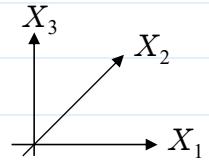
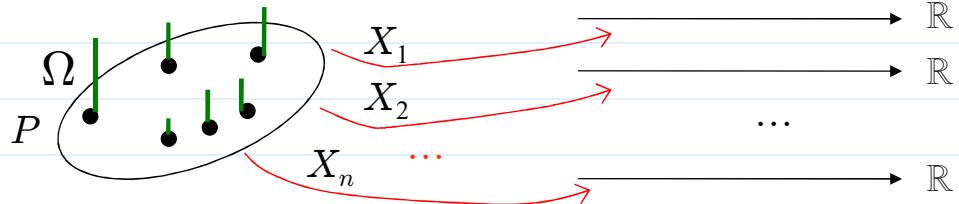


Jointly Distributed Random Variables

- Recall. In Chapters 4 and 5, focus on univariate random variable.

➤ However, often a single experiment will have more than one random variables which are of interest.



➤ Definition. Given a sample space Ω and a probability measure P defined on the subsets of Ω , random variables

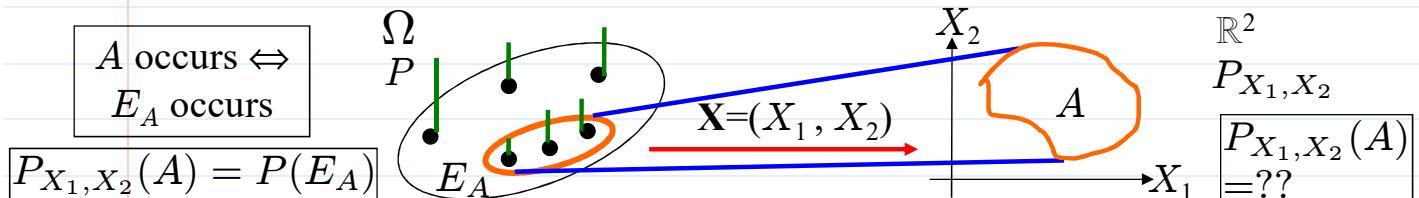
$$X_1, X_2, \dots, X_n: \Omega \rightarrow \mathbb{R}$$

are said to be jointly distributed.

- We can regard n jointly distributed r.v.'s as a random vector $\mathbf{X} = (X_1, \dots, X_n): \Omega \rightarrow \mathbb{R}^n$.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Q: For $A \subset \mathbb{R}^n$, how to define the probability of $\{\mathbf{X} \in A\}$ from P ?

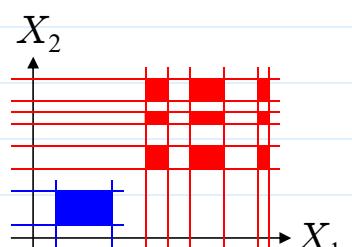


➤ For $A \subset \mathbb{R}^n$,

$$\begin{aligned} P_{X_1, \dots, X_n}(A) &= P(\{\omega \in \Omega | (X_1(\omega), \dots, X_n(\omega)) \in A\}) \end{aligned}$$

➤ For $A_i \subset \mathbb{R}$, $i=1, \dots, n$,

$$\begin{aligned} P_{X_1, \dots, X_n}(X_1 \in A_1, \dots, X_n \in A_n) &= P(\{\omega \in \Omega | X_1(\omega) \in A_1\} \cap \dots \cap \{\omega \in \Omega | X_n(\omega) \in A_n\}) \end{aligned}$$



➤ Definition. The probability measure of \mathbf{X} ($P_{\mathbf{X}}$, defined on subsets of \mathbb{R}^n) is called the joint distribution of X_1, \dots, X_n . The probability measure of X_i (P_{X_i} , defined on subsets of \mathbb{R}) is called the marginal distribution of X_i .

- Q: Why need joint distribution? Why are marginal distributions not enough?

➤ Example (Coin Tossing, Toss a fair coin 3 times, LNp.5-3).

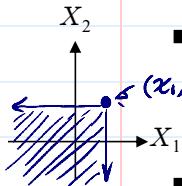
X_2 : # of head on 1 st toss	X_1 : total # of heads			
	0 (1/8)	1 (3/8)	2 (3/8)	3 (1/8)
0 (1/2)	1/8 [1/16]	2/8 [3/16]	1/8 [3/16]	0 [1/16]
1 (1/2)	0 [1/16]	1/8 [3/16]	2/8 [3/16]	1/8 [1/16]

- blue numbers: joint distribution of X_1 and X_2
- (black numbers): marginal distributions
- [red numbers]: joint distribution of another (X_1' , X_2')
- Some findings:
 - When joint distribution is given, its corresponding marginal distributions are known, e.g.,
 - ◆ $P(X_1=i)=P(X_1=i, X_2=0)+P(X_1=i, X_2=1)$, $i=0, 1, 2, 3$.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- (X_1, X_2) and (X_1', X_2') have identical marginal distributions but different joint distributions.
 - ◆ When the marginal distributions are given, the corresponding joint distribution is still unknown. There could be many possible different joint distributions.
(A special case: X_1, \dots, X_n are independent.)
 - Joint distribution offers more information, e.g.,
 - ◆ When not observing X_1 , the distribution of X_2 is:
 $P(X_2=0)=1/2, P(X_2=1)=1/2 \Rightarrow$ marginal distribution
 - ◆ When X_1 was observed, say $X_1=1$, the distribution of X_2 is: $P(X_2=0|X_1=1)=(2/8)/(3/8)=2/3$ and $P(X_2=1|X_1=1)=(1/8)/(3/8)=1/3 \Rightarrow$ the calculation requires the knowing of joint distribution
- We can characterize the joint distribution of \mathbf{X} in terms of its
 1. Joint Cumulative Distribution Function (joint cdf)
 2. Joint Probability Mass (Density) Function (joint pmf or pdf)
 3. Joint Moment Generating Function (joint mgf, Chapter 7)

► Joint Cumulative Distribution Function



■ Definition. The joint cdf of $\underline{X} = (X_1, \dots, X_n)$ is defined as

$$F_{\underline{X}}(x_1, \dots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n).$$

■ Theorem. Suppose that $F_{\underline{X}}$ is a joint cdf. Then,

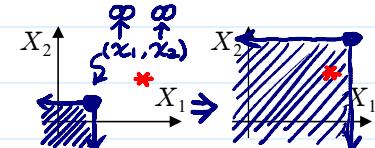
$$(i) \quad 0 \leq F_{\underline{X}}(x_1, \dots, x_n) \leq 1, \text{ for } -\infty < x_i < \infty, i=1, \dots, n.$$

$$(ii) \quad \lim_{x_1, x_2, \dots, x_n \rightarrow \infty} F_{\underline{X}}(x_1, \dots, x_n) = 1$$

Proof. Let $z_{im} \uparrow \infty, 1 \leq i \leq n$.

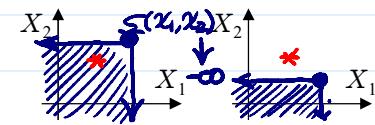
$$\text{Let } A_m = (-\infty, z_{1m}] \times \dots \times (-\infty, z_{nm}].$$

$$\text{Then, } A_m \uparrow \mathbb{R}^n \Rightarrow \lim P(A_m) = P(\mathbb{R}^n) = 1.$$



(iii) For any $i \in \{1, \dots, n\}$,

$$\lim_{x_i \rightarrow -\infty} F_{\underline{X}}(x_1, \dots, x_n) = 0.$$

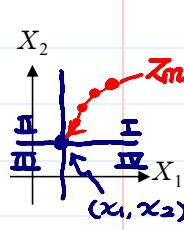


Proof. Let $z_{im} \downarrow -\infty$, for some i .

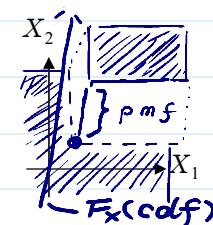
$$\text{Let } A_m = (-\infty, x_1] \times \dots \times (-\infty, z_{im}] \times \dots \times (-\infty, x_n]$$

$$\text{Then, } A_m \downarrow \emptyset \Rightarrow \lim P(A_m) = P(\emptyset) = 0.$$

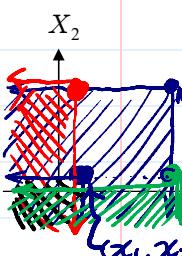
NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)



(iv) $F_{\underline{X}}$ is continuous from the right with respect to each of the coordinates, or any subset of them jointly, i.e., if $\underline{x} = (x_1, \dots, x_n)$ and $\underline{z}_m = (z_{1m}, \dots, z_{nm})$ such that $\underline{z}_m \downarrow \underline{x}$, then



$$F_{\underline{X}}(\underline{z}_m) \downarrow F_{\underline{X}}(\underline{x}).$$



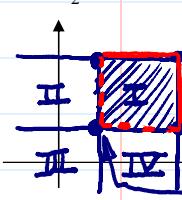
(v) If $x_i \leq x'_i, i = 1, \dots, n$, then

$$F_{\underline{X}}(x_1, \dots, x_n) \leq F_{\underline{X}}(t_1, \dots, t_n) \leq F_{\underline{X}}(x'_1, \dots, x'_n).$$

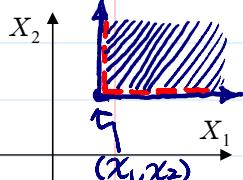
where $t_i \in \{x_i, x'_i\}, i = 1, 2, \dots, n$. When $n=2$, we have

$$F_{X_1, X_2}(x_1, x_2) \leq \begin{cases} F_{X_1, X_2}(x_1, x'_2) \\ F_{X_1, X_2}(x'_1, x_2) \end{cases} \leq F_{X_1, X_2}(x'_1, x'_2).$$

(vi) If $x_1 \leq x'_1$ and $x_2 \leq x'_2$, then



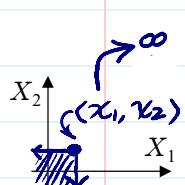
$$\begin{aligned} & P(x_1 < X_1 \leq x'_1, x_2 < X_2 \leq x'_2) \\ &= F_{X_1, X_2}(x'_1, x'_2) - F_{X_1, X_2}(x_1, x'_2) \\ &\quad - F_{X_1, X_2}(x'_1, x_2) + F_{X_1, X_2}(x_1, x_2). \end{aligned}$$



In particular, let $\underline{x'_1} \uparrow \infty$ and $\underline{x'_2} \uparrow \infty$, we get

$$P(\underline{x_1} < X_1 < \infty, \underline{x_2} < X_2 < \infty) = 1 - \underline{F_{X_1}}(x_1) - \underline{F_{X_2}}(x_2) + \underline{F_{X_1, X_2}}(x_1, x_2).$$

(vii) The joint cdf of $\underline{X_1}, \dots, \underline{X_k}$, $k < n$, is



$$\begin{aligned} \underline{F_{X_1, \dots, X_k}}(x_1, \dots, x_k) &= P(\underline{X_1} \leq x_1, \dots, \underline{X_k} \leq x_k) \\ &= P(\underline{X_1} \leq x_1, \dots, \underline{X_k} \leq x_k, \\ &\quad -\infty < \underline{X_{k+1}} < \infty, \dots, -\infty < \underline{X_n} < \infty) \\ &= \lim_{\substack{x_{k+1}, x_{k+2}, \dots, x_n \rightarrow \infty}} \underline{F_{\mathbf{X}}}(x_1, \dots, x_k, \underline{x_{k+1}}, \dots, \underline{x_n}). \end{aligned}$$

