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Jointly Distributed Random Variables

• Recall. In Chapters 4 and 5, focus on univariate random variable. 

Ω
ℝ
ℝ

ℝ
L

L

•

• •

•
• •

X1

X2

Xn
P

X=(X1, … , Xn): Ω → ℝn.

Definition. Given a sample space Ω and a probability measure

P defined on the subsets of Ω, random variables

X1, X2, … , Xn: Ω → ℝ
are said to be jointly distributed. 

 We can regard n jointly distributed r.v.’s as a 

random vector

However, often a single experiment will have more 

than one random variables which are of interest.
X1

X3
X2
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Ω

•

• •

•
• •

X1

X2

P
A

EA

PX1,X2

PX1,X2 (A)
=??

ℝ2

A occurs ⇔
EA occurs

PX1,X2(A) = P (EA)

X=(X1 , X2)

• Q: For A⊂ℝn, how to define the probability of {X∈A} from P?

For A⊂ℝn,

For Ai⊂ℝ, i=1, …, n,

PX1,...,Xn
(X1 ∈ A1, · · · , Xn ∈ An)

= P ({ω ∈ Ω|X1(ω) ∈ A1} ∩ · · · ∩ {ω ∈ Ω|Xn(ω) ∈ An})

PX1,...,Xn
(A)

= P ({ω ∈ Ω|(X1(ω), . . . , Xn(ω)) ∈ A})

X1

X2

Definition. The probability measure of X (PX, defined on 

subsets of ℝn) is called the joint distribution of X1, …, 

Xn. The probability measure of Xi (       , defined on 

subsets of ℝ) is called the marginal distribution of Xi.

PXi
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• Q: Why need joint distribution? Why are 

marginal distributions not enough?

Example (Coin Tossing, Toss a fair coin 

3 times, LNp.5-3).

X2: # of head 

on 1st toss

X1: total # of heads

0 (1/8) 1 (3/8) 2 (3/8) 3 (1/8)

0 (1/2) 1/8 [1/16] 2/8 [3/16] 1/8 [3/16] 0 [1/16] 

1 (1/2) 0 [1/16] 1/8 [3/16] 2/8 [3/16] 1/8 [1/16]

 blue numbers: joint distribution of X1 and X2

 (black numbers): marginal distributions 

 [red numbers]: joint distribution of another (X1’, X2’) 

 Some findings:

 When joint distribution is given, its corresponding 

marginal distributions are known, e.g.,

P(X1=i)=P(X1=i, X2=0)+P(X1=i, X2=1), i=0, 1, 2, 3.
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 Joint distribution offers more information, e.g.,

When not observing X1, the distribution of X2 is: 

P(X2=0)=1/2, P(X2=1)=1/2  marginal distribution

When X1 was observed, say X1=1, the distribution of 

X2 is: P(X2=0|X1=1)=(2/8)/(3/8)=2/3 and 

P(X2=1|X1=1)=(1/8)/(3/8)=1/3  the calculation

requires the knowing of joint distribution

 (X1, X2) and (X1’, X2’) have identical marginal 

distributions but different joint distributions.

When the marginal distributions are given, the 

corresponding joint distribution is still unknown. There 

could be many possible different joint distributions. 

(A special case: X1, …, Xn are independent.)

• We can characterize the joint distribution of X in terms of its

1.Joint Cumulative Distribution Function (joint cdf)

2.Joint Probability Mass (Density) Function (joint pmf or pdf)

3.Joint Moment Generating Function (joint mgf, Chapter 7)
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Joint Cumulative Distribution Function

 Definition. The joint cdf of X=(X1, …, Xn) is defined as

 Theorem. Suppose that FX is a joint cdf. Then,

(i)   0 
 FX(x1, …, xn) 
 1, for −∞<xi<∞, i=1, …, n.

(ii) 

FX(x1, . . . , xn) = P (X1 
 x1, X2 
 x2, . . . , Xn 
 xn).
X1

X2

limx1,x2,···,xn→∞ FX(x1, . . . , xn) = 1

X1

X2

X1

X2

X1

X2

X1

X2

lim
xi→−∞

FX(x1, . . . , xn) = 0.

Proof.

(iii) For any i∈{1, …, n}, 

Proof.
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(iv) FX is continuous from the right with 

respect to each of the coordinates, 

or any subset of them jointly, i.e., 

if x=(x1, …, xn) and zm=(z1m, …, znm) 

such that                then 

X1

X2

zm ↓ x,

FX(zm) ↓ FX(x).

X1

X2

(v) If                                      then 

X1

X2

(vi) If                                        then x1 
 x′1 and x2 
 x′2,

FX(x1, . . . , xn) 
 FX(t1, . . . , tn) 
 FX(x
′
1, . . . , x

′
n).

where                                                  When n=2, we haveti ∈ {xi, x
′
i}, i = 1, 2, . . . , n.

xi 
 x′i, i = 1, . . . , n,

FX1,X2(x1, x2) 


�
FX1,X2(x1, x

′
2)

FX1,X2(x
′
1, x2)

�

 FX1,X2(x

′
1, x

′
2).

