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Jointly Distributed Random Variables
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Definition. Given a sample space Ω and a probability measure

P defined on the subsets of Ω, random variables

X1, X2, … , Xn: Ω → ℝ
are said to be jointly distributed. 

X=(X1, … , Xn): Ω → ℝn.

 We can regard n jointly distributed r.v.’s as a 

random vector

• Recall. In Chapters 4 and 5, focus on univariate random variable. 

However, often a single experiment will have more 

than one random variables which are of interest.
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• Q: For A⊂ℝn, how to define the probability of {X∈A} from P?

For A⊂ℝn,

For Ai⊂ℝ, i=1, …, n,

PX1,...,Xn
(X1 ∈ A1, · · · , Xn ∈ An)

= P ({ω ∈ Ω|X1(ω) ∈ A1} ∩ · · · ∩ {ω ∈ Ω|Xn(ω) ∈ An})

PX1,...,Xn
(A)

= P ({ω ∈ Ω|(X1(ω), . . . , Xn(ω)) ∈ A})
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Definition. The probability measure of X (PX, defined on 

subsets of ℝn) is called the joint distribution of X1, …, 

Xn. The probability measure of Xi (       , defined on 

subsets of ℝ) is called the marginal distribution of Xi.

PXi
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• Q: Why need joint distribution? Why are 

marginal distributions not enough?

Example (Coin Tossing, Toss a fair coin 

3 times, LNp.5-3).

X2: # of head 

on 1st toss

X1: total # of heads

0 (1/8) 1 (3/8) 2 (3/8) 3 (1/8)

0 (1/2) 1/8 [1/16] 2/8 [3/16] 1/8 [3/16] 0 [1/16] 

1 (1/2) 0 [1/16] 1/8 [3/16] 2/8 [3/16] 1/8 [1/16]

 blue numbers: joint distribution of X1 and X2

 (black numbers): marginal distributions 

 [red numbers]: joint distribution of another (X1’, X2’) 

 Some findings:

 When joint distribution is given, its corresponding 

marginal distributions are known, e.g.,

P(X1=i)=P(X1=i, X2=0)+P(X1=i, X2=1), i=0, 1, 2, 3.
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 Joint distribution offers more information, e.g.,

When not observing X1, the distribution of X2 is: 

P(X2=0)=1/2, P(X2=1)=1/2  marginal distribution

When X1 was observed, say X1=1, the distribution of 

X2 is: P(X2=0|X1=1)=(2/8)/(3/8)=2/3 and 

P(X2=1|X1=1)=(1/8)/(3/8)=1/3  the calculation

requires the knowing of joint distribution

 (X1, X2) and (X1’, X2’) have identical marginal 

distributions but different joint distributions.

When the marginal distributions are given, the 

corresponding joint distribution is still unknown. There 

could be many possible different joint distributions. 

(A special case: X1, …, Xn are independent.)

• We can characterize the joint distribution of X in terms of its

1.Joint Cumulative Distribution Function (joint cdf)

2.Joint Probability Mass (Density) Function (joint pmf or pdf)

3.Joint Moment Generating Function (joint mgf, Chapter 7)
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Joint Cumulative Distribution Function

 Definition. The joint cdf of X=(X1, …, Xn) is defined as

 Theorem. Suppose that FX is a joint cdf. Then,

(i)   0 
 FX(x1, …, xn) 
 1, for −∞<xi<∞, i=1, …, n.

(ii) 

FX(x1, . . . , xn) = P (X1 
 x1, X2 
 x2, . . . , Xn 
 xn).
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limx1,x2,···,xn→∞ FX(x1, . . . , xn) = 1
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lim
xi→−∞

FX(x1, . . . , xn) = 0.

Proof.

(iii) For any i∈{1, …, n}, 

Proof.
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