In particular, the marginal cdf of $\underline{X_1}$ is

$$\begin{aligned} \underline{F_{X_1}}(x) &= P(\underline{X_1} \leq x) \\ &= \lim_{x_2, x_3, \dots, x_n \rightarrow \infty} \underline{F_{\mathbf{X}}}(x, \underline{x_2}, \underline{x_3}, \dots, \underline{x_n}). \end{aligned}$$

- Theorem. A function $\underline{F_{\mathbf{X}}}(x_1, \dots, x_n)$ can be a joint cdf if $\underline{F_{\mathbf{X}}}$ satisfies (i)-(v) in the previous theorem.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

► Joint Probability Mass Function

- Definition. Suppose that $\underline{X_1}, \dots, \underline{X_n}$ are discrete random variables. The joint pmf of $\mathbf{X} = (X_1, \dots, X_n)$ is defined as

$$\underline{p_{\mathbf{X}}}(x_1, \dots, x_n) = P(\underline{X_1} = x_1, \dots, \underline{X_n} = x_n).$$

- Theorem. Suppose that $\underline{p_{\mathbf{X}}}$ is a joint pmf. Then,

$$(a) \underline{p_{\mathbf{X}}}(x_1, \dots, x_n) \geq 0, \text{ for } -\infty < x_i < \infty, i = 1, \dots, n.$$

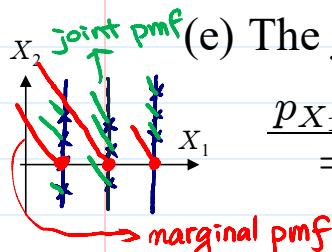
$$(b) \text{There exists a } \underline{\text{finite}} \text{ or } \underline{\text{countably infinite}} \text{ set } \mathcal{X} \subset \mathbb{R}^n \text{ such that } \underline{p_{\mathbf{X}}}(x_1, \dots, x_n) = 0, \text{ for } (x_1, \dots, x_n) \notin \mathcal{X}.$$

$$(c) \sum_{\mathbf{x} \in \mathcal{X}} \underline{p_{\mathbf{X}}}(\mathbf{x}) = 1, \text{ where } \mathbf{x} = (x_1, \dots, x_n).$$

$$(d) \text{For } A \subset \mathbb{R}^n, P(\mathbf{X} \in A) = \sum_{\mathbf{x} \in A \cap \mathcal{X}} \underline{p_{\mathbf{X}}}(\mathbf{x}).$$

- (e) The joint pmf of $\underline{X_1}, \dots, \underline{X_k}$, $k < n$, is

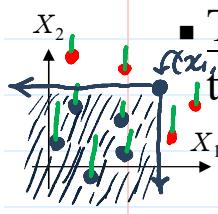
$$\begin{aligned} \underline{p_{X_1, \dots, X_k}}(x_1, \dots, x_k) &= P(\underline{X_1} = x_1, \dots, \underline{X_k} = x_k) \\ &= P(\underline{X_1} = x_1, \dots, \underline{X_k} = x_k, \\ &\quad -\infty < \underline{X_{k+1}} < \infty, \dots, -\infty < \underline{X_n} < \infty) \\ &= \sum_{\substack{(x_1, \dots, x_n) \in \mathcal{X} \\ -\infty < x_{k+1} < \infty, \dots, -\infty < x_n < \infty}} \underline{p_{\mathbf{X}}}(x_1, \dots, x_k, \underline{x_{k+1}}, \dots, \underline{x_n}). \end{aligned}$$



In particular, the marginal pmf of X_1 is

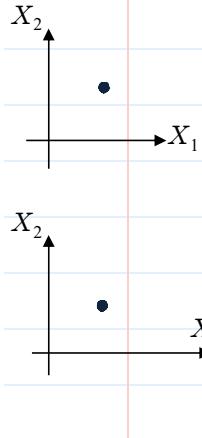
$$\underline{p_{X_1}(x)} = P(X_1 = x) = \sum_{\substack{(x, x_2, \dots, x_n) \in \mathcal{X} \\ -\infty < x_2 < \infty, \dots, -\infty < x_n < \infty}} p_{\mathbf{X}}(x, x_2, x_3, \dots, x_n).$$

- Theorem. A function $p_{\mathbf{X}}(x_1, \dots, x_n)$ can be a joint pmf if $p_{\mathbf{X}}$ satisfies (a)-(c) in the previous theorem.



- Theorem. If $F_{\mathbf{X}}$ and $p_{\mathbf{X}}$ are the joint cdf and joint pmf of \mathbf{X} , then

$$\underline{F_{\mathbf{X}}(x_1, \dots, x_n)} = \sum_{\substack{(t_1, \dots, t_n) \in \mathcal{X} \\ t_1 \leq x_1, \dots, t_n \leq x_n}} p_{\mathbf{X}}(t_1, \dots, t_n).$$



To derive $p_{\mathbf{X}}$ from $F_{\mathbf{X}}$, take $n=2$ to illustrate:

$$\begin{aligned} p_{\mathbf{X}}(x_1, x_2) &= \lim_{m \rightarrow \infty} P \left(\underline{x_1 - \frac{1}{m} < X_1 \leq x_1 + \frac{1}{m}}, \underline{x_2 - \frac{1}{m} < X_2 \leq x_2 + \frac{1}{m}} \right) \\ &= \lim_{m \rightarrow \infty} \left[F_{\mathbf{X}}(x_1 + 1/m, x_2 + 1/m) - F_{\mathbf{X}}(x_1 + 1/m, x_2 - 1/m) \right. \\ &\quad \left. - F_{\mathbf{X}}(x_1 - 1/m, x_2 + 1/m) + F_{\mathbf{X}}(x_1 - 1/m, x_2 - 1/m) \right] \\ &= F_{\mathbf{X}}(x_1, x_2) - F_{\mathbf{X}}(x_1, x_2-) - F_{\mathbf{X}}(x_1-, x_2) + F_{\mathbf{X}}(x_1-, x_2-) \end{aligned}$$

NTHU MATH 2810, 2025, Lecture Notes

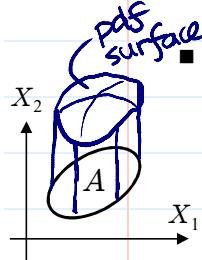
made by S.-W. Cheng (NTHU, Taiwan)

► Joint Probability Density Function

- Definition. A function $f_{\mathbf{X}}(x_1, \dots, x_n)$ can be a joint pdf if

(1) $f_{\mathbf{X}}(x_1, \dots, x_n) \geq 0$, for $-\infty < x_i < \infty$, $i=1, \dots, n$.

(2) $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \cdots dx_n = 1$.



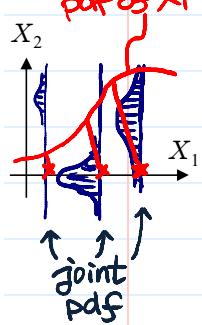
- Definition. Suppose that X_1, \dots, X_n are continuous r.v.'s.

The joint pdf of $\mathbf{X} = (X_1, \dots, X_n)$ is a function $f_{\mathbf{X}}(x_1, \dots, x_n)$ satisfying (1) and (2) above, and for any event $A \subset \mathbb{R}^n$,

$$P(\mathbf{X} \in A) = \int \cdots \int_A f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \cdots dx_n.$$

- Theorem. Suppose that $f_{\mathbf{X}}$ is the joint pdf of $\mathbf{X} = (X_1, \dots, X_n)$.

Then, the joint pdf of X_1, \dots, X_k , $k < n$, is



$$\underline{f_{X_1, \dots, X_k}(x_1, \dots, x_k)} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_k, x_{k+1}, \dots, x_n) dx_{k+1} \cdots dx_n.$$

In particular, the marginal pdf of X_1 is

$$\underline{f_{X_1}(x)} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x, x_2, \dots, x_n) dx_2 \cdots dx_n.$$

- Theorem. If $F_{\mathbf{X}}$ and $f_{\mathbf{X}}$ are the joint cdf and joint pdf of \mathbf{X} , then

$$\begin{aligned} F_{\mathbf{X}}(x_1, \dots, x_n) &= \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f_{\mathbf{X}}(t_1, \dots, t_n) dt_1 \cdots dt_n, \text{ and} \\ f_{\mathbf{X}}(x_1, \dots, x_n) &= \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{\mathbf{X}}(x_1, \dots, x_n). \end{aligned}$$

at the continuity points of $f_{\mathbf{X}}$.

- Examples.

➤ Experiment. Two balls are drawn without replacement from a box with one ball labeled 1,
two balls labeled 2,
three balls labeled 3.

Let $X = \text{label on the } 1^{\text{st}} \text{ ball drawn,}$

$Y = \text{label on the } 2^{\text{nd}} \text{ ball drawn.}$

- The joint pmf and marginal pmfs of (X, Y) are

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

$p(x, y)$		X			$p_Y(y)$
		1	2	3	
Y	1	0	2/30	3/30	1/6
	2	2/30	2/30	6/30	2/6
	3	3/30	6/30	6/30	3/6
$p_X(x)$		1/6	2/6	3/6	

Q: The balls are drawn without replacement. Why do X (from 1st ball) and Y (from 2nd ball) have same marginal distributions?

- **Q:** $P(|X-Y|=1)=??$

$$\begin{aligned} P(|X-Y|=1) &= P(X=1, Y=2) + P(X=2, Y=1) \\ &\quad + P(X=2, Y=3) + P(X=3, Y=2) = 8/15. \end{aligned}$$

- **Q:** What are the joint pmf and marginal pmfs of (X, Y) if the balls are drawn with replacement (LNp. 4-6)?

$p(x, y)$		X			$p_Y(y)$
		1	2	3	
Y	1	1/36	2/36	3/36	1/6
	2	2/36	4/36	6/36	2/6
	3	3/36	6/36	9/36	3/6
$p_X(x)$		1/6	2/6	3/6	

➤ Multinomial Distribution

■ Recall. Partitions

- If $n \geq 1$ and $n_1, \dots, n_m \geq 0$ are integers for which

$$\underline{n_1} + \dots + \underline{n_m} = \underline{n},$$

then a set of \underline{n} elements may be partitioned into m subsets of sizes n_1, \dots, n_m in

$$\binom{\underline{n}}{\underline{n_1}, \dots, \underline{n_m}} = \frac{\underline{n}!}{\underline{n_1}! \times \dots \times \underline{n_m}!} \text{ ways.}$$

- Example (LNp.2-8) : MISSISSIPPI

$$\binom{\underline{11}}{\underline{4}, \underline{1}, \underline{2}, \underline{4}} = \frac{\underline{11}!}{\underline{4}! \underline{1}! \underline{2}! \underline{4}!}.$$

■ Example (Die Rolling).

- Q: If a balanced (6-sided) die is rolled 12 times, $P(\text{each face appears twice}) = ??$

- Sample space of rolling the die once (basic experiment):

$$\underline{\Omega_0} = \{1, 2, 3, 4, 5, 6\}.$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- The sample space for the 12 trials is

$$\underline{\Omega} = \underline{\Omega_0} \times \dots \times \underline{\Omega_0} = \underline{\Omega_0}^{12}$$

An outcome $\underline{\omega} \in \underline{\Omega}$ is $\underline{\omega} = (\underline{i_1}, \underline{i_2}, \dots, \underline{i_{12}})$, where $1 \leq \underline{i_1}, \dots, \underline{i_{12}} \leq 6$.