X1

X2
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In particular, let                                      we getx′1 ↑ ∞ and x′2 ↑ ∞,

P (x1 < X1 < ∞, x2 < X2 < ∞)
= 1− FX1

(x1)− FX2
(x2) + FX1,X2

(x1, x2).
X1

X2

(vii) The joint cdf of X1 , …, Xk, k < n, is

FX1(x) = P (X1 
 x)
= lim

x2,x3,···,xn→∞
FX(x, x2, x3, . . . , xn).

In particular, the marginal cdf of X1 is

X1

X2

X1

X2

 Theorem. A function FX(x1, …, xn) can be a joint cdf if FX

satisfies (i)-(v) in the previous theorem.
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Joint Probability Mass Function

 Definition. Suppose that X1, …, Xn are discrete random 

variables. The joint pmf of X=(X1, …, Xn) is defined as

 Theorem. Suppose that pX is a joint pmf. Then,

(a) 

pX(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn).

pX(x1, . . . , xn) ≥ 0, for −∞ < xi < ∞, i = 1, . . . , n.

(b) There exists a finite or countably infinite set ℝn such 

that 

(c)

(d) For A⊂ℝn, 

X ⊂

pX(x1, . . . , xn) = 0, for (x1, . . . , xn) /∈ X .

x∈X pX(x) = 1, where x = (x1, . . . , xn).

(e) The joint pmf of X1 , …, Xk, k < n, is

pX1,...,Xk
(x1, . . . , xk) = P (X1 = x1, . . . , Xk = xk)

= P (X1 = x1, . . . , Xk = xk,
− ∞ < Xk+1 < ∞, . . . ,−∞ < Xn < ∞)

=
�

(x1 ,...,xn)∈X

−∞<xk+1<∞,...,−∞<xn<∞

pX(x1, . . . , xk, xk+1, . . . , xn).

X1

X2
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In particular, the marginal pmf of X1 is

pX1
(x) = P (X1 = x)

=
�

(x,x2 ,...,xn)∈X
−∞<x2<∞,...,−∞<xn<∞

pX(x, x2, x3, . . . , xn).

 Theorem. A function pX(x1, …, xn) can be a joint pmf if pX

satisfies (a)-(c) in the previous theorem.

 Theorem. If FX and pX are the joint cdf and joint pmf of X, 

then
X1

X2

To derive pX from FX, take n=2 to illustrate: 

X1

X1

X2

X2
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Joint Probability Density Function

 Definition. A function fX(x1, …, xn) can be a joint pdf if 

(1) fX(x1, …, xn)≥0, for −∞<xi<∞, i=1, …, n.

(2) 
∞
−∞ · · ·

∞
−∞ fX(x1, . . . , xn) dx1 · · · dxn = 1.

P (X ∈ A) = · · ·
A
fX(x1, . . . , xn) dx1 · · ·dxn.

X1

X2

A

 Definition. Suppose that X1, …, Xn are continuous r.v.’s. 

The joint pdf of X=(X1, …, Xn) is a function fX(x1, …, xn)
satisfying (1) and (2) above, and for any event A⊂ℝn,

 Theorem. Suppose that fX is the joint pdf of X=(X1, …, Xn). 

Then, the joint pdf of X1 , …, Xk, k < n, is

In particular, the marginal pdf of X1 is
X1

X2

fX1(x) =
∞
−∞ · · ·

∞
−∞ fX(x, x2, . . . , xn) dx2 · · · dxn.
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 Theorem. If FX and fX are the joint cdf and joint pdf of X, 

then

fX(x1, . . . , xn) =
∂n

∂x1···∂xnFX(x1, . . . , xn).

at the continuity points of fX.

• Examples.

Experiment. Two balls are drawn without replacement from a 

box with one ball labeled 1, 

two balls labeled 2, 

three balls labeled 3. 

Let X = label on the 1st ball drawn,

Y = label on the 2nd ball drawn.

 The joint pmf and marginal pmfs of (X, Y) are
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Q: The balls are drawn without replacement. Why do X (from 
1st ball) and Y (from 2nd ball) have same marginal distributions?

 Q:P(|X−Y|=1)=??

P(|X−Y|=1) = P(X=1, Y=2) + P(X=2, Y=1) 
+ P(X=2, Y=3) + P(X=3, Y=2) = 8/15.

 Q:What are the joint pmf and marginal pmfs of (X, Y) if the 

balls are drawn with replacement (LNp. 4-6)? 

p(x, y)
X

pY(y)1 2 3

Y

1 0 2/30 3/30 1/6

2 2/30 2/30 6/30 2/6

3 3/30 6/30 6/30 3/6

pX(x) 1/6 2/6 3/6

p(x, y)
X

pY(y)1 2 3

Y
1 1/36 2/36 3/36 1/6

2 2/36 4/36 6/36 2/6

3 3/36 6/36 9/36 3/6

pX(x) 1/6 2/6 3/6
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Multinomial Distribution 

 Recall. Partitions

 If n≥1 and n1, …, nm ≥ 0 are integers for which

n1 + L + nm = n,

then a set of n elements may be partitioned into m subsets

of sizes n1, …, nmin

n

n1,···,nm = n!
n1!×···×nm! ways.

