}
$$

if and only if

$$
\frac{P_{\mathbf{X}, \mathbf{r}}(\mathbf{x}, \mathbf{y})}{P_{\mathbf{X}}(\mathbf{x})}=\frac{p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})}{f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})}=p_{\mathbf{Y}}(\mathbf{y}),
$$

use the concept to
examine whether the
$\left(Y_{1}, \cdot, Y_{n}\right)$ in $L N_{P} 7-58$
are indep.?

Proof. By the definition of conditional distribution.
$>$ Intuition.

- The 2 graphs about the joint pmf/pdf of independent r.v.'s in LNp.7-27
-(-) $p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$ or $f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$ offers information about the distribution of \mathbf{Y} when $\underline{\mathbf{X}}=\mathbf{\chi}$. $p_{\mathbf{Y}}(\mathbf{y})$ or $f_{\mathbf{Y}}(\mathbf{y})$ offers information about the distribution of \mathbf{Y} when \mathbf{X} not observed.
* Reading: textbook, Sec 6.4, 6.5

