

made by S.-W. Cheng (NTHU, Taiwan)

Note that Joint Probability Density Function
$$X: \Omega \to \mathbb{R}^{2}$$
, $f_{X}:\mathbb{R}^{n} \to \mathbb{R}^{p,rin}$
• Definition. A function $f_{\underline{X}}(x_{1}, \dots, x_{n})$ can be a joint pdf if
(1) $f_{\underline{X}}(x_{1}, \dots, x_{n}) \geq 0$, for $-\infty < x_{i} < \infty$, $i=1, \dots, n$.
(2) $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{1} \cdots dx_{n} = \underline{1}$.
(2) $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{1} \cdots dx_{n} = \underline{1}$.
(2) $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{1} \cdots dx_{n} = \underline{1}$.
(2) $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{1} \cdots dx_{n} = \underline{1}$.
(3) The joint pdf of $X = (X_{1}, \dots, X_{n})$ is a function $f_{\underline{X}}(x_{1}, \dots, x_{n})$
satisfying (1) and (2) above, and for any event $A \subset \mathbb{R}^{n}$.
(4) $x_{\underline{X}}$ is the joint pdf of $X_{\underline{X}}(x_{1}, \dots, x_{n})$ d $x_{1} \cdots dx_{n}$, f indext
(4) $x_{\underline{X}}$ is the joint pdf of $X_{\underline{X}}(x_{1}, \dots, x_{n})$.
(5) Theorem. Suppose that $f_{\underline{X}}$ is the joint pdf of $X = (X_{1}, \dots, X_{n})$.
Then, the joint pdf of $X_{\underline{X}}(x_{1}, \dots, x_{k})$ is (x_{1}, \dots, x_{k}) .
(5) $f_{\underline{X}}(x_{1}, \dots, x_{k})$ is (x_{1}, \dots, x_{k}) is (x_{1}, \dots, x_{k}) is (x_{1}, \dots, x_{n}) .
(6) $f_{\underline{X}}(x_{1}, \dots, x_{n})$ is (x_{1}, \dots, x_{k}) is (x_{1}, \dots, x_{n}) .
(7) Theorem. If $F_{\underline{X}}$ and $f_{\underline{X}}$ are the joint cdf and joint pdf of $X_{\underline{X}}$.
(6) $f_{\underline{X}}(x_{1}, \dots, x_{n})$ is $(f_{\underline{X}}(x_{1}, \dots, x_{n}), f_{\underline{X}}(x_{1}, \dots, x_{n})$.
(6) $f_{\underline{X}}(x_{1}, \dots, x_{n}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{\underline{k}+1} \cdots dx_{n}$.
(7) $f_{\underline{X}}(x_{1}, \dots, x_{n}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{\underline{k}+1} \cdots dx_{n}$.
(6) $f_{\underline{X}}(x_{1}, \dots, x_{n}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{\underline{k}+1} \cdots dx_{n}$.
(7) $f_{\underline{X}}(x_{1}, \dots, x_{n}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{\underline{k}+1} \cdots dx_{n}$.
(6) $f_{\underline{X}}(x_{1}, \dots, x_{n}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{\underline{k}+1} \cdots dx_{n}$.
(7) $f_{\underline{X}}(x_{1}, \dots, x_{n}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(x_{1}, \dots, x_{n}) dx_{\underline{k}$

made by S.-W. Cheng (NTHU, Taiwan)

made by S.-W. Cheng (NTHU, Taiwan)