- There are 6^{12} possible outcomes in $\underline{\Omega}$, i.e., $\#\underline{\Omega} = 6^{12}$.

- Among all possible outcomes, there are $\binom{12}{2,2,2,2,2,2} = \frac{12!}{(2!)^6}$ of which each face appears twice.

$$\text{▪ } P(\text{each face appears twice}) = \frac{12!}{(2!)^6} \left(\frac{1}{6}\right)^{12}.$$

■ Generalization.

- Consider a basic experiment which can result in one of m types of outcomes. Denote its sample space as

$$\underline{\Omega_0} = \{1, 2, \dots, m\}.$$

Let $\underline{p_i} = P(\text{outcome } i \text{ appears in a basic experiment}),$

then, (i) $\underline{p_1}, \dots, \underline{p_m} \geq 0$, and

$$\text{(ii) } \underline{p_1} + \dots + \underline{p_m} = 1.$$

- Repeat the basic experiment n times. Then, the sample space for the n trials is

$$\underline{\Omega} = \Omega_0 \times \cdots \times \Omega_0 = \underline{\Omega}_0^n$$

Let $\underline{X}_i = \# \text{ of trials with outcome } i, i=1, \dots, m,$

Then, (i) $\underline{X}_1, \dots, \underline{X}_m: \underline{\Omega} \rightarrow \mathbb{R}$, and

$$\text{(ii)} \quad \underline{X}_1 + \cdots + \underline{X}_m = n.$$

- The joint pmf of $\underline{X}_1, \dots, \underline{X}_m$ is

$$\begin{aligned} p_{\mathbf{X}}(x_1, \dots, x_m) &= P(\underline{X}_1 = x_1, \dots, \underline{X}_m = x_m) \\ &= \binom{n}{x_1, \dots, x_m} p_1^{x_1} \times \cdots \times p_m^{x_m}. \end{aligned}$$

for $x_1, \dots, x_m \geq 0$ and $x_1 + \cdots + x_m = n$.

Proof. The probability of any sequence with x_i i 's is

$$p_1^{x_1} \times \cdots \times p_m^{x_m},$$

and there are

$$\binom{n}{x_1, \dots, x_m}$$

such sequences.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- The distribution of a random vector $\mathbf{X} = (X_1, \dots, X_m)$ with the above joint pmf is called the multinomial distribution with parameters n, m , and p_1, \dots, p_m , denoted by Multinomial(n, m, p_1, \dots, p_m).

- ◆ The multinomial distribution is called after the Multinomial Theorem:

$$\begin{aligned} (a_1 + \cdots + a_m)^n &= \sum_{\substack{x_i \in \{0, \dots, n\}; i=1, \dots, m \\ x_1 + \cdots + x_m = n}} \binom{n}{x_1, \dots, x_m} a_1^{x_1} \times \cdots \times a_m^{x_m}. \end{aligned}$$

- ◆ It is a generalization of the binomial distribution from 2 types of outcomes to m types of outcomes.

- Some Properties.

- ◆ Because $\underline{X}_i = n - (X_1 + \cdots + X_{i-1} + X_{i+1} + \cdots + X_m)$, and $\underline{p}_i = 1 - (p_1 + \cdots + p_{i-1} + p_{i+1} + \cdots + p_m)$,

WLOG, we can write

$$(X_1, \dots, X_{m-1}, \underline{X}_m) \rightarrow (X_1, \dots, X_{m-1}, \underline{n - (X_1 + \cdots + X_{m-1})})$$

♦ Marginal Distribution. Suppose that

$(X_1, \dots, X_m) \sim \text{Multinomial}(n, p_1, \dots, p_k, p_{k+1}, \dots, p_m)$.

For $1 \leq k < m$, the distribution of

$(X_1, \dots, X_k, X_{k+1} + \dots + X_m)$

is $\text{Multinomial}(n, p_1, \dots, p_k, p_{k+1} + \dots + p_m)$.

In particular, $X_i \sim \text{Binomial}(n, p_i)$

♦ Mean and Variance.

$$E(X_i) = np_i \text{ and } \text{Var}(X_i) = np_i(1-p_i)$$

for $i = 1, \dots, m$.

➤ Example.

■ Suppose that the joint pdf of 2 continuous r.v.'s (X, Y) is

$$f(x, y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)}, & x \geq 0, y \geq 0, \\ 0, & \text{otherwise.} \end{cases}$$

Q: $P(Y \geq 2X \text{ or } X \geq 2Y) = ??$

■ The event $\{Y \geq 2X\} \cup \{X \geq 2Y\}$ is

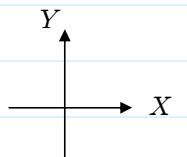
NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

■ So, $P(Y \geq 2X \text{ or } X \geq 2Y) = P(Y \geq 2X) + P(X \geq 2Y) = 2/3$ because^{p. 7-18}

$$\begin{aligned} P(Y \geq 2X) &= \int_0^\infty \left[\int_{2x}^\infty \lambda^2 e^{-\lambda(x+y)} dy \right] dx \\ &= \int_0^\infty -\lambda e^{-\lambda(x+y)} \Big|_{y=2x}^\infty dx = \int_0^\infty \lambda e^{-3\lambda x} dx \\ &= (-1/3)e^{-3\lambda x} \Big|_{x=0}^\infty = 1/3. \end{aligned}$$

and similarly, we can get $P(X \geq 2Y) = 1/3$ (exercise).

➤ Example. Consider two continuous r.v.'s X and Y .



■ Uniform Distribution over a region D . If $D \subset \mathbb{R}^2$ and $0 < \alpha = \text{Area}(D) < \infty$, then

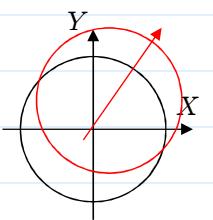
$$f(x, y) = c \cdot \mathbf{1}_D(x, y)$$

is a joint pdf when $c = 1/\alpha$, called the uniform pdf over D .

■ Let $D = \{(x, y) : x^2 + y^2 \leq 1\}$, then $\alpha = \text{Area}(D) = \pi$
and

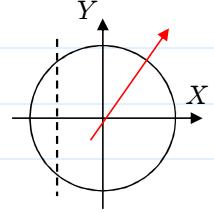
$$f(x, y) = \frac{1}{\pi} \mathbf{1}_D(x, y)$$

is a joint pdf.



- Marginal distribution. The marginal pdf of X is

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2}$$



for $-1 \leq x \leq 1$, and $f_X(x) = 0$, otherwise.

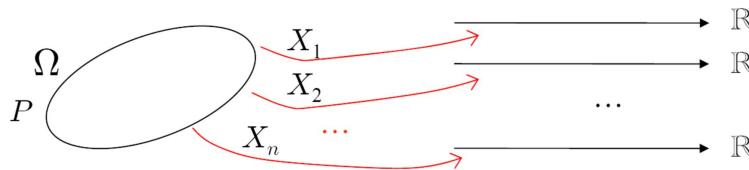
(exercise: Find the marginal distribution of Y .)

❖ Reading: textbook, Sec 6.1

Independent Random Variables

- Recall.

- If joint distribution is given, marginal distributions are known.
- The converse statement does not hold in general.
- However, when random variables are independent,
marginal distributions + independence \Rightarrow joint distribution.



NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Definition. The n jointly distributed r.v.'s X_1, \dots, X_n are called (mutually) independent if and only if for any (measurable) sets $A_i \subset \mathbb{R}$, $i=1, \dots, n$, the events

$$\{X_1 \in A_1\}, \dots, \{X_n \in A_n\}$$

are (mutually) independent. That is,

$$P(X_{i_1} \in A_{i_1}, X_{i_2} \in A_{i_2}, \dots, X_{i_k} \in A_{i_k}) = P(X_{i_1} \in A_{i_1}) \times P(X_{i_2} \in A_{i_2}) \times \dots \times P(X_{i_k} \in A_{i_k}),$$

for any $1 \leq i_1 < i_2 < \dots < i_k \leq n$; $k=2, \dots, n$.

- If X_1, \dots, X_n are independent, for $1 \leq k \leq n$,

$$P(X_{k+1} \in A_{k+1}, \dots, X_n \in A_n | X_1 \in A_1, \dots, X_k \in A_k) = P(X_{k+1} \in A_{k+1}, \dots, X_n \in A_n)$$

provided that $P(X_1 \in A_1, \dots, X_k \in A_k) > 0$.

- In other words, the values of X_1, \dots, X_k do not carry any information about the distribution of X_{k+1}, \dots, X_n .

- **Theorem (Factorization Theorem).** The random variables $\underline{\mathbf{X}} = (X_1, \dots, X_n)$ are independent if and only if one of the following conditions holds.

(1) $\underline{F_{\mathbf{X}}(x_1, \dots, x_n)} = \underline{F_{X_1}(x_1)} \times \dots \times \underline{F_{X_n}(x_n)}$, where $\underline{F_{\mathbf{X}}}$ is the joint cdf of $\underline{\mathbf{X}}$ and $\underline{F_{X_i}}$ is the marginal cdf of $\underline{X_i}$ for $i=1, \dots, n$.

(2) Suppose that $\underline{X_1, \dots, X_n}$ are discrete random variables.

$\underline{p_{\mathbf{X}}(x_1, \dots, x_n)} = \underline{p_{X_1}(x_1)} \times \dots \times \underline{p_{X_n}(x_n)}$, where $\underline{p_{\mathbf{X}}}$ is the joint pmf of $\underline{\mathbf{X}}$ and $\underline{p_{X_i}}$ is the marginal pmf of $\underline{X_i}$ for $i=1, \dots, n$.

(3) Suppose that $\underline{X_1, \dots, X_n}$ are continuous random variables.

$\underline{f_{\mathbf{X}}(x_1, \dots, x_n)} = \underline{f_{X_1}(x_1)} \times \dots \times \underline{f_{X_n}(x_n)}$, where $\underline{f_{\mathbf{X}}}$ is the joint pdf of $\underline{\mathbf{X}}$ and $\underline{f_{X_i}}$ is the marginal pdf of $\underline{X_i}$ for $i=1, \dots, n$.