 Example (LNp.2-8) : MISSISSIPPI

11
4,1,2,4 = 11!

4!1!2!4! .

 Example (Die Rolling).

 Q: If a balanced (6-sided) die is rolled 12 times, 

P(each face appears twice)=??

 Sample space of rolling the die once (basic experiment): 

Ω0 = {1, 2, 3, 4, 5, 6}.

p. 7-14

 The sample space for the 12 trials is 

Ω = Ω0 × L × Ω0 = Ω0
12

An outcome ω ∈ Ω is ω =(i1, i2, …, i12), where 

1
i1, …, i12
6.

 There are 612 possible outcomes in Ω, i.e., #Ω = 612.

 Among all possible outcomes, there are

of which each face appears twice.

P(each face appears twice) = 

12
2,2,2,2,2,2 =

12!
(2!)6

12!
(2!)6

1
6

12
.

 Generalization. 

 Consider a basic experiment which can result in one of m

types of outcomes. Denote its sample space as 

Ω0 = {1, 2, …, m}. 

Let pi = P(outcome i appears in a basic experiment),

then, (i) p1, …, pm ≥ 0, and 

(ii) p1 + L + pm = 1.
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 Repeat the basic experiment n times. Then, the sample 

space for the n trials is 

Ω = Ω0 × L × Ω0 = Ω0
n

Let Xi = # of trials with outcome i, i=1, …, m,

Then, (i) X1, …, Xm: Ω → ℝ, and 

(ii) X1 + L + Xm = n.

 The joint pmf of X1, …, Xm is

pX(x1, . . . , xm) = P (X1 = x1, . . . , Xm = xm)
= n

x1,···,xm px11 × · · · × pxmm .

for x1, …, xm ≥ 0 and x1 + L + xm = n.

Proof. The probability of any sequence with xi i’s is

and there are

such sequences.

px11 × · · · × pxmm ,

n

x1,···,xm
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 The distribution of a random vector X=(X1, … , Xm) with 

the above joint pmf is called the multinomial distribution 

with parameters n, m, and p1, …, pm, denoted by 

Multinomial(n, m, p1, …, pm). 

 The multinomial distribution is called after the 

Multinomial Theorem:

(a1 + · · ·+ am)
n

=
�

xi∈{0,...,n}; i=1,...,m

x1+···+xm=n

�
n

x1, · · · , xm

�
ax11 × · · · × axmm .

 It is a generalization of the binomial distribution from 

2 types of outcomes to m types of outcomes. 

 Some Properties.

 BecauseXi = n – (X1+L+Xi−1+Xi+1+L+Xm), and

pi = 1 – (p1+L+ pi−1+pi+1+L+pm),

WLOG, we can write 

(X1,…, Xm−1, Xm) → (X1,…, Xm−1, n−(X1+L+Xm−1)) 
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 Marginal Distribution. Suppose that

(X1, … , Xm) ~ Multinomial(n, m, p1, …, pk, pk+1,…, pm).

For 1
k<m, the distribution of 

(X1, …, Xk, Xk+1+ L +Xm) 

is Multinomial(n, k+1, p1, …, pk, pk+1+L+pm).

In particular, Xi ~ Binomial(n, pi)

 Mean and Variance.

E(Xi)=npi and Var(Xi)=npi(1−pi)
for i = 1, …, m.

Q: P(Y ≥2X or X≥2Y)=??

 The event {Y ≥ 2X}∪{X ≥ 2Y} is

X

Y

Example. 

 Suppose that the joint pdf of 2 continuous r.v.’s (X, Y) is

f(x, y) =
λ2e−λ(x+y), x ≥ 0, y ≥ 0,
0, otherwise.
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 So, P(Y ≥2X or X≥2Y)=P(Y ≥2X)+P(X≥2Y)=2/3 because

and similarly, we can get P(X≥2Y)=1/3 (exercise).

Example. Consider two continuous r.v.’s X and Y.

 Uniform Distribution over a region D. If 

D⊂ℝ2 and 0 < α=Area(D) < ∞, then

X

Y

is a joint pdf when c=1/α, called the uniform pdf over D.

 Let D= {(x, y): x2+y2
1}, then α=Area(D)=π
and

is a joint pdf.

X

Y

f(x, y) = 1
π
1D(x, y)
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 Marginal distribution. The marginal pdf of X is 

for −1
x
 1, and fX(x)=0, otherwise. 

(exercise: Find the marginal distribution of Y.)

fX(x) =

√
1−x2

−
√
1−x2

1

π
dy =

2

π
1− x2 X

Y

 Reading: textbook, Sec 6.1

Independent Random Variables
• Recall. 

