Jointly Distributed Random Variables

- Recall. In Chapters 4 and 5, focus on univariate random variable.
$>$ However, often a single experiment will have more
than one random variables which are $\underline{\text { of interest. }}$

Definition. Given a sample space $\underline{\Omega}$ and a probability measure P defined on the subsets of Ω, random variables

Ω is critical in discussing issues like:
(1) $Y(\omega)=g(X(\omega))$
$Y(\omega)>X(\omega)$
(2) $\left\{X_{n}<r\right\}=\left\{Y_{r}>n\right\}$
(3) count process $Y_{t}(w)$
(4)
\Rightarrow
GOQ: For $A \subset \mathbb{R}^{n}$ how to define the probability of $\{\mathbf{X} \in A\}$ from P ? ${ }^{\text {p.7.7.2 }}$
$\frac{\text { cct }}{\text { the graph in } L_{p .5} 5-4}$

A occurs \Leftrightarrow
E_{A} occurs

$P_{X_{1}, X_{2}}(A)=P\left(E_{A}\right)$
$>$ For $\underline{A \subset \mathbb{R}^{n}}$,

new prob. space

$$
\underline{P_{X_{1}, \ldots, X_{n}}}
$$

original
prob. measuref For $\underline{A_{i}} \subseteq \mathbb{R}, i=1, \ldots, n, \quad \leftarrow E_{\mathrm{A}}$

$$
\frac{P_{X_{1}, \ldots, X_{n}}\left(\underline{\left.X_{1} \in A_{1}, \cdots, X_{n} \in A_{n}\right)}\right.}{=\frac{P}{又}}\left(\underline{\left.\left.\omega \in \Omega \mid X_{1}(\omega) \in A_{1}\right\} \cong \cdots \cong\left\{\omega \in \Omega \mid X_{n}(\omega) \in A_{n}\right\}\right)}\right.
$$

 subsets of \mathbb{R}^{n}) is called the joint distribution of X_{1}, \ldots,
 \underline{X}_{n}. The probability measure of $\underline{X}_{i}\left(P_{X_{i}}\right.$, defined on subsets of \mathbb{R}) is called the marginal distribution of \underline{X}_{i}.

$$
i=1,2, \cdots, n
$$

- Q: Why need joint distribution? Why are marginal distributions not enough?
$>$ Example (Coin Tossing, Toss a fair coin

3 times, LNp.5-3). P(\{f,t,t\}u\{t,R,t\}v\{t,t,R\})=3/8
$P(\{t, t, t\} u$
$\{t, h, t\} v$
$\{t, t, h\} u$
$\{t, h, h\})$
$=4 / 8=1 / 2$

- blue numbers: joint distribution of X_{1} and X_{2}
- (black numbers): marginal distributions
- [red numbers]: joint distribution of another $\left(\underline{X}_{1}{ }^{\prime}, X_{2}{ }^{\prime}\right): \Omega^{\prime} \rightarrow \mathbb{R}^{2}$

\square When joint distribution is given, its corresponding marginal distributions are known, e.g.,
- $P\left(X_{1}=i\right)=P\left(X_{1}=i, X_{2}=0\right)+P\left(X_{1}=i, X_{2}=1\right), i=0,1,2,3$.

口 $\left(X_{1}, X_{2}\right)$ and $\left(X_{1}{ }^{\prime}, X_{2}{ }^{\prime}\right)$ have identical marginal distributions but different joint distributions.
> (future lecture)
> When X_{1}, \cdots, X_{n} are independent, their joint dist. can be obtained from their marginal dist.

Joint distribution offers more information, e.g.,

- When not observing X_{1}, the distribution of \underline{X}_{2} is: $P\left(X_{2}=0\right)=1 / 2, P\left(X_{2}=1\right)=1 / 2 \Rightarrow$ marginal distribution
$P\left(X_{1}=1, X_{2}=0\right)$ $P\left(x_{1}=1\right)$
- When the marginal distributions are given, the corresponding joint distribution is still unknown. There could be many possible different joint distributions. (A special case: X_{1}, \ldots, X_{n} are independent.)
- When \underline{X}_{1} was observed, say $\underline{X}_{1}=1$ the distribution of X_{2} is: $\bar{P}\left(X_{2}=0 \mid X_{1}=1\right)=(2 / 8) /(3 / 8) \neq 2 / 3$ and $\bar{P}\left(X_{2}=1 \mid X_{1}=1\right)=(1 / 8) /(3 / 8) \neq 1 / 3 \Leftrightarrow$ the calculation requires the knowing of joint distribution maps to \mathbb{R}^{n}
©. We can characterize the joint distribution of $\underline{\boldsymbol{X}}$ in terms of its Univariite 1 .Joint Cumulative Distribution Function (joint cdf)

2. Joint Probability Mass (Density) Function (joint pmf or pdf)
3.Joint Moment Generating Function (joint mgf, Chapter 7)

Joint Cumulative Distribution Function $F_{\mathbf{X}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$

证- Theorem. Suppose that $\underline{F}_{\mathbf{X}}$ is a joint cdf. Then,

(ii) $\lim _{x_{1}, x_{2}, \cdots, x_{n} \rightarrow \infty} F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=1$

Proof. Let $z_{i m} \uparrow_{\varepsilon_{m \rightarrow \infty}}^{\infty}, 1 \leq i \leq n \&-z_{m}=\left(z_{1 m}, \cdots, z_{n m}\right)$
Let $A_{m}=\left(-\infty, z_{1 m}\right] \times \cdots \times\left(-\infty, z_{n m}\right]$.
Then, $A_{m} \uparrow \underset{\mathbb{R}_{x}\left(z_{m} \cdots, z_{n m}\right.}{\mathbb{R}_{n}} \Rightarrow \lim _{n} P\left(A_{m}\right)=P\left(\mathbb{R}^{n}\right)=1$.

(iii) For any $i \in\{1, \ldots, n\}$,

Proof. Let $z_{i m}{ }^{-} \downarrow-\infty$, for some i.
Let $A_{m}=\left(-\infty, \overparen{\left.x_{1}\right]} \stackrel{\text { fixed }}{\text { f. }} \times\left(-\infty, \widetilde{\left.z_{i m}\right]} \times \cdots \times\left(-\infty, \stackrel{\boldsymbol{x}_{n}}{\downarrow}\right]\right.\right.$
Then, $A_{m} \downarrow \emptyset \Rightarrow \lim \overline{P\left(A_{m}\right)}=\frac{\mathcal{F}_{\mathbf{x}}\left(x_{1}, \ldots \text {, }\right.}{\overline{\mathbb{Q}}} P(\emptyset)=0$.