Proof.

$$\begin{aligned} \text{independent} \Rightarrow (1). \quad & \underline{F_{\mathbf{X}}(x_1, \dots, x_n)} = P(X_1 \leq x_1, \dots, X_n \leq x_n) \\ &= P(X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n]) \\ &= P(X_1 \in (-\infty, x_1]) \times \dots \times P(X_n \in (-\infty, x_n]) \\ &= \underline{F_{X_1}(x_1)} \times \dots \times \underline{F_{X_n}(x_n)} \end{aligned}$$

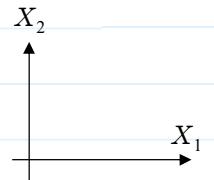
independent \Leftarrow (1). Out of the scope of this course so skip.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

$$\begin{aligned} \text{independent} \Rightarrow (2). \quad & \underline{p_{\mathbf{X}}(x_1, \dots, x_n)} = P(X_1 = x_1, \dots, X_n = x_n) \\ &= P(X_1 \in \{x_1\}, \dots, X_n \in \{x_n\}) \\ &= P(X_1 \in \{x_1\}) \times \dots \times P(X_n \in \{x_n\}) \\ &= \underline{p_{X_1}(x_1)} \times \dots \times \underline{p_{X_n}(x_n)} \end{aligned}$$

(2) \Rightarrow (1).

$$\begin{aligned} \underline{F_{\mathbf{X}}(x_1, \dots, x_n)} &= \sum_{\substack{(t_1, \dots, t_n) \in \mathcal{X} \\ t_1 \leq x_1, \dots, t_n \leq x_n}} p_{\mathbf{X}}(t_1, \dots, t_n) \\ &= \sum_{\substack{(t_1, \dots, t_n) \in \mathcal{X} \\ t_1 \leq x_1}} \dots \sum_{\substack{(t_1, \dots, t_n) \in \mathcal{X} \\ t_n \leq x_n}} \underline{p_{X_1}(t_1)} \times \dots \times \underline{p_{X_n}(t_n)} \\ &= \sum_{\substack{(t_1, \dots, t_n) \in \mathcal{X} \\ t_1 \leq x_1}} p_{X_1}(t_1) \times \dots \times \sum_{\substack{(t_1, \dots, t_n) \in \mathcal{X} \\ t_n \leq x_n}} p_{X_n}(t_n) = \underline{F_{X_1}(x_1)} \times \dots \times \underline{F_{X_n}(x_n)} \end{aligned}$$



(3) \Rightarrow (1).

$$\begin{aligned} \underline{F_{\mathbf{X}}(x_1, \dots, x_n)} &= \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f_{\mathbf{X}}(t_1, \dots, t_n) dt_1 \dots dt_n \\ &= \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} \underline{f_{X_1}(t_1)} \times \dots \times \underline{f_{X_n}(t_n)} dt_1 \dots dt_n \\ &= \int_{-\infty}^{x_1} f_{X_1}(t_1) dt_1 \times \dots \times \int_{-\infty}^{x_n} f_{X_n}(t_n) dt_n = \underline{F_{X_1}(x_1)} \times \dots \times \underline{F_{X_n}(x_n)} \end{aligned}$$

(3) \Leftarrow (1).

$$\begin{aligned}
 \underline{f_{\mathbf{X}}(x_1, \dots, x_n)} &= \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{\mathbf{X}}(x_1, \dots, x_n). \\
 &= \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n) \\
 &= \frac{\partial}{\partial x_1} F_{X_1}(x_1) \times \cdots \times \frac{\partial}{\partial x_n} F_{X_n}(x_n) = \underline{f_{X_1}(x_1) \times \cdots \times f_{X_n}(x_n)}
 \end{aligned}$$

► Remark. It follows from the Multiplication Law (LNp.4-11) that

$$\begin{aligned}
 \underline{F_{\mathbf{X}}(x_1, \dots, x_n)} &= P(\underline{X_1 \leq x_1, \dots, X_n \leq x_n}) \\
 &= P(\underline{X_1 \leq x_1}) && (= \underline{F_{X_1}(x_1)}) \\
 &\quad \times P(\underline{X_2 \leq x_2 | X_1 \leq x_1}) && \left(\stackrel{?}{=} P(\underline{X_2 \leq x_2}) = \underline{F_{X_2}(x_2)} \right) \\
 &\quad \times P(\underline{X_3 \leq x_3 | X_1 \leq x_1, X_2 \leq x_2}) && \left(\stackrel{?}{=} P(\underline{X_3 \leq x_3}) = \underline{F_{X_3}(x_3)} \right) \\
 &\quad \times \cdots \\
 &\quad \times P(\underline{X_n \leq x_n | X_1 \leq x_1, \dots, X_{n-1} \leq x_{n-1}}) && \left(\stackrel{?}{=} P(\underline{X_n \leq x_n}) = \underline{F_{X_n}(x_n)} \right)
 \end{aligned}$$

The independence can be established sequentially.

► Example. If $\underline{A_1, \dots, A_n} \subset \Omega$ are independent events, then $\underline{1_{A_1}, \dots, 1_{A_n}}$, are independent random variables. For example,

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

$$\begin{aligned}
 &P(\underline{1_{A_1} = 1, 1_{A_2} = 0, 1_{A_3} = 1}) \\
 &= P(\underline{A_1 \cap A_2^c \cap A_3}) = P(\underline{A_1})P(\underline{A_2^c})P(\underline{A_3}) \\
 &= P(\underline{1_{A_1} = 1})P(\underline{1_{A_2} = 0})P(\underline{1_{A_3} = 1}).
 \end{aligned}$$

► Theorem. If $\underline{\mathbf{X} = (X_1, \dots, X_n)}$
are independent and

$$\underline{Y_i = g_i(X_i)}, i=1, \dots, n,$$

then

$\underline{Y_1, \dots, Y_n}$ are independent.

generalization
 $1 = i_0 < i_1 < \cdots < i_k = n$
 $Y_1 = g_1(\underline{X_1, \dots, X_{i_1}}),$
 $Y_2 = g_2(\underline{X_{i_1+1}, \dots, X_{i_2}}),$
 \dots
 $Y_k = g_k(\underline{X_{i_{k-1}+1}, \dots, X_{i_k}}).$

Proof.

Let $A_i(y) = \{x : g_i(x) \leq y\}$, $i=1, \dots, n$, then

$$\begin{aligned}
 \underline{F_{\mathbf{Y}}(y_1, \dots, y_n)} &= P(\underline{Y_1 \leq y_1, \dots, Y_n \leq y_n}) \\
 &= P(\underline{X_1 \in A_1(y_1), \dots, X_n \in A_n(y_n)}) \\
 &= P(\underline{X_1 \in A_1(y_1)}) \times \cdots \times P(\underline{X_n \in A_n(y_n)}) \\
 &= P(\underline{Y_1 \leq y_1}) \times \cdots \times P(\underline{Y_n \leq y_n}) \\
 &= F_{Y_1}(y_1) \times \cdots \times F_{Y_n}(y_n).
 \end{aligned}$$

- Theorem. $\mathbf{X} = (X_1, \dots, X_n)$ are independent if and only if there exist univariate functions $g_i(x)$, $i=1, \dots, n$, such that

- (a) when X_1, \dots, X_n are discrete r.v.'s with joint pmf $p_{\mathbf{X}}$,

$$p_{\mathbf{X}}(x_1, \dots, x_n) \propto g_1(x_1) \times \dots \times g_n(x_n), \quad -\infty < x_i < \infty, \quad i=1, \dots, n.$$

- (b) when X_1, \dots, X_n are continuous r.v.'s with joint pdf $f_{\mathbf{X}}$,

$$f_{\mathbf{X}}(x_1, \dots, x_n) \propto g_1(x_1) \times \dots \times g_n(x_n), \quad -\infty < x_i < \infty, \quad i=1, \dots, n.$$

Sketch of proof for (b).

$$\begin{aligned} f_{X_1}(x_1) &= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, \dots, x_n) dx_2 \dots dx_n \\ &\propto \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g_1(x_1) g_2(x_2) \dots g_n(x_n) dx_2 \dots dx_n \propto g_1(x_1). \end{aligned}$$

$$\begin{aligned} \text{Similarly, } f_{X_2}(x_2) &\propto g_2(x_2), \dots, f_{X_n}(x_n) \propto g_n(x_n) \\ \Rightarrow f_{X_1}(x_1) \dots f_{X_n}(x_n) &\propto g_1(x_1) \dots g_n(x_n) \\ \Rightarrow f_{\mathbf{X}}(x_1, \dots, x_n) &\propto f_{X_1}(x_1) \dots f_{X_n}(x_n) \\ \Rightarrow f_{\mathbf{X}}(x_1, \dots, x_n) &= c \cdot f_{X_1}(x_1) \dots f_{X_n}(x_n) \end{aligned}$$

for some constant c .

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Because $\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, \dots, x_n) dx_1 \dots dx_n = 1$, and

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1}(x_1) \dots f_{X_n}(x_n) dx_1 \dots dx_n = 1, \Rightarrow c = 1.$$

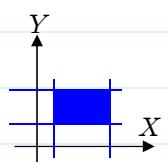
► Example.

- If the joint pdf of (X, Y) is

$$f(x, y) \propto e^{-2x} e^{-3y}, \quad 0 < x < \infty, \quad 0 < y < \infty,$$

and $f(x, y) = 0$, otherwise, i.e.,

$$f(x, y) \propto e^{-2x} e^{-3y} \mathbf{1}_{(0, \infty)}(x) \mathbf{1}_{(0, \infty)}(y),$$



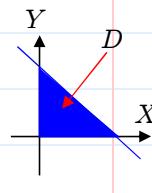
then X and Y are independent. Note that the region in which the joint pdf is nonzero can be expressed in the form $\{(x, y): x \in A, y \in B\}$.

- Suppose that the joint pdf of (X, Y) is

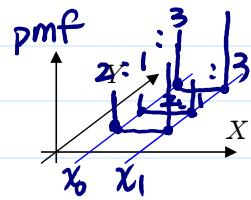
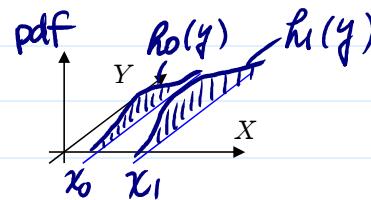
$$f(x, y) \propto xy, \quad 0 < x < 1, \quad 0 < y < 1, \quad 0 < x + y < 1,$$

and $f(x, y) = 0$, otherwise, i.e., $f(x, y) \propto xy \cdot \mathbf{1}_D(x, y)$,

X and Y are not independent.



➤ Q: For independent X and Y , how should their joint pdf/pmf look like?



$$\frac{h_1(y)}{h_0(y)} = \text{a constant}$$

❖ Reading: textbook, Sec 6.2

Transformation

- Q: Given the joint distribution of $\underline{X} = (X_1, \dots, X_n)$, how to find the distribution of $\underline{Y} = (Y_1, \dots, Y_k)$, where

$$Y_1 = g_1(X_1, \dots, X_n) : \mathbb{R}^n \rightarrow \mathbb{R},$$

...,

$$Y_k = g_k(X_1, \dots, X_n) : \mathbb{R}^n \rightarrow \mathbb{R},$$

denoted by

$$\underline{Y} = g(\underline{X}), g: \mathbb{R}^n \rightarrow \mathbb{R}^k.$$



NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ The following methods are useful:

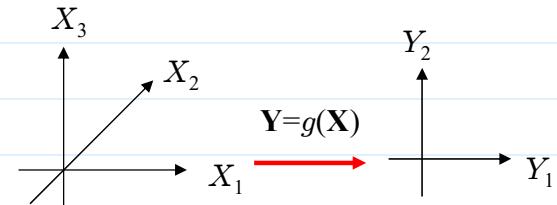
1. Method of Events (\rightarrow pmf)
2. Method of Cumulative Distribution Function
3. Method of Probability Density Function
4. Method of Moment Generating Function (chapter 7)

➤ Method of Events

- Theorem. The distribution of \underline{Y} is determined by the distribution of \underline{X} as follows: for any event $B \subset \mathbb{R}^k$,

$$P_{\underline{Y}}(\underline{Y} \in B) = P_{\underline{X}}(\underline{X} \in A),$$

where $A = g^{-1}(B) \subset \mathbb{R}^n$.



- Example. Let \underline{X} be a discrete random vector taking values

$$\underline{x}_i = (x_{1i}, x_{2i}, \dots, x_{ni}), i=1, 2, \dots,$$

(i.e., $\mathcal{X} = \{\underline{x}_1, \underline{x}_2, \underline{x}_3, \dots\}$) with joint pmf $p_{\underline{X}}$.