If joint distribution is given, marginal distributions are known. 

The converse statement does not hold in general. 

However, when random variables are independent, 

marginal distributions + independence ⇒ joint distribution. 
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• Definition. The n jointly distributed r.v.’s X1, …, Xn are 

called (mutually) independent if and only if for any

(measurable) sets Ai⊂ℝ, i=1, …, n, the events 

{X1∈A1}, …, {Xn∈An}

are (mutually) independent. That is, 

P (Xi1 ∈ Ai1 , Xi2 ∈ Ai2 , · · · , Xik ∈ Aik)
= P (Xi1 ∈ Ai1) × P (Xi2 ∈ Ai2) × · · · × P (Xik ∈ Aik),

for any 1
i1<i2<L<ik
n; k=2, …, n.

 If X1, …, Xn are independent, for 1
k<n, 

P (Xk+1 ∈ Ak+1, . . . , Xn ∈ An|X1 ∈ A1, . . . , Xk ∈ Ak)
= P (Xk+1 ∈ Ak+1, . . . , Xn ∈ An)

provided that 

 In other words, the values of X1, …, Xk do not carry any 

information about the distribution of Xk+1, …, Xn.

P (X1 ∈ A1, . . . , Xk ∈ Ak) > 0.
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• Theorem (Factorization Theorem). The random variables 

X=(X1, …, Xn) are independent if and only if one of the following 

conditions holds.

(1)                                                                               where FX is 

the joint cdf of X and FXi
is the marginal cdf of Xi for i=1,…,n.

FX(x1, . . . , xn) = FX1
(x1) × · · · × FXn

(xn),

pX(x1, . . . , xn) = pX1(x1) × · · · × pXn
(xn),

fX(x1, . . . , xn) = fX1
(x1) × · · · × fXn

(xn),

(2) Suppose that X1, …, Xn are discrete random variables. 

where pX is the 

joint pmf of X and pXi
is the marginal pmf of Xi for i=1,…,n.

(3) Suppose that X1, …, Xn are continuous random variables. 

where fX is the 

joint pdf of X and fXi
is the marginal pdf of Xi for i=1,…,n.

Proof.

p. 7-22

X1

X2
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Remark. It follows from the Multiplication Law (LNp.4-11) that

The independence can be established sequentially.

Example. If A1, …, An ⊂ Ω are independent events, then 

are independent random variables. For example, 1A1 , . . . , 1An,
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P (1A1 = 1, 1A2 = 0, 1A3 = 1)
= P (A1 ∩ Ac2 ∩ A3) = P (A1)P (A

c
2)P (A3)

= P (1A1 = 1)P (1A2 = 0)P (1A3 = 1).

Theorem. If X=(X1, …, Xn) 

are independent and 

Yi = gi(Xi), i=1, …, n,

then 

Y1, …, Yn are independent.

Proof. 

Let i=1, …, n, thenAi(y) = {x : gi(x) 
 y},
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exist univariate functions gi(x), i=1, …, n, such that

(a) when X1, …, Xn are discrete r.v.’s with joint pmf pX,

pX(x1, …, xn) ∝ g1(x1)×L×gn(xn), −∞<xi<∞, i=1,…,n.

(b) when X1, …, Xn are continuous r.v.’s with joint pdf fX,

fX(x1, …, xn) ∝ g1(x1)×L×gn(xn), −∞<xi<∞, i=1,…,n.

Sketch of proof for (b).
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Example.

 If the joint pdf of (X, Y) is

and f(x, y)=0, otherwise, i.e.,

then X and Y are independent. Note that the region in which 

the joint pdf is nonzero can be expressed in the form

{(x, y): x∈A, y∈B}.

f(x, y) ∝ e−2xe−3y, 0 < x < ∞, 0 < y <∞,

X

Y

 Suppose that the joint pdf of (X, Y) is

and f(x, y)=0, otherwise, i.e., 

X and Y are not independent.

f(x, y) ∝ xy, 0 < x < 1, 0 < y < 1, 0 < x+ y < 1,
X

Y
D
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Q: For independent X and Y, how should their joint pdf/pmf

look like?

• Q: Given the joint distribution of 

X=(X1, …,Xn),  how to find the 

distribution of Y=(Y1, …,Yk), where 

Y1=g1(X1, …,Xn) : ℝn→ℝ, 

…, 

Yk=gk(X1, …,Xn) : ℝn→ℝ,

denoted by 

Y=g(X), g:ℝn→ℝk.

Transformation

X1

X3
X2

Y1

Y2

Y=g(X)

 Reading: textbook, Sec 6.2

X

Y

X

Y
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The following methods are useful:

1.Method of Events (→ pmf)

2.Method of Cumulative Distribution Function

3.Method of Probability Density Function

4.Method of Moment Generating Function (chapter 7)

Method of Events

 Theorem. The distribution of Y is 

determined by the distribution of 

X as follows: for any event B⊂ℝk,

PY(Y ∈ B) = PX(X ∈ A),

where A = g−1(B) ⊂ ℝn. X1

X3

X2

Y1

Y2

Y=g(X)

 Example. Let X be a discrete random vector taking values 

xi=(x1i, x2i, …, xni), i=1, 2, …, 

(i.e.,     = {x1, x2, x3, …}) with joint pmf pX. 

