

For its proof, use
(e) in $L N_{p} .7 .8 \&$
(*) in $L N_{p} .7 .16$
). (exercise)
In particular, $\underline{X}_{\underline{i}} \sim \underline{\operatorname{Binomial}}\left(\underline{n}, \underline{p_{i}}\right) \leftrightarrow$

- Mean and Variance.

$$
\left.\underline{E\left(X_{i}\right.}\right)=n \underline{p}_{i} \text { and } \underline{\operatorname{Var}\left(X_{i}\right)=n p_{i}\left(1-p_{i}\right)}
$$

$$
\text { for } i=1, \ldots, m
$$

Example.
examine whether
it's a joint pdf
($\mathrm{x}_{1}, \mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{m}}$)
\sim multinomial $\left(n, 2, p_{1}, p_{2}+\cdots+p_{n}\right)$

↔

- So, $P(Y \geq 2 X$ or $X \geq 2 Y) \overline{\bar{\alpha}} P(Y \geq 2 X)+P(X \geq 2 Y)=2 / 3$ because $^{\text {p } 7.18}$ $P((X, Y) \in A)$ $=\iint_{A} f(x, y) d x d y$

and similarly, we can get $P(X \geq 2 Y)=1 / 3$ (exercise).
$>$ Example. Consider two continuous r.v.'s X and Y.
- Uniform Distribution over a region D. If $D \subset \mathbb{R}^{2}$ and $0<\underline{\alpha}=\operatorname{Area}(D)<\infty$, then $\leftrightarrow \underset{\sim}{c t}$

$$
f(x, y)=c \cdot \mathbf{1}_{D}(x, y)\left[\begin{array}{l}
\text { indicator function, } \\
\mathbb{I}_{0}(x, y)=\left\{\begin{array}{l}
1, \text { if } \\
0,
\end{array}(x, y) \in D\right. \\
0
\end{array}\right.
$$

- Let $\underline{D}=\left\{(x, y): \underline{x^{2}+y^{2} \leq 1}\right\}$, then $\underline{\alpha}=\operatorname{Area}(D)=\pi$ and

$$
f(x, y)=\frac{1}{\underline{\underline{\pi}}} \mathbf{1}_{D}(x, y)
$$

is a joint pdf.

- Marginal distribution. The marginal pdf of X is

The in still uniform?
$L N_{P .7-10}$

$$
f_{X}(x) \xlongequal{=} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} d y=\frac{2}{\pi} \sqrt{1-x^{2}}
$$

for $-1 \leq x \leq 1$, and $\underline{f}_{X}(x)=0$, otherwise.
(exercise: Find the marginal distribution of \underline{Y}.)

* Reading: textbook, Sec $6.1 \quad$ Recall. sum of indep. Bernoullis \rightarrow binomial...

- Recall Cf. Independent Random Variables

 independent events ($L N_{p} .4-19 \sim 30$)not a cross product set (check LNp.7-2)
$>$ If joint distribution is given, marginal distributions are known.
$>$ The converse statement does not hold in general.
$>$ However, when random variables are independent,
marginal distributions + independence \Rightarrow joint distribution.

$A_{1} \times A_{2} \times \cdots \times A_{n}$: a cross.product set in \mathbb{R}^{n}

O Definition. The n jointly distributed r.v.'s X_{1}, \ldots, X_{n} are called (mutually) independent if and only if for any a $A_{1} \times A_{2} \times \cdots \times A_{n}: a$ (measurable) sets $A_{i} \subset \mathbb{R}, i=1, \ldots, n$, the events

$A_{1}, \cdots, A_{n} \subset \mathbb{R}^{1} \xrightarrow{n}$ are (mutually) independent. That is,

Actually it's enough to examine $k=n$
independent
If X_{1}, \ldots, X_{n} are independent, for $1 \leq k<n$,

For $k<n$, let $A_{j}=\mathbb{R}^{\prime}$
$j \neq i_{1}, \cdots, i_{k}$, (H)
for interpretation
purpose $P\left(X_{k+1} \in A_{k+1}, \ldots, X_{n} \in A_{n} \mid X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)$
exercise $<\overline{\bar{T}} P\left(\underline{\left.X_{k+1} \in A_{k+1}, \ldots, X_{n} \in A_{n}\right)}\right.$
provided that $P\left(X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)>0$.

- In other words, the values of X_{1}, \ldots, X_{k} do not carry any information about the distribution of $\underline{X}_{k+1}^{-}, \ldots, X_{n}$.
- Theorem (Factorization Theorem). The random variables $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ are independent if and only if one of the following conditions holds.
(1) $\underline{F}_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\underline{F}_{X_{1}}\left(x_{1}\right) \times \cdots \times \underline{F}_{X_{n}}\left(x_{n}\right)$, where $\underline{F}_{\mathbf{X}}$ is the joint cdf of $\underline{\mathbf{X}}$ and $\underline{F}_{X_{i}}$ is the marginal cdf of \underline{X}_{i} for $i=1, \ldots, n$.
(2) Suppose that X_{1}, \ldots, X_{n} are discrete random variables. $p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(\overline{x_{1}}\right) \times \cdots \times p_{X_{n}}\left(x_{n}\right)$, where $\underline{p}_{\mathbf{X}}$ is the joint mf of $\underline{\mathbf{X}}$ and $\underline{p}_{X_{i}}$ is the marginal mf of \underline{X}_{i} for $i=1, \ldots, n$.
(3) Suppose that $\underline{X}_{1}, \ldots, X_{n}$ are continuous random variables. $f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(\bar{x}_{1}\right) \times \cdots \times f_{X_{n}}\left(x_{n}\right)$, where $\underline{f}_{\mathbf{X}}$ is the joint pdf of $\underline{\mathbf{X}}$ and $\underline{f}_{X_{i}}$ is the marginal pdf of \underline{X}_{i} for $i=1, \ldots, n$. Proof.
a cross

independent $\Rightarrow(2) \cdot \underline{p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$

$$
(3) \Rightarrow(1) \cdot \begin{gathered}
T h m i n \\
w_{p} \cdot 7-11
\end{gathered}
$$

by (3) $F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \stackrel{x_{-\infty}}{=x_{-\infty}^{\underline{x_{n}}}} \cdots \int_{-\infty}^{\underline{x_{1}}} f_{\mathbf{X}}\left(t_{1}, \ldots, t_{n}\right) \underline{d t_{1}} \cdots d t_{n}$

$$
\begin{aligned}
& \int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} f_{X_{1}}\left(t_{1}\right) \times \cdots \times f_{X_{n}}\left(t_{n}\right) \underbrace{d t_{1}} \cdots d t_{n} \\
& =\underbrace{\int_{-\infty}^{x_{1}}{ }_{=}} f_{X_{1}}\left(t_{1}\right) d t_{1} \times \cdots \times \int_{-\infty}^{x_{n}} f_{X_{n}}\left(t_{n}\right) d t_{n}=\underbrace{4}_{\frac{F_{X_{1}}}{}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right)}
\end{aligned}
$$