Then, $\underline{Y} = g(\underline{X})$ is also a discrete random vector.

Suppose that \underline{Y} takes values on $\underline{y}_j, j=1, 2, \dots$. To determine the joint pmf of \underline{Y} , by taking $\underline{B}=\{\underline{y}_j\}$, we have p. 7-29

$$\underline{A} = \{\underline{x}_i \in \mathcal{X} : g(\underline{x}_i) = \underline{y}_j\}$$

and hence, the joint pmf of \underline{Y} is

$$p_{\underline{Y}}(\underline{y}_j) = P_{\underline{Y}}(\{\underline{y}_j\}) = P_{\underline{X}}(\underline{A}) = \sum_{\underline{x}_i \in \underline{A}} p_{\underline{X}}(\underline{x}_i).$$

- Example. Let \underline{X} and \underline{Y} be random variables with the joint pmf $p(x, y)$. Find the distribution of $\underline{Z}=\underline{X}+\underline{Y}$.

□ $\{\underline{Z}=\underline{z}\} = \{(x, y) \in \{(x, y) : x+y=z\}\}$

$$p_Z(z) = P_Z(\{z\}) = P(X + Y = z) = \sum_{x \in \mathcal{X}_X} p(x, z - x).$$

□ When \underline{X} and \underline{Y} are independent,

$$p(x, y) = p_X(x)p_Y(y),$$

So,

$$p_Z(z) = \sum_{x \in \mathcal{X}_X} p_X(x)p_Y(z - x).$$

which is referred to as the convolution of p_X and p_Y .

□ (Exercise) $\underline{Z}=\underline{X}-\underline{Y}$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

p. 7-30

- Theorem. If \underline{X} and \underline{Y} are independent, and

$$\underline{X} \sim \text{Poisson}(\lambda_1), \quad \underline{Y} \sim \text{Poisson}(\lambda_2),$$

then $\underline{Z} = \underline{X} + \underline{Y} \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

Proof. For $z=0, 1, 2, \dots$, the pmf $p_Z(z)$ of \underline{Z} is

$$\begin{aligned} p_Z(z) &= \sum_{x=0}^z p_X(x)p_Y(z-x) = \sum_{x=0}^z \frac{e^{-\lambda_1}\lambda_1^x}{x!} \frac{e^{-\lambda_2}\lambda_2^{z-x}}{(z-x)!} \\ &= \frac{e^{-(\lambda_1+\lambda_2)}}{z!} \left(\sum_{x=0}^z \frac{z!}{x!(z-x)!} \lambda_1^x \lambda_2^{z-x} \right) = \frac{e^{-(\lambda_1+\lambda_2)}}{z!} (\lambda_1 + \lambda_2)^z. \end{aligned}$$

- Corollary. If $\underline{X}_1, \dots, \underline{X}_n$ are independent, and

$$\underline{X}_i \sim \text{Poisson}(\lambda_i), \quad i=1, \dots, n,$$

then $\underline{X}_1 + \dots + \underline{X}_n \sim \text{Poisson}(\lambda_1 + \dots + \lambda_n)$.

Proof. By induction (exercise).

► Method of cumulative distribution function

1. In the (X_1, \dots, X_n) space, find the region that corresponds to

$$\{Y_1 \leq y_1, \dots, Y_k \leq y_k\}.$$

2. Find $F_Y(y_1, \dots, y_k) = P(Y_1 \leq y_1, \dots, Y_k \leq y_k)$ by summing the joint pmf or integrating the joint pdf of X_1, \dots, X_n over the region identified in 1.

3. (for continuous case) Find the joint pdf of \underline{Y} by differentiating $F_Y(y_1, \dots, y_k)$, i.e.,

$$f_Y(y_1, \dots, y_k) = \frac{\partial^k}{\partial y_1 \dots \partial y_k} F_Y(y_1, \dots, y_k).$$

■ Example. X and Y are random variables with joint pdf $f(x, y)$. Find the distribution of $Z = X + Y$.

■ $\{Z \leq z\} = \{(X, Y) \in \{(x, y) : x + y \leq z\}\}$. So,

$$\begin{aligned} F_Z(z) &= P(Z \leq z) = P(X + Y \leq z) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) dy dx \\ &= \int_{-\infty}^z \int_{-\infty}^{\infty} f(s, t-s) ds dt \quad \left(\text{set } \begin{cases} x = s \\ y = t-s \end{cases} \right) \end{aligned}$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

and $f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} f(x, z-x) dx$

■ When X and Y are independent,

$$f(x, y) = f_X(x)f_Y(y).$$

$$\begin{aligned} \text{So, } F_Z(z) &= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_X(x)f_Y(y) dy dx \\ &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-x} f_Y(y) dy \right] f_X(x) dx \\ &= \int_{-\infty}^{\infty} F_Y(z-x) f_X(x) dx \end{aligned}$$

which is referred to as the convolution of F_X and F_Y , and

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x) dx$$

which is referred to as the convolution of f_X and f_Y .

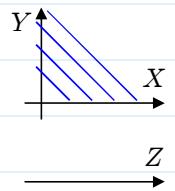
■ (exercise) $Z = X - Y$.

■ Theorem. If X and Y are independent, and

$$X \sim \text{Gamma}(\alpha_1, \lambda), \quad Y \sim \text{Gamma}(\alpha_2, \lambda),$$

then

$$Z = X + Y \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda).$$



Proof. For $z \geq 0$,

$$\begin{aligned} f_Z(z) &= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^z x^{\alpha_1-1} (z-x)^{\alpha_2-1} e^{-\lambda z} dx \\ &= \frac{\lambda^{\alpha_1+\alpha_2} e^{-\lambda z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^1 z^{(\alpha_1-1)+(\alpha_2-1)+1} y^{\alpha_1-1} (1-y)^{\alpha_2-1} dy \\ &= \frac{\lambda^{\alpha_1+\alpha_2} z^{(\alpha_1+\alpha_2)-1} e^{-\lambda z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \times \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1+\alpha_2)}. \end{aligned}$$

and $f_Z(z) = 0$, for $z < 0$.

■ Corollary. If X_1, \dots, X_n are independent, and

$$\underline{X_i} \sim \text{Gamma}(\underline{\alpha_i}, \underline{\lambda}), i=1, \dots, n,$$

then $\underline{X_1} + \dots + \underline{X_n} \sim \text{Gamma}(\underline{\alpha_1} + \dots + \underline{\alpha_n}, \underline{\lambda})$.

Proof. By induction (exercise).

■ Corollary. If X_1, \dots, X_n are independent, and

$$\underline{X_i} \sim \text{Exponential}(\underline{\lambda}), i=1, \dots, n,$$

then $\underline{X_1} + \dots + \underline{X_n} \sim \text{Gamma}(n, \underline{\lambda})$.

Proof. (exercise).

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

■ Theorem. If X_1, \dots, X_n are independent, and

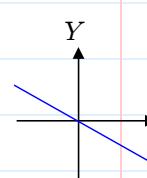
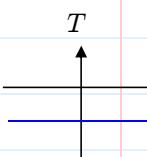
$$\underline{X_i} \sim \text{Normal}(\underline{\mu_i}, \underline{\sigma_i}^2), i=1, \dots, n,$$

then $\underline{X_1} + \dots + \underline{X_n} \sim \text{Normal}(\underline{\mu_1} + \dots + \underline{\mu_n}, \underline{\sigma_1}^2 + \dots + \underline{\sigma_n}^2)$.

Proof. (exercise).

■ Example. X and Y are random variables with joint pdf $f(x, y)$. Find the distribution of $Z = Y/X$.

$$\begin{aligned} \text{Let } \underline{Q_z} &= \{(x, y) : y/x \leq z\} \\ &= \{(x, y) : x < 0, y \geq zx\} \\ &\quad \cup \{(x, y) : x > 0, y \leq zx\} \end{aligned}$$



$$\begin{aligned} \text{then, } F_Z(z) &= \iint_{Q_z} f(x, y) dx dy \\ &= \int_{-\infty}^0 \int_{xz}^{\infty} + \int_0^{\infty} \int_{-\infty}^{xz} f(x, y) dy dx \quad \left(\text{set } \begin{cases} x = s \\ y = st \end{cases} \right) \\ &= \int_{-\infty}^0 \int_{-\infty}^z + \int_0^{\infty} \int_{-\infty}^z f(s, st) |s| dt ds \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^z |s| f(s, st) dt ds \\ &= \int_{-\infty}^z \int_{-\infty}^{\infty} |s| f(s, st) ds dt \end{aligned}$$

and, $f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} |x| f(x, zx) dx$

◻ When X and Y are independent,

$$f(x, y) = f_X(x)f_Y(y).$$

$$\text{So, } F_Z(z) = \int_{-\infty}^z \int_{-\infty}^{\infty} |s| f_X(s)f_Y(st) ds dt$$

$$\text{and, } f_Z(z) = \int_{-\infty}^{\infty} |x| f_X(x)f_Y(zx) dx$$

◻ (exercise) $Z = XY$

◻ If X and Y are independent,

$$\underline{X} \sim \text{exponential}(\underline{\lambda}_1), \text{ and } \underline{Y} \sim \text{exponential}(\underline{\lambda}_2),$$

Let $Z = Y/X$. The pdf of Z is

$$\begin{aligned} f_Z(z) &= \int_0^{\infty} x (\lambda_1 e^{-\lambda_1 x}) [\lambda_2 e^{-\lambda_2(xz)}] dx \\ &= \frac{\lambda_1 \lambda_2 \Gamma(2)}{(\lambda_1 + \lambda_2 z)^2} \int_0^{\infty} \frac{(\lambda_1 + \lambda_2 z)^2}{\Gamma(2)} x^{2-1} e^{-(\lambda_1 + \lambda_2 z)x} dx \\ &= \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2 z)^2} \end{aligned}$$

for $z \geq 0$, and 0 for $z < 0$.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

And, the cdf of Z is

$$\begin{aligned} F_Z(z) &= \int_0^z f_Z(t) dt = \int_0^z \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2 t)^2} dt \\ &= -\frac{\lambda_1 \lambda_2}{\lambda_2} (\lambda_1 + \lambda_2 t)^{-1} \Big|_0^z = 1 - \frac{\lambda_1}{\lambda_1 + \lambda_2 z} \end{aligned}$$

for $z \geq 0$, and 0 for $z < 0$.

► Method of probability density function

■ Theorem. Let $\underline{X} = (X_1, \dots, X_n)$ be continuous random variables with the joint pdf $f_{\underline{X}}(x_1, \dots, x_n)$. Let

$$\underline{Y} = (Y_1, \dots, Y_n) = g(\underline{X}),$$

where g is 1-to-1, so that its inverse exists and is denoted by

$$\underline{x} = g^{-1}(\underline{y}) = \underline{w}(\underline{y}) = (w_1(\underline{y}), w_2(\underline{y}), \dots, w_n(\underline{y})).$$

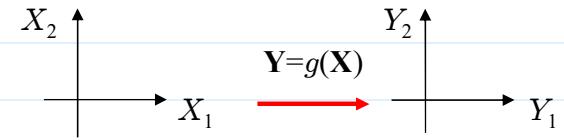
Assume w have continuous partial derivatives. Let

$$\underline{J} = \begin{vmatrix} \frac{\partial w_1(\underline{y})}{\partial y_1} & \frac{\partial w_1(\underline{y})}{\partial y_2} & \dots & \frac{\partial w_1(\underline{y})}{\partial y_n} \\ \frac{\partial w_2(\underline{y})}{\partial y_1} & \frac{\partial w_2(\underline{y})}{\partial y_2} & \dots & \frac{\partial w_2(\underline{y})}{\partial y_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial w_n(\underline{y})}{\partial y_1} & \frac{\partial w_n(\underline{y})}{\partial y_2} & \dots & \frac{\partial w_n(\underline{y})}{\partial y_n} \end{vmatrix}_{n \times n}$$

Then $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(g^{-1}(\mathbf{y})) \times |J|$,

for \mathbf{y} s.t. $\mathbf{y} = g(\mathbf{x})$ for some \mathbf{x} , and $f_{\mathbf{Y}}(\mathbf{y}) = 0$, otherwise.