Then, Y=g(X) is also a discrete random vector. 
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the joint pmf of Y, by taking B={yj}, we have

A = {xi ∈ : g(xi) = yj}

and hence, the joint pmf of Y is

 Example. Let X and Y be random variables with the joint 

pmf p(x, y). Find the distribution of Z=X+Y. 

 {Z=z} = {(X, Y) ∈ {(x, y): x+y=z}}

X

Y

 When X and Y are independent,

p(x, y) = pX(x)pY(y),

So,

which is referred to as the convolution of pX and pY.

 (Exercise) Z=X−Y

p. 7-30
 Theorem. If X and Y are independent, and 

X~ Poisson(λ1), Y~ Poisson(λ2) , 

then Z = X + Y ~ Poisson(λ1+λ2).

Proof. For z=0, 1, 2, …, the pmf pZ(z) of Z is

X

Y

Z

 Corollary. If X1, …, Xn are independent, and 

Xi~Poisson(λi), i=1, …, n, 

then X1+L+Xn ~ Poisson(λ1+L+λn).

• • •× × ×× × × ×× × ×

Proof. By induction (exercise).
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Method of cumulative distribution function

1.In the (X1, …, Xn) space, find the region that corresponds to 

{Y1
y1, …, Yk
yk}.

2.Find FY(y1, …, yk)=P(Y1
y1, …, Yk
yk) by summing the 

joint pmf or integrating the joint pdf of X1, …, Xn over the 

region identified in 1.

3.(for continuous case) Find the joint pdf of Y by 

differentiating FY(y1, …, yk), i.e., 

 Example. X and Y are random variables with joint pdf

f(x, y). Find the distribution of Z=X+Y.

 {Z 
 z} = {(X, Y) ∈ {(x, y): x+y 
z}}. So,
X

Y

S

T
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 When X and Y are independent,

f(x, y) = fX(x)fY(y).

So,

which is referred to as the convolution of FX and FY, and

fZ(z) =
∞
−∞ fX(x)fY (z − x) dx

which is referred to as the convolution of fX and fY.

 (exercise) Z=X−Y.

fZ(z) =
d
dz
FZ(z) =

∞
−∞ f(x, z − x)dxand

 Theorem. If X and Y are independent, and 

X~ Gamma(α1, λ), Y ~ Gamma(α2, λ), 

then 

Z = X + Y ~ Gamma(α1+α2, λ).

X

Y

Z

FZ (z) =
∞
−∞

z−x
−∞ fX(x)fY (y) dydx

=
∞
−∞

z−x
−∞ fY (y) dy fX (x) dx

=
∞
−∞ FY (z − x)fX(x) dx
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Proof. For z≥0, 

 Corollary. If X1, …, Xn are independent, and 

Xi~ Gamma(αi, λ), i=1, …, n, 

then X1 + L + Xn ~ Gamma(α1+L +αn, λ).

Proof. By induction (exercise).

and for z < 0.fZ(z) = 0,

 Corollary. If X1, …, Xn are independent, and 

Xi ~ Exponential(λ), i=1, …, n, 

then X1 + L + Xn ~ Gamma(n, λ).

Proof. (exercise).
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 Theorem. If X1, …, Xn are independent, and 

Xi~ Normal(µi, σi2), i=1, …, n, 

then X1 + L + Xn ~ Normal(µ1+L+µn, σ1
2+L+σn2).

Proof. (exercise).

 Example. X and Y are random variables with joint pdf

f(x, y). Find the distribution of Z=Y/X.

 Let Qz = {(x, y) : y/x 
 z}
= {(x, y) : x < 0, y ≥ zx}

∪ {(x, y) : x > 0, y 
 zx}

X

Y

then, FZ(z) = Qz
f(x, y) dxdyS

T
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and,

 When X and Y are independent,

f(x, y) = fX(x)fY(y).

and,

So,

 (exercise) Z=XY

 If X and Y are independent, 

X ~ exponential(λ1), and Y ~ exponential(λ2), 

Let Z=Y/X. The pdf of Z is 

X

Y

Z

for z≥0, and 0 for z < 0.

p. 7-36And, the cdf of Z is

for z≥0, and 0 for z < 0.

Y=(Y1, …, Yn)= g(X), 

where g is 1-to-1, so that its inverse exists and is denoted by

x=g−1(y) = w(y) = (w1(y), w2(y), …, wn(y)).

Assume w have continuous partial derivatives. Let

Method of probability density function

 Theorem. Let X=(X1, …, Xn) be continuous random 

variables with the joint pdf fX(x1, …, xn). Let
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Then fY(y) = fX(g−1(y)) × |J|,

for y s.t. y=g(x) for some x, and fY(y)=0, otherwise.

