
$\frac{\mathbf{joint}}{\mathbf{p_{X|Y}(x,y)}} \underbrace{\frac{p_{Y|X}(\mathbf{y}|\mathbf{x})p_{X}(\mathbf{x})}{\sum_{\mathbf{x}'=-\infty}^{\infty} p_{Y|X}(\mathbf{y}|\mathbf{x}')p_{X}(\mathbf{x}')}}_{\mathbf{p_{Y|X}(y|x)}} \underbrace{\text{or } \mathbf{joint pmf}}_{\mathbf{y}'} \underbrace{\frac{p_{Y|X}(\mathbf{y}|\mathbf{x}')p_{X}(\mathbf{x}')}{\sum_{\mathbf{x}'=-\infty}^{\infty} p_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}}_{\mathbf{p_{Y}(y)}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x})f_{X}(\mathbf{x}')}{\sum_{\mathbf{x}'=-\infty}^{\infty} f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}}_{\mathbf{p_{Y}(y)}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}{\sum_{\mathbf{x}'=-\infty}^{\infty} f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}}_{\mathbf{p_{Y}(y)}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{y}|\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{Y|X}(\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{X}(\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{X}(\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{x}'}}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{X}(\mathbf{x}')f_{X}(\mathbf{x}')}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}}}_{\mathbf{p_{X}(\mathbf{x}')}} \underbrace{\frac{f_{X}(\mathbf{x}')f_{X}(\mathbf{x}')}}_{\mathbf{p_{X}(\mathbf{x}$

made by S.-W. Cheng (NTHU, Taiwan)

multiplication law, and the law of total probability. Prix(3/21)

p. 7-59

 $f_{\mathbf{X},\mathbf{Y}}(\mathbf{y}|\mathbf{x}) = p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = p_{\mathbf{X}}(\mathbf{x}) \times p_{\mathbf{Y}}(\mathbf{y}), \quad o$ $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \times f_{\mathbf{Y}}(\mathbf{y}),$

if and only if

$$\frac{P_{\mathbf{X},\mathbf{Y}}(\mathbf{X},\mathbf{Y})}{P_{\mathbf{X}}(\mathbf{X})} = \frac{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = f_{\mathbf{Y}}(\mathbf{y})}, \text{ or }$$

use the concept to examine whether the (Y1,..., Yn)in LNp.7-58 are indep.?

cf.

Proof. By the definition of conditional distribution.

➤Intuition.

conditionally indep: Y1, ..., Yn | X=x indep. \frac{\f

- The 2 graphs about the joint pmf/pdf of independent r.v.'s in LNp.7-27
- $\underbrace{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \text{ or } f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})}_{\text{distribution of } \mathbf{Y} \text{ when } \mathbf{X} = \mathbf{x}.}_{\text{formation about the }}$

 $\underline{p_{\mathbf{Y}}(\mathbf{y})}$ or $\underline{f_{\mathbf{Y}}(\mathbf{y})}$ offers information about the distribution of \mathbf{Y} when \mathbf{X} not observed.

* Reading: textbook, Sec 6.4, 6.5