

It then follows from an exercise in advanced calculus that

$$
\begin{aligned}
& \frac{f_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right)}{}=\frac{\partial^{n}}{\partial y_{1} \cdots \partial y_{n}} F_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right) \\
& \boldsymbol{g}^{-1}(\mathbf{y})
\end{aligned}
$$

Remark. When the dimensionality of $\underline{\mathbf{Y}}$ (denoted by \underline{k}) is less than n, we can choose another $n-k$ transformations $\underline{\mathbf{Z}}$ such that

$$
\begin{aligned}
& k \text { - } \operatorname{dim} \longrightarrow \sigma^{(n-k)-\operatorname{dim}} \\
& n-\operatorname{dim} \quad(\underline{\mathbf{Y}}, \underline{\mathbf{Z}})=g(\mathbf{X}) \quad \quad \quad \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, g^{-1} \text { exists. } \\
& \text { satisfy the assumptions in above theorem. } \\
& g^{-1} \text { differentiable }
\end{aligned}
$$

By integrating out the last $n-k$ arguments in the joint pdf of (\mathbf{Y}, \mathbf{Z}), the joint pdf of \mathbf{Y} can be obtained.
by The in $L_{\mathrm{N}}^{\mathrm{p}} \mathrm{T}$? 10

- Example. X_{1} and X_{2} are random variables with joint pdf $\xlongequal[\substack{\text { continuum } \\ \text { rus }}]{\substack{x_{2}}}$ $g=\left(g_{1}, g_{2}\right) \underline{f_{\mathbf{x}}}\left(x_{1}, x_{2}\right)$. Find the distribution of $\underline{Y}_{1}=X_{1} /\left(X_{1}+X_{2}\right) . \equiv g_{1}\left(x_{1}, x_{2}\right)$ $: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a Let $Y_{2}=X_{1}+X_{2}$, then
proportion when $x_{1} \geqslant 0, x_{2} \geqslant 0$
$g_{2}\left(x_{1}, x_{2}\right)$
add one more

transformation \quad| $x_{1}=y_{1} y_{2}$ | $\equiv w_{1}\left(y_{1}, y_{2}\right)$ |
| :--- | :--- |
| $x_{2}=y_{2}-y_{1} y_{2}$ | $\equiv w_{2}\left(y_{1}, y_{2}\right)$. |

Since $\frac{\partial w_{1}}{\partial y_{1}}=y_{2}, \quad \frac{\partial w_{1}}{\partial y_{2}}=y_{1}, \quad \frac{\partial w_{2}}{\partial y_{1}}=-y_{2}, \quad \frac{\partial w_{2}}{\partial y_{2}}=1-y_{1}$,
$J=\left|\begin{array}{cc}y_{2} & y_{1} \\ -y_{2} & 1-y_{1}\end{array}\right|=y_{2}-y_{1} y_{2}+y_{1} y_{2}=y_{2}$, and $|J|=\left|y_{2}\right|$.
Therefore, $f_{\mathbf{Y}}\left(y_{1}, y_{2}\right)=f_{\mathbf{X}}\left(\underline{y_{1} y_{2}}, \underline{y_{2}-y_{1} y_{2}}\right)\left|y_{2}\right|$,
and, $\underline{f_{Y_{1}}\left(y_{1}\right)}=\int_{-\infty}^{\infty} f_{\mathbf{Y}}\left(y_{1}, \underline{y_{2}}\right) \underline{d y_{2}}$

- Theorem. If \underline{X}_{1} and X_{2} are independent, and $\underline{X}_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \underline{\lambda}\right), \quad \underline{X}_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \bar{\lambda}\right)$, then $\underline{Y}_{1}=\underline{X}_{1} /\left(X_{1}+X_{2}\right) \sim$ Beta $\left(\alpha_{1}, \underline{\alpha_{2}}\right)$ Corollary.

Proof. For $x_{1}, x_{2} \geq 0$, the joint pdf of $\underline{\mathbf{X}}$ is $\left\{\begin{array}{l}X_{1} \sim \operatorname{exponential}(\lambda) \\ X_{2} \sim \operatorname{exponential}(\lambda) \\ \Rightarrow Y_{1} \sim U_{\text {niform }}(0.1)\end{array}\right.$
$\int_{\phi} \int_{\mathbf{I}}^{\longrightarrow} Y_{1}=\frac{x_{1}}{x_{1}+x_{2}} \underline{f_{\mathbf{X}}}\left(x_{1}, x_{2}\right)=\frac{\lambda^{\alpha_{1}}}{\Gamma\left(\alpha_{1}\right)} x_{1}^{\alpha_{1}-1} e^{-\lambda x_{1}} \times \frac{\lambda^{\alpha_{2}}}{\Gamma\left(\alpha_{2}\right)} x_{2}^{\alpha_{2}-1} e^{-\lambda x_{2}}$
$\frac{x^{2}}{\alpha_{1} \text { th }}{ }_{2}^{\alpha_{2}}{ }^{\alpha_{2}+h}=\frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} e^{-\lambda\left(x_{1}+x_{2}\right)}$.