(Q: What is the role of $|J|$?)



$$\begin{aligned} \text{Proof. } F_{\mathbf{Y}}(y_1, \dots, y_n) &= \int_{-\infty}^{y_1} \cdots \int_{-\infty}^{y_n} f_{\mathbf{Y}}(t_1, \dots, t_n) dt_n \cdots dt_1 \\ &= \int \cdots \int_{\substack{(x_1, \dots, x_n): \\ g_1(x_1, \dots, x_n) \leq y_1 \\ \vdots \\ g_n(x_1, \dots, x_n) \leq y_n}} f_{\mathbf{X}}(x_1, \dots, x_n) dx_n \cdots dx_1. \end{aligned}$$

It then follows from an exercise in advanced calculus that

$$\begin{aligned} f_{\mathbf{Y}}(y_1, \dots, y_n) &= \frac{\partial^n}{\partial y_1 \cdots \partial y_n} F_{\mathbf{Y}}(y_1, \dots, y_n) \\ &= f_{\mathbf{X}}(w_1(\mathbf{y}), \dots, w_n(\mathbf{y})) \times |J|. \end{aligned}$$

□ Remark. When the dimensionality of \mathbf{Y} (denoted by k) is less than n , we can choose another $n-k$ transformations \mathbf{Z} such that

$$(\mathbf{Y}, \mathbf{Z}) = g(\mathbf{X})$$

satisfy the assumptions in above theorem.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

By integrating out the last $n-k$ arguments in the joint pdf of (\mathbf{Y}, \mathbf{Z}) , the joint pdf of \mathbf{Y} can be obtained.

■ Example. X_1 and X_2 are random variables with joint pdf $f_{\mathbf{X}}(x_1, x_2)$. Find the distribution of $Y_1 = X_1 / (X_1 + X_2)$.

□ Let $Y_2 = X_1 + X_2$, then

$$\begin{aligned} x_1 &= y_1 y_2 & \equiv w_1(y_1, y_2) \\ x_2 &= y_2 - y_1 y_2 & \equiv w_2(y_1, y_2). \end{aligned}$$

Since $\frac{\partial w_1}{\partial y_1} = y_2$, $\frac{\partial w_1}{\partial y_2} = y_1$, $\frac{\partial w_2}{\partial y_1} = -y_2$, $\frac{\partial w_2}{\partial y_2} = 1 - y_1$,

$$J = \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix} = y_2 - y_1 y_2 + y_1 y_2 = y_2, \text{ and } |J| = |y_2|.$$

Therefore, $f_{\mathbf{Y}}(y_1, y_2) = f_{\mathbf{X}}(y_1 y_2, y_2 - y_1 y_2) |y_2|$,

$$\text{and, } f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{\mathbf{Y}}(y_1, y_2) dy_2$$

$$= \int_{-\infty}^{\infty} f_{\mathbf{X}}(y_1 y_2, y_2 - y_1 y_2) |y_2| dy_2.$$

$$= \int_{-\infty}^{\infty} f_{X_1}(y_1 y_2) f_{X_2}(y_2 - y_1 y_2) |y_2| dy_2$$

when X_1 and X_2 are independent)

- Theorem. If X_1 and X_2 are independent, and

$$X_1 \sim \text{Gamma}(\underline{\alpha}_1, \underline{\lambda}), \quad X_2 \sim \text{Gamma}(\underline{\alpha}_2, \underline{\lambda}),$$

then $\underline{Y_1} = \underline{X_1}/(\underline{X_1} + \underline{X_2}) \sim \text{Beta}(\underline{\alpha}_1, \underline{\alpha}_2)$.

Proof. For $x_1, x_2 \geq 0$, the joint pdf of \underline{X} is

$$f_{\underline{X}}(x_1, x_2) = \frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)} x_1^{\alpha_1-1} e^{-\lambda x_1} \times \frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)} x_2^{\alpha_2-1} e^{-\lambda x_2}$$

$$= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x_1^{\alpha_1-1} x_2^{\alpha_2-1} e^{-\lambda(x_1+x_2)}.$$

So, for $0 \leq y_1 \leq 1$,

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{X_1}(y_1 y_2) f_{X_2}(y_2 - y_1 y_2) |y_2| dy_2$$

$$= \int_0^{\infty} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} (y_1 y_2)^{\alpha_1-1} (y_2 - y_1 y_2)^{\alpha_2-1} e^{-\lambda y_2} \cdot y_2 dy_2$$

$$= \frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} y_1^{\alpha_1-1} (1-y_1)^{\alpha_2-1}$$

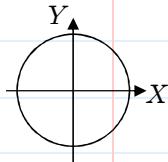
$$\times \int_0^{\infty} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)} y_2^{(\alpha_1+\alpha_2)-1} e^{-\lambda y_2} dy_2$$

$$= \frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} y_1^{\alpha_1-1} (1-y_1)^{\alpha_2-1}$$

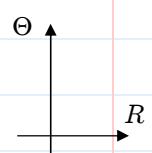
and $f_{Y_1}(y_1) = 0$, otherwise.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Example. Suppose that X and Y have a uniform distribution^{p. 7-40} over the region $D = \{(x, y) : x^2 + y^2 \leq 1\}$, i.e., their joint pdf is



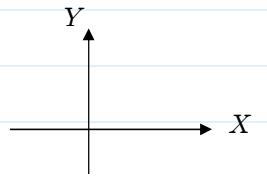
$$f_{X,Y}(x, y) = \frac{1}{\pi} \mathbf{1}_D(x, y).$$



Find the joint distribution of (R, Θ) and examine whether R and Θ are independent, where (R, Θ) is the polar coordinate representation of (X, Y) , i.e.,

$$X = R \cos(\Theta) \equiv w_1(R, \Theta),$$

$$Y = R \sin(\Theta) \equiv w_2(R, \Theta).$$



■ Since $\frac{\partial w_1}{\partial r} = \cos(\theta)$, $\frac{\partial w_1}{\partial \theta} = -r \sin(\theta)$,
 $\frac{\partial w_2}{\partial r} = \sin(\theta)$, $\frac{\partial w_2}{\partial \theta} = r \cos(\theta)$,

$$J = \begin{vmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{vmatrix} = r \cos^2(\theta) + r \sin^2(\theta) = r,$$

and $|J| = |r| = r$.

- For $0 \leq r \leq 1$ and $0 \leq \theta \leq 2\pi$, the joint pdf of (R, Θ) is

$$f_{R,\Theta}(r, \theta) = f_{X,Y}(r \cos(\theta), r \sin(\theta)) \times |J| = \frac{1}{\pi} r$$

and $f_{R,\Theta}(r, \theta) = 0$, otherwise.

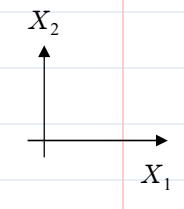
■ By the theorem in LNP.7-25, (R, Θ) are independent.

■ Example. Let X_1, \dots, X_n be independent and identically distributed (i.e., i.i.d.) exponential(λ). Let

$$Y_i = X_1 + \dots + X_i, i = 1, \dots, n.$$

Find the distribution of $\mathbf{Y} = (Y_1, \dots, Y_n)$.

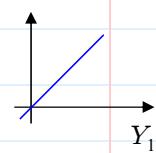
[Note. It has been shown that $Y_i \sim \text{Gamma}(i, \lambda)$, $i = 1, \dots, n$.]



■ The joint pdf of X_1, \dots, X_n is

$$f_{\mathbf{X}}(x_1, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i) = \prod_{i=1}^n (\lambda e^{-\lambda x_i}) = \lambda^n e^{-\lambda(x_1 + \dots + x_n)}.$$

for $0 \leq x_i < \infty$, $i = 1, \dots, n$.



■ Since $x_1 = y_1 \equiv w_1(y_1, \dots, y_n)$,
 $x_2 = y_2 - y_1 \equiv w_2(y_1, \dots, y_n)$,
 \dots
 $x_n = y_n - y_{n-1} \equiv w_n(y_1, \dots, y_n)$,

we have

$$\frac{\partial w_i}{\partial y_j} = \begin{cases} 1, & \text{if } j = i, \\ -1, & \text{if } j = i - 1, \\ 0, & \text{otherwise,} \end{cases}$$

NTHU MATH 2810, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

$$J = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{vmatrix} = 1, \text{ and } |J| = 1.$$

■ For $0 \leq y_1 \leq y_2 \leq \dots \leq y_{i-1} \leq y_i \leq y_{i+1} \leq \dots \leq y_n < \infty$,

$$\begin{aligned} f_{\mathbf{Y}}(y_1, \dots, y_n) &= f_{\mathbf{X}}(y_1, y_2 - y_1, \dots, y_n - y_{n-1}) \times |J| \\ &= \lambda^n e^{-\lambda y_n}. \end{aligned}$$

and $f_{\mathbf{Y}}(y_1, \dots, y_n) = 0$, otherwise.

■ The marginal pdf of Y_i is

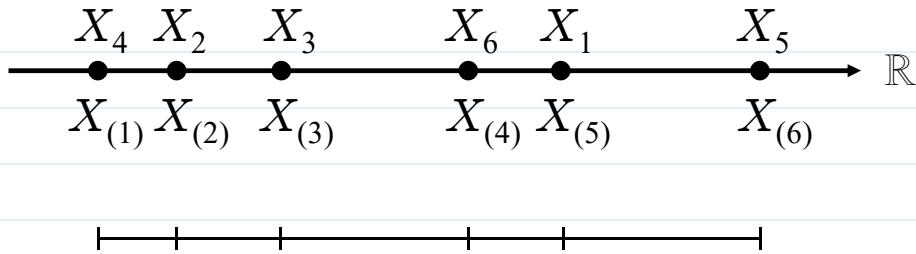
$$\begin{aligned} f_{Y_i}(y) &= \frac{\int_0^y \int_{y_1}^y \cdots \int_{y_{i-2}}^y \int_y^\infty \int_{y_{i+1}}^\infty \cdots \int_{y_{n-1}}^\infty}{\lambda^n e^{-\lambda y_n} dy_n \cdots dy_{i+2} dy_{i+1} dy_{i-1} \cdots dy_2 dy_1} \\ &= \frac{\int_0^y \int_{y_1}^y \cdots \int_{y_{i-2}}^y \lambda^i e^{-\lambda y}}{\lambda^i e^{-\lambda y} \frac{y^{i-1}}{(i-1)!}}, \end{aligned}$$

for $y \geq 0$, and $f_{Y_i}(y) = 0$, otherwise.

➤ Method of moment generating function.

- Based on the uniqueness theorem of moment generating function to be explained later in Chapter 7
- Especially useful to identify the distribution of sum of independent random variables.