Proof. 

(Q: What is the role of |J|?) 
Y1

Y2

Y=g(X)

X1

X2

It then follows from an exercise in advanced calculus that 

fY(y1, . . . , yn) =
∂n

∂y1···∂ynFY(y1, . . . , yn)

= fX(w1(y), . . . , wn(y)) × |J |.

Remark. When the dimensionality of Y (denoted by k) is 

less than n, we can choose another n−k transformations Z

such that 

(Y, Z)=g(X) 

satisfy the assumptions in above theorem. 
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 Example. X1 and X2 are random variables with joint pdf

fX(x1, x2). Find the distribution of Y1=X1/(X1+X2).

 Let Y2=X1+X2, then

Since ∂w1
∂y1

= y2,
∂w1
∂y2

= y1,
∂w2
∂y1

= −y2,
∂w2
∂y2

= 1− y1,

x1 = y1y2 ≡ w1(y1, y2)
x2 = y2 − y1y2 ≡ w2(y1, y2).

By integrating out the last n−k arguments in the joint 

pdf of (Y, Z), the joint pdf of Y can be obtained.

Therefore,

and,

fY(y1, y2) = fX(y1y2, y2 − y1y2)|y2|,

J =
y2 y1

−y2 1− y1
= y2 − y1y2 + y1y2 = y2, and |J | = |y2|.
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Proof. For x1, x2 ≥ 0, the joint pdf of X is

fX(x1, x2) =
λα1

Γ(α1)
xα1−11 e−λx1 × λα2

Γ(α2)
xα2−12 e−λx2

= λ
α1+α2

Γ(α1)Γ(α2)
xα1−11 xα2−12 e−λ(x1+x2).

X1

X2

Y1

Y2

 Theorem. If X1 and X2 are independent, and 

X1 ~ Gamma(α1, λ), X2 ~ Gamma(α2, λ), 

then Y1=X1/(X1+X2) ~ Beta(α1, α2).

So, for 0
y1
 1, 

and                      otherwise. fY1(y1) = 0,
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 Example. Suppose that X and Y have a uniform distribution 

over the region D={(x, y): x2+y2
1}, i.e., their joint pdf is

Find the joint distribution of (R, Θ) and examine whether 

R and Θ are independent, where (R, Θ) is the 

polar coordinate representation of (X, Y), i.e.,

 Since

X

Y

R

Θ

X = R cos(Θ) ≡ w1(R,Θ),
Y = R sin(Θ) ≡ w2(R,Θ).

∂w1
∂r

= cos(θ), ∂w1
∂θ

= −r sin(θ),
∂w2
∂r

= sin(θ), ∂w2
∂θ

= r cos(θ),

fX,Y (x, y) =
1
π
1D(x, y).

X

Y

 For 0
r
1 and 0
θ
2π, the joint pdf of (R, Θ) is 

and                          otherwise.fR,Θ(r, θ) = 0,
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 By the theorem in LNp.7-25, (R, Θ) are independent.

 Example. Let X1, …, Xn be independent and identically 

distributed (i.e., i.i.d.) exponential(λ). Let

Yi = X1 + L + Xi, i = 1, …, n.

Find the distribution of Y=(Y1, …, Yn). 

[Note. It has been shown that Yi ~ Gamma(i, λ), i=1, …, n.]

 The joint pdf of X1, …, Xn is

for 0
xi<∞, i=1, …, n.
X1

X2

Y1

Y2

 Since

we have
∂wi
∂yj

=






1, if j = i,
−1, if j = i − 1,
0, otherwise,
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 For 0 
 y1 
 y2 
 L 
 yi−1 
 yi 
 yi+1 
 L 
 yn < ∞, 

and                                   otherwise.fY(y1, . . . , yn) = 0,

J =

									

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
0 0 0 · · · 1

									

= 1, and |J | = 1.

for y≥0, and                    otherwise.fYi(y) = 0,

 The marginal pdf of Yi is
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Method of moment generating function.

 Based on the uniqueness theorem of moment generating 

function to be explained later in Chapter 7

 Especially useful to identify the distribution of sum of 

independent random variables. 

• Order Statistics

• • • • ••
X1X3X4 X2 X6 X5

X(1) X(6)X(5)X(4)X(3)X(2)

ℝ

Definition. Let X1, …, Xn be random variables. We 

sort the Xi’s and denote by 

X(1) 
 X(2) 
 L 
 X(n)

the order statistics. Using the notation,
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X(i) = ith-smallest value in X1, …, Xn, i=1, 2, …, n,

X(1) = min(X1, …, Xn ) is the minimum,

X(n) = max(X1, …, Xn ) is the maximum,

R ≡ X(n) − X(1) is called range,

Sj ≡ X(j) − X(j−1), j=2, …, n, are called jth spacing.

 Remark. In the discussion about order statistics, we only

consider the case that X1, …, Xn are i.i.d. 