So, for $0 \leq y_{1} \leq 1$,

$$
\underline{f_{Y_{1}}\left(y_{1}\right)}=\int_{-\infty}^{\infty} f_{f_{X_{1}}\left(y_{1} y_{2}\right) f_{X_{2}}\left(y_{2}-y_{1} y_{2}\right)\left|y_{2}\right|} d y_{2}
$$

$$
=\left[\int_{0}^{\infty}\right] \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}\left(y_{1} y_{2}\right)^{\alpha_{1}-1}\left(y_{2}-y_{1} y_{2}\right)^{\alpha_{2}-1} e^{-\lambda y_{2}} \cdot y_{2} d y_{2}
$$

- Example. Suppose that X and Y have a uniform distribution ${ }^{\text {p. } 740}$ over the region $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$, ie., their joint pdf is

$$
\underline{f_{X, Y}(x, y)} \overline{\tau_{\pi}} \underline{1}_{\pi}^{1} \mathbf{1}_{D}(x, y) . ك^{L N_{\rho} .7-18}
$$

Find the joint distribution of (R, Θ) and examine whether R and Θ are independent, where (R, Θ) is the polar coordinate representation of (X, Y), ie.,

$$
\begin{aligned}
& X=\frac{R \cos (\Theta)}{X} \equiv w_{1}(R, \Theta), \\
& Y=\underline{R \sin (\Theta)} \equiv w_{2}(R, \Theta) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial w_{1}}{\partial \theta}=-r \sin (\theta), \quad\left[\begin{array}{l}
R=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}\right. \\
& \frac{\partial w_{2}}{\partial \theta}=r \cos (\theta),
\end{aligned}
$$

and $|J|=|r|=r . \leftrightarrow$ Recall In calculus, for polar transformation, dxdy $=\underline{r} d r d \theta$ cross © For $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$, the joint pdf of (R, Θ) is
 and $f_{R, \Theta}(r, \theta)=0$, otherwise.
aBy the theorem in LNp.7-25, ($\underline{R, \Theta)}$ are independent.

- Example. Let $\underline{X}_{1}, \ldots, X_{n}$ be independent and identically distributed (i.e., i.i.d.) exponential($\boldsymbol{\lambda}$). Let
common marginal dist.

Find the distribution of $\underline{\mathbf{Y}}=\left(Y_{1}, \ldots, Y_{n}\right) . f^{\text {marginal }\left(Q: Y_{1}, \cdots, Y_{n} \text { inter? } ?\right)}$

 for $0 \leq x_{i}<\infty, i=1, \ldots, n$.

$$
\frac{\partial w_{i}}{\partial y_{j}}= \begin{cases}1, & \text { if } j=i, \\ -1, & \text { if } j=i-1, \\ 0, & \text { otherwise },\end{cases}
$$

Method of moment generating function．

－Based on the uniqueness theorem of moment generating function to be explained later in Chapter 7
－Especially useful to identify the distribution of sum of independent random variables $\rightarrow X_{1}, \cdots, X_{n}$ indep．，$Y=X_{1}+\cdots+X_{n}$

Definition．Let X_{1}, \ldots, X_{n} be random variables．We sort the X_{i}＇s and denote by

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

the order statistics．Using the notation，

$\underline{S}_{j}=\underline{X}_{(\underline{j})}-X_{(j-1)}, j=2, \ldots, n$ ，are called $\underline{j \text { th } \text { spacing．}}$
Q：What are the joint distributions of various order statistics and their marginal distributions？
$\underline{\text { Definition．}} \underline{X_{1}}, \ldots, X_{n}$ are called i．i．d．（independent，identically distributed）with cdf $\bar{F} / \mathrm{pdf} f / \mathrm{pmf} p$ if the random variables X_{1}, \ldots, X_{n} are independent and have a common marginal
distribution with cdf $F /$ pdf $f / \operatorname{pmf} p$ ．

Intuition：（1）$X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)}$ （2）$X_{(1)}=x, X_{(2)} \geqslant x \Rightarrow$ conditional dist of $X_{(2)} \mid x_{(1)}=x$
－Remark．In the discussion about order statistics，we only change with consider the case that $\underline{X}_{1}, \ldots, X_{n}$ are i．i．d．

[^0]
[^0]: statistics $\underline{X}_{(1)}, X_{(2)}, \cdots, X_{(n)}^{-}$are not independent in general．