• Order Statistics



➤ Definition. Let X_1, \dots, X_n be random variables. We sort the X_i 's and denote by

$$X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$$

the order statistics. Using the notation,

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

p. 7-44

$X_{(i)}$ = ith-smallest value in X_1, \dots, X_n , $i=1, 2, \dots, n$,

$X_{(1)}$ = min(X_1, \dots, X_n) is the minimum,

$X_{(n)}$ = max(X_1, \dots, X_n) is the maximum,

$R \equiv X_{(n)} - X_{(1)}$ is called range,

$S_j \equiv X_{(j)} - X_{(j-1)}$, $j=2, \dots, n$, are called jth spacing.

Q: What are the joint distributions of various order statistics and their marginal distributions?

➤ Definition. X_1, \dots, X_n are called i.i.d. (independent, identically distributed) with cdf F /pdf f /pmf p if the random variables X_1, \dots, X_n are independent and have a common marginal distribution with cdf F /pdf f /pmf p .

■ Remark. In the discussion about order statistics, we only consider the case that X_1, \dots, X_n are i.i.d.

▣ Note. Although X_1, \dots, X_n are independent, their order statistics $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ are not independent in general.

► Theorem. Suppose that X_1, \dots, X_n are i.i.d. with cdf F .

1. The cdf of $X_{(1)}$ is $1 - [1 - F(x)]^n$, and the cdf of $X_{(n)}$ is $[F(x)]^n$.

2. If X are continuous and F has a pdf f , then the pdf of $X_{(1)}$ is $n f(x) [1 - F(x)]^{n-1}$, and the pdf of $X_{(n)}$ is $n f(x) [F(x)]^{n-1}$.

Proof. By the method of cumulative distribution function,

$$1 - F_{X_{(1)}}(x)$$

$$= P(X_{(1)} > x) = P(X_1 > x, \dots, X_n > x)$$

$$= P(X_1 > x) \cdots P(X_n > x) = [1 - F(x)]^n.$$

$$\begin{aligned} F_{X_{(n)}}(x) &= P(X_{(n)} \leq x) = P(X_1 \leq x, \dots, X_n \leq x) \\ &= P(X_1 \leq x) \cdots P(X_n \leq x) = [F(x)]^n. \end{aligned}$$

$$f_{X_{(1)}}(x) = \frac{d}{dx} F_{X_{(1)}}(x)$$

$$= n[1 - F(x)]^{n-1} \left(\frac{d}{dx} F(x) \right) = n f(x) [1 - F(x)]^{n-1}.$$

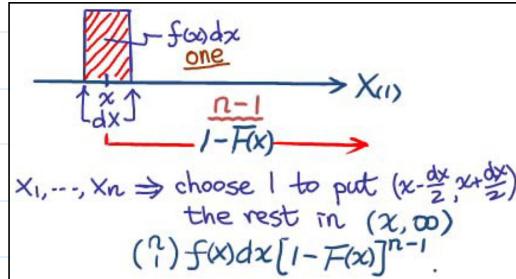
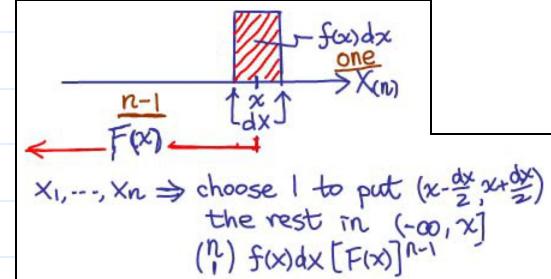
$$f_{X_{(n)}}(x) = \frac{d}{dx} F_{X_{(n)}}(x)$$

$$= n[F(x)]^{n-1} \left(\frac{d}{dx} F(x) \right) = n f(x) [F(x)]^{n-1}.$$

NTHU MATH 2810, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

■ Graphical interpretation for the pdfs of $X_{(1)}$ and $X_{(n)}$.



■ Example. n light bulbs are placed in service at time $t=0$, and allowed to burn continuously. Denote their lifetimes by X_1, \dots, X_n , and suppose that they are i.i.d. with cdf F .

If burned out bulbs are not replaced, then the room goes dark at time

$$Y = X_{(n)} = \max(X_1, \dots, X_n).$$

■ If $n=5$ and F is exponential with $\lambda = 1$ per month, then

$$F(x) = 1 - e^{-x}, \text{ for } x \geq 0, \text{ and } 0, \text{ for } x < 0.$$

■ The cdf of Y is

$$F_Y(y) = (1 - e^{-y})^5, \text{ for } y \geq 0, \text{ and } 0, \text{ for } y < 0,$$

and its pdf is $5(1 - e^{-y})^4 e^{-y}$, for $y \geq 0$, and 0, for $y < 0$.

■ The probability that the room is still lighted after two months is $P(Y > 2) = 1 - F_Y(2) = 1 - (1 - e^{-2})^5$.

► Theorem. Suppose that X_1, \dots, X_n are i.i.d. with pmf p /pdf f . Then, the joint pmf/pdf of $X_{(1)}, \dots, X_{(n)}$ is

$$\begin{aligned} & p_{X_{(1)}, \dots, X_{(n)}}(x_1, \dots, x_n) \\ &= \frac{n!}{n!} \times p(x_1) \times \dots \times p(x_n), \end{aligned}$$

$$\begin{aligned} \text{or } & f_{X_{(1)}, \dots, X_{(n)}}(x_1, \dots, x_n) \\ &= \frac{n!}{n!} \times f(x_1) \times \dots \times f(x_n), \end{aligned}$$

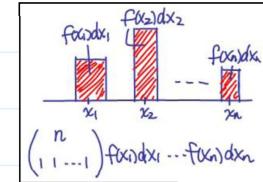
for $x_1 \leq x_2 \leq \dots \leq x_n$, and 0 otherwise.

Proof. For $x_1 \leq x_2 \leq \dots \leq x_n$,

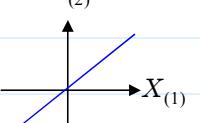
$$\begin{aligned} & p_{X_{(1)}, \dots, X_{(n)}}(x_1, \dots, x_n) \\ &= P(X_{(1)} = x_1, \dots, X_{(n)} = x_n) \\ &= \sum_{\substack{(i_1, \dots, i_n): \\ \text{permutations of} \\ (1, \dots, n)}} P(X_1 = x_{i_1}, \dots, X_n = x_{i_n}) \\ &= \sum_{\substack{(i_1, \dots, i_n): \\ \text{permutations of} \\ (1, \dots, n)}} \frac{p(x_1) \times \dots \times p(x_n)}{n!} \\ &= \frac{n!}{n!} \times p(x_1) \times \dots \times p(x_n). \end{aligned}$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

$$\begin{aligned} & f_{X_{(1)}, \dots, X_{(n)}}(x_1, \dots, x_n) dx_1 \dots dx_n \\ & \approx P\left(x_1 - \frac{dx_1}{2} < X_{(1)} < x_1 + \frac{dx_1}{2}, \dots, x_n - \frac{dx_n}{2} < X_{(n)} < x_n + \frac{dx_n}{2}\right) \\ &= \sum_{\substack{(i_1, \dots, i_n): \\ \text{permutations of} \\ (1, \dots, n)}} P\left(x_{i_1} - \frac{dx_{i_1}}{2} < X_1 < x_{i_1} + \frac{dx_{i_1}}{2}, \dots, x_{i_n} - \frac{dx_{i_n}}{2} < X_n < x_{i_n} + \frac{dx_{i_n}}{2}\right) \\ & \approx \sum_{\substack{(i_1, \dots, i_n): \\ \text{permutations of} \\ (1, \dots, n)}} f(x_1) \times \dots \times f(x_n) dx_1 \dots dx_n \\ &= \frac{n!}{n!} \times f(x_1) \times \dots \times f(x_n) dx_1 \dots dx_n. \end{aligned}$$



■ Q: Examine whether $X_{(1)}, \dots, X_{(n)}$ are independent using the Theorem in LNp.7-25.



► Theorem. If X_1, \dots, X_n are i.i.d. with cdf F and pdf f , then

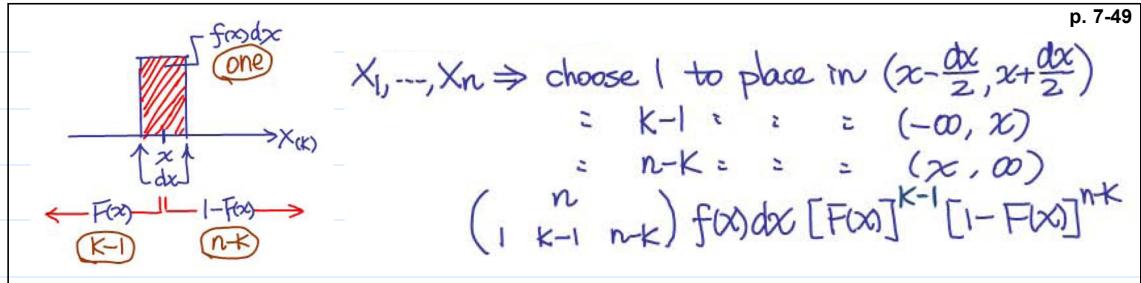
1. The pdf of the k^{th} order statistic $X_{(k)}$ is

$$\begin{aligned} & f_{X_{(k)}}(x) \\ &= \binom{n}{k-1, n-k} f(x) F(x)^{k-1} [1 - F(x)]^{n-k}. \end{aligned}$$

2. The cdf of $X_{(k)}$ is

$$F_{X_{(k)}}(x) = \sum_{m=k}^n \binom{n}{m} [F(x)]^m [1 - F(x)]^{n-m}.$$

Proof.



$$F_{X_{(k)}}(x) = P(X_{(k)} \leq x)$$

$$= P(\text{at least } k \text{ of the } X_i \text{'s are } \leq x)$$

$$= \sum_{m=k}^n P(\text{exact } m \text{ of the } X_i \text{'s are } \leq x)$$

$$= \sum_{m=k}^n \binom{n}{m} [F(x)]^m [1 - F(x)]^{n-m}$$

► Theorem. If X_1, \dots, X_n are i.i.d. with cdf F and pdf f , then

1. The joint pdf of $X_{(1)}$ and $X_{(n)}$ is

$$f_{X_{(1)}, X_{(n)}}(s, t) = \frac{n(n-1)}{2} \frac{f(s)f(t)}{[F(t) - F(s)]^{n-2}},$$

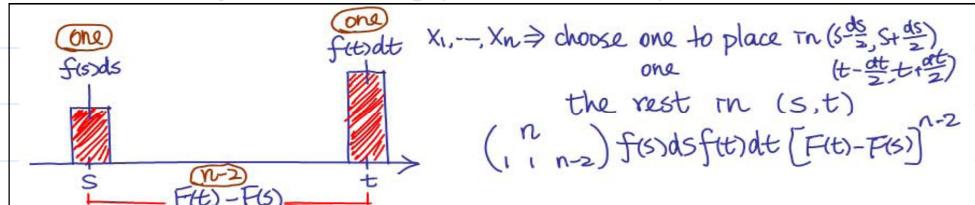
for $s \leq t$, and 0 otherwise.