 Note. Although X1, …, Xn are independent, their order 

statistics X(1), X(2), L, X(n) are not independent in general.

Q: What are the joint distributions of various order statistics

and their marginal distributions?

Definition. X1, …, Xn are called i.i.d. (independent, identically 

distributed) with cdf F/pdf f/pmf p if the random variables 

X1, …, Xn are independent and have a common marginal 

distribution with cdf F/pdf f/pmf p. 
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Theorem. Suppose that X1, …, Xn are i.i.d. with cdf F. 

1.The cdf of X(1) is 1−[1−F(x)]n, and the cdf of X(n) is [F(x)]n.

2.If X are continuous and F has a pdf f, then the pdf of X(1) is 

nf(x)[1−F(x)]n−1, and the pdf of X(n) is nf(x)[F(x)]n−1.

Proof. By the method of cumulative distribution function,
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 Graphical interpretation for the pdfs of X(1) and X(n).

 If n=5 and F is exponential with λ = 1 per month, then 

 Example. n light bulbs are placed in service at time t=0, 

and allowed to burn continuously. Denote their lifetimes by 

X1, …, Xn, and suppose that they are i.i.d. with cdf F. 

If burned out bulbs are not replaced, then the room goes dark

at time Y = X(n) = max(X1, …, Xn).

F(x) = 1−e−x, for x≥ 0, and 0, for x< 0. 

 The cdf of Y is

FY(y) = (1−e−y)5, for y≥ 0, and 0, for y< 0,

and its pdf is 5(1−e−y)4e–y, for y≥ 0, and 0, for y< 0.
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 The probability that the room is still lighted after two 

months is P(Y > 2) = 1–FY(2) = 1−(1−e−2)5.

Theorem. Suppose that X1, …, Xn are i.i.d. with pmf p/pdf f. 
Then, the joint pmf/pdf of X(1) , …, X(n) is

for x1
x2
L
xn, and 0 otherwise.

Proof. For x1
x2
L
xn, 

or
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 Q: Examine whether X(1) , …, X(n) are 

independent using the Theorem in LNp.7-25.

Theorem. If X1, …, Xn are i.i.d. with cdf F and pdf f, then

1.The pdf of the kth order statistic X(k) is 

2.The cdf of X(k) is

FX(k)
(x) =

n

m=k
n

m
[F (x)]m[1− F (x)]n−m.

X(1)

X(2)
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X(k)

Theorem. If X1, …, Xn are i.i.d. with cdf F and pdf f, then 

1.The joint pdf of X(1) and X(n) is 

for s
t, and 0 otherwise.

2.The pdf of the range R = X(n)–X(1) is

for r≥0, and 0 otherwise.

fX(1),X(n)
(s, t) = n(n − 1)f(s)f(t)[F (t) − F (s)]

n−2
,

fR(r) =
∞
−∞ fX(1) ,X(n)

(u, u+ r) du,
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Theorem. If X1, …, Xn are i.i.d. with cdf F and pdf f, then

1.The joint pdf of X(i) and X(j), where 1
i<j
n, is 

for s
t, and 0 otherwise.

 Reading: textbook, Sec 6.3, 6.6, 6.7

fSj (s) =

∞
−∞ fX(j−1) ,X(j)

(u, u+ s) du,

2.The pdf of the jth spacing Sj = X(j)–X(j−1) is

for s ≥ 0, and zero otherwise.
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Conditional Distribution

• Definition. Let X (∈ℝn) and Y (∈ℝm) be discrete

random vectors and (X, Y) have a joint pmf pX,Y(x, y), 

then the conditional joint pmf of Y given X=x is 

defined as

if pX(x)>0. The probability is defined to be zero if pX(x)=0.

X

Y

Some Notes. 

 For each fixed x, pY|X(y|x) is a joint pmf for y, since

y pY|X(y|x) = 1
pX(x) y pX,Y(x, y) =

1
pX(x)

× pX(x) = 1.

 For an event B of Y, the probability that Y∈B given X=x is

P (Y ∈ B|X = x) = u∈B pY|X(u|x).
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 The conditional joint cdf of Y given X=x can be similarly 

defined from the conditional joint pmf pY|X(y|x), i.e., 

Theorem. Let X1, …, Xm be independent and 

Xi~Poisson(λi), i=1, …, m. 

Let Y=X1+L+Xm, then

(X1, …, Xm|Y=n) ~ Multinomial(n, m, p1, …, pm),

where pi = λi/(λ1+L+λm) for i=1, …, m.

• • •× × ×× × × ×× × ×

Proof. The joint pmf of (X1, …, Xm, Y) is

pX,Y (x1, . . . , xm, n) = P ({X1 = x1, . . . , Xm = xm} ∩ {Y = n})

=

�
P (X1 = x1, . . . , Xm = xm), if x1 + · · ·+ xm = n,
0, if x1 + · · ·+ xm �= n.



p. 7-53

Furthermore, the distribution of Y is Poisson(λ1+L+λm), i.e.,

pY (n) = P (Y = n) =
e−(λ1+···+λm)(λ1+···+λm)n

n!
.

Therefore, for x=(x1, …, xm) wheres xi∈{0,1,2, …}, i=1, …, m, 

and x1+L+xm=n, the conditional joint pmf of X given Y=n is

pX|Y (x|n) =
pX,Y (x1,...,xm,n)

pY (n)
=

m

i=1

e
−λi λ

xi
i

xi!

e−(λ1+···+λm)(λ1+···+λm)n

n!

= n!
x1!×···×xm! × λ1

λ1+···+λm

x1

× · · · × λm
λ1+···+λm

xm

.

• Definition. Let X (∈ℝn) and Y (∈ℝm) be 

continuous random vectors and (X, Y) 

have a joint pdf fX,Y(x, y), then the 

conditional joint pdf of Y given X=x is 

defined as

if fX(x)>0, and 0 otherwise.

X

Y

p. 7-54Some Notes. 

 P(X=x)=0 for a continuous random vector X.

 The justification of fY|X(y|x) comes from

 For each fixed x, fY|X(y|x) is a joint pdf for y, since

P (Y ∈ B|X = x) =
B
fY|X(y|x) dy.

 The conditional joint cdf of Y given X=x can be similarly 

defined from the conditional joint pdf fY|X(y|x), i.e., 

 For an event B of Y, we can write
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for 0
x, y< ∞, then 

and, P (Y > c|X = x) =
∞
c

2(1+x)2

(1+x+y)3
dy

= −
(1+x)2

(1+x+y)2

∞

y=c
=

(1+x)2

(1+x+c)2 .

for 0
x< ∞. So, 
fY |X(y|x) =

f(x,y)
fX(x)

= 2(1+x)2

(1+x+y)3
,

• Mixed Joint Distribution: Definition of conditional distribution can 

be similarly generalized to the case in which some random variables 

are discrete and the others continuous (see a later example).

• Theorem (Multiplication Law). Let X and Y be random vectors 

and (X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y), then

pX,Y(x, y) = pY|X(y|x) × pX(x),

fX,Y(x, y) = fY|X(y|x) × fX(x).

or
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• Theorem (Law of Total Probability). Let X and Y be random 

vectors and (X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y), then

fY(y) =
∞
−∞ fY|X(y|x)fX(x) dx.

pY(y) =
∞
x=−∞ pY|X(y|x)pX(x), or

Proof. By the definition of marginal distribution 

and the multiplication law.

• Theorem (Bayes Theorem). Let X and Y be random vectors 

and (X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y), then

Proof. By the definition of conditional distribution.

Y

X

pX|Y(x|y) =
pY|X(y|x)pX(x)

∞

x=−∞
pY|X(y|x)pX(x)

,

fX|Y(x|y) =
fY|X(y|x)fX(x)

∞

−∞
fY|X(y|x)fX(x) dx

.

or

Proof. By the definition of conditional distribution, 

multiplication law, and the law of total probability.

Y

X
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Example. 

 Suppose that X ~ Uniform(0, 1), and

(Y1, …, Yn|X=x) are i.i.d. with Bernoulli(x), i.e.,

for y1, …, yn∈{0, 1}. 

 By the multiplication law, for y1, …, yn∈{0, 1} and 0<x<1, 

pY|X(y1, . . . , yn|x) = xy1+···+yn(1− x)n−(y1+···+yn),

pY,X(y1, . . . , yn, x) = x
y1+···+yn (1− x)n−(y1+···+yn).

 Suppose that we observed Y1=1, …, Yn=1. 

 By the law of total probability,

(LNp.4-14)1st 2nd
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for 0<x<1, i.e., (X|Y1=1, …, Yn=1) ~ Beta(n+1, 1).

(cf., marginal distribution of X ~ Uniform(0, 1)=Beta(1, 1).)

 If there were an (n+1)st Bernoulli trial Yn+1,

 (exercise) In general, it can be shown that

(X|Y1=y1, …, Yn=yn) ~ Beta((y1+L+yn)+1,n−(y1+L+yn)+1).

• Theorem (Conditional Distribution & Independent). Let X and Y be 

random vectors and (X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y). 

Then, X and Y are independent, i.e., 

fX|Y(x|Y1 = 1, . . . , Yn = 1)

=
pY|X(1, . . . , 1|x)fX(x)

pY(1, . . . , 1)
= (n+ 1)xn.

 And, by Bayes’ Theorem,
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pY|X(y|x) = pY(y),

fY|X(y|x) = fY(y).

or

 Reading: textbook, Sec 6.4, 6.5

Proof. By the definition of conditional distribution.

 offers information about the 

distribution of Y when X=x. 

offers information about the 

distribution of Y when X not observed. 

or

if and only if

pX,Y(x, y) = pX(x) × pY(y),

fX,Y(x,y) = fX(x) × fY(y),

Intuition. 

 The 2 graphs about the joint pmf/pdf of independent r.v.’s 

in LNp.7-27