2. The pdf of the range $R = X_{(n)} - X_{(1)}$ is

$$\underline{f}_R(r) = \int_{-\infty}^{\infty} f_{X_{(1)}, X_{(n)}}(u, u+r) du,$$

for $r \geq 0$, and 0 otherwise.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)



p. 7-50

➤ Theorem. If X_1, \dots, X_n are i.i.d. with cdf F and pdf f , then

1. The joint pdf of $X_{(i)}$ and $X_{(j)}$, where $1 \leq i < j \leq n$, is

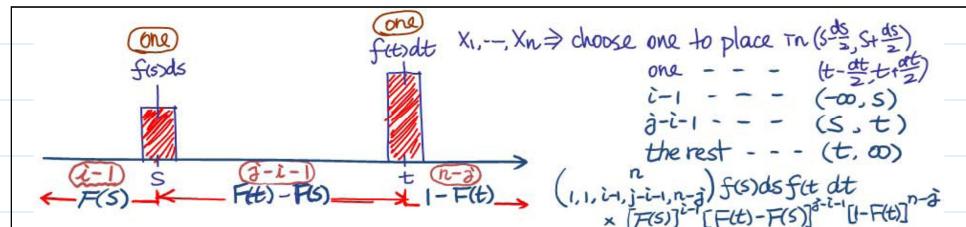
$$\frac{f_{X_{(i)}, X_{(j)}}(s, t)}{\frac{n!}{(i-1)!(j-i-1)!(n-j)!} f(s)f(t)} \times [F(s)]^{i-1} [F(t) - F(s)]^{j-i-1} [1 - F(t)]^{n-j},$$

for $s \leq t$, and 0 otherwise.

2. The pdf of the j^{th} spacing $S_j = X_{(j)} - X_{(j-1)}$ is

$$f_{S_j}(s) = \int_{-\infty}^{\infty} f_{X_{(j-1)}, X_{(j)}}(u, u+s) \, du,$$

for $s \geq 0$, and zero otherwise.

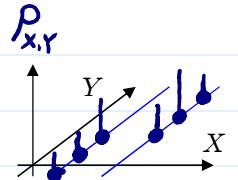


Conditional Distribution

- Definition. Let $\underline{\mathbf{X}} (\in \mathbb{R}^n)$ and $\underline{\mathbf{Y}} (\in \mathbb{R}^m)$ be discrete random vectors and $(\underline{\mathbf{X}}, \underline{\mathbf{Y}})$ have a joint pmf $p_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\underline{\mathbf{x}}, \underline{\mathbf{y}})$, then the conditional joint pmf of $\underline{\mathbf{Y}}$ given $\underline{\mathbf{X}}=\underline{\mathbf{x}}$ is defined as

$$\begin{aligned} p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}}) \equiv P(\{\underline{\mathbf{Y}}=\underline{\mathbf{y}}\}|\{\underline{\mathbf{X}}=\underline{\mathbf{x}}\}) &= \frac{P(\{\underline{\mathbf{X}}=\underline{\mathbf{x}}, \underline{\mathbf{Y}}=\underline{\mathbf{y}}\})}{P(\{\underline{\mathbf{X}}=\underline{\mathbf{x}}\})} \\ &= \frac{p_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\underline{\mathbf{x}}, \underline{\mathbf{y}})}{p_{\underline{\mathbf{X}}}(\underline{\mathbf{x}})} = \frac{\text{joint}}{\text{marginal}} \end{aligned}$$

if $p_{\underline{\mathbf{X}}}(\underline{\mathbf{x}}) > 0$. The probability is defined to be zero if $p_{\underline{\mathbf{X}}}(\underline{\mathbf{x}}) = 0$.



➤ Some Notes.

- For each fixed $\underline{\mathbf{x}}$, $p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}})$ is a joint pmf for $\underline{\mathbf{y}}$, since

$$\sum_{\underline{\mathbf{y}}} p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}}) = \frac{1}{p_{\underline{\mathbf{X}}}(\underline{\mathbf{x}})} \sum_{\underline{\mathbf{y}}} p_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) = \frac{1}{p_{\underline{\mathbf{X}}}(\underline{\mathbf{x}})} \times p_{\underline{\mathbf{X}}}(\underline{\mathbf{x}}) = 1.$$

- For an event B of $\underline{\mathbf{Y}}$, the probability that $\underline{\mathbf{Y}} \in B$ given $\underline{\mathbf{X}}=\underline{\mathbf{x}}$ is

$$P(\underline{\mathbf{Y}} \in B | \underline{\mathbf{X}} = \underline{\mathbf{x}}) = \sum_{\underline{\mathbf{u}} \in B} p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{u}}|\underline{\mathbf{x}}).$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- The conditional joint cdf of $\underline{\mathbf{Y}}$ given $\underline{\mathbf{X}}=\underline{\mathbf{x}}$ can be similarly defined from the conditional joint pmf $p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}})$, i.e.,

$$F_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}}) = P(\underline{\mathbf{Y}} \leq \underline{\mathbf{y}} | \underline{\mathbf{X}} = \underline{\mathbf{x}}) = \sum_{\underline{\mathbf{u}} \leq \underline{\mathbf{y}}} p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{u}}|\underline{\mathbf{x}}).$$

➤ Theorem.

Let $\underline{X}_1, \dots, \underline{X}_m$ be independent and

$$\underline{X}_i \sim \text{Poisson}(\lambda_i), \quad i=1, \dots, m.$$

Let $\underline{Y} = \underline{X}_1 + \dots + \underline{X}_m$, then

$$(\underline{X}_1, \dots, \underline{X}_m | \underline{Y} = n) \sim \text{Multinomial}(n, m, p_1, \dots, p_m),$$

where $p_i = \lambda_i / (\lambda_1 + \dots + \lambda_m)$ for $i=1, \dots, m$.

Proof. The joint pmf of $(\underline{X}_1, \dots, \underline{X}_m, \underline{Y})$ is

$$\begin{aligned} p_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\underline{x}_1, \dots, \underline{x}_m, n) &= P(\{\underline{X}_1 = x_1, \dots, \underline{X}_m = x_m\} \cap \{\underline{Y} = n\}) \\ &= \begin{cases} P(\underline{X}_1 = x_1, \dots, \underline{X}_m = x_m), & \text{if } x_1 + \dots + x_m = n, \\ 0, & \text{if } x_1 + \dots + x_m \neq n. \end{cases} \end{aligned}$$

Furthermore, the distribution of Y is Poisson($\lambda_1 + \dots + \lambda_m$), i.e.,

$$p_Y(n) = P(Y = n) = \frac{e^{-(\lambda_1 + \dots + \lambda_m)} (\lambda_1 + \dots + \lambda_m)^n}{n!}.$$

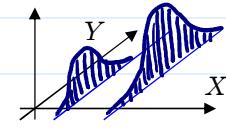
Therefore, for $\underline{\mathbf{x}} = (x_1, \dots, x_m)$ wheres $x_i \in \{0, 1, 2, \dots\}$, $i = 1, \dots, m$, and $x_1 + \dots + x_m = n$, the conditional joint pmf of $\underline{\mathbf{X}}$ given $\underline{Y} = n$ is

$$\begin{aligned} p_{\underline{\mathbf{X}}|\underline{Y}}(\underline{\mathbf{x}}|n) &= \frac{p_{\underline{\mathbf{X}}, \underline{Y}}(x_1, \dots, x_m, n)}{p_Y(n)} = \frac{\prod_{i=1}^m \frac{e^{-\lambda_i} \lambda_i^{x_i}}{x_i!}}{\frac{e^{-(\lambda_1 + \dots + \lambda_m)} (\lambda_1 + \dots + \lambda_m)^n}{n!}} \\ &= \frac{n!}{x_1! \times \dots \times x_m!} \times \left(\frac{\lambda_1}{\lambda_1 + \dots + \lambda_m} \right)^{x_1} \times \dots \times \left(\frac{\lambda_m}{\lambda_1 + \dots + \lambda_m} \right)^{x_m}. \end{aligned}$$

- Definition. Let $\underline{\mathbf{X}} (\in \mathbb{R}^n)$ and $\underline{\mathbf{Y}} (\in \mathbb{R}^m)$ be continuous random vectors and $(\underline{\mathbf{X}}, \underline{\mathbf{Y}})$ have a joint pdf $f_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{x}, \mathbf{y})$, then the conditional joint pdf of $\underline{\mathbf{Y}}$ given $\underline{\mathbf{X}} = \mathbf{x}$ is defined as

$$f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x}) \equiv \frac{f_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{x}, \mathbf{y})}{f_{\underline{\mathbf{X}}}(\mathbf{x})} = \frac{\text{joint}}{\text{marginal}},$$

if $f_{\underline{\mathbf{X}}}(\mathbf{x}) > 0$, and 0 otherwise.



NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ Some Notes.

- $P(\underline{\mathbf{X}} = \mathbf{x}) = 0$ for a continuous random vector $\underline{\mathbf{X}}$.
- The justification of $f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x})$ comes from

$$\begin{aligned} P(\underline{\mathbf{Y}} \leq \mathbf{y} | \mathbf{x} - (\Delta \mathbf{x}/2) < \underline{\mathbf{X}} \leq \mathbf{x} + (\Delta \mathbf{x}/2)) \\ &= \frac{\int_{-\infty}^{\mathbf{y}} \int_{\mathbf{x} - (\Delta \mathbf{x}/2)}^{\mathbf{x} + (\Delta \mathbf{x}/2)} f_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{u}, \mathbf{v}) \, d\mathbf{u} \, d\mathbf{v}}{\int_{\mathbf{x} - (\Delta \mathbf{x}/2)}^{\mathbf{x} + (\Delta \mathbf{x}/2)} f_{\underline{\mathbf{X}}}(\mathbf{t}) \, d\mathbf{t}} \\ &\approx \frac{\int_{-\infty}^{\mathbf{y}} f_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{x}, \mathbf{v}) |\Delta \mathbf{x}| \, d\mathbf{v}}{f_{\underline{\mathbf{X}}}(\mathbf{x}) |\Delta \mathbf{x}|} = \int_{-\infty}^{\mathbf{y}} \frac{f_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{x}, \mathbf{v})}{f_{\underline{\mathbf{X}}}(\mathbf{x})} \, d\mathbf{v} \end{aligned}$$

- For each fixed \mathbf{x} , $f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x})$ is a joint pdf for $\underline{\mathbf{Y}}$, since

$$\int_{-\infty}^{\infty} f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x}) \, d\mathbf{y} = \frac{1}{f_{\underline{\mathbf{X}}}(\mathbf{x})} \int_{-\infty}^{\infty} f_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} = \frac{1}{f_{\underline{\mathbf{X}}}(\mathbf{x})} \times f_{\underline{\mathbf{X}}}(\mathbf{x}) = 1.$$

- For an event B of $\underline{\mathbf{Y}}$, we can write

$$P(\underline{\mathbf{Y}} \in B | \underline{\mathbf{X}} = \mathbf{x}) = \int_B f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x}) \, d\mathbf{y}.$$

- The conditional joint cdf of $\underline{\mathbf{Y}}$ given $\underline{\mathbf{X}} = \mathbf{x}$ can be similarly defined from the conditional joint pdf $f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x})$, i.e.,

$$F_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{y}|\mathbf{x}) = P(\underline{\mathbf{Y}} \leq \mathbf{y} | \underline{\mathbf{X}} = \mathbf{x}) = \int_{-\infty}^{\mathbf{y}} f_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\mathbf{t}|\mathbf{x}) \, d\mathbf{t}.$$

➤ Example. If X and Y have a joint pdf

$$f(x, y) = \frac{2}{(1+x+y)^3},$$

for $0 \leq x, y < \infty$, then

$$f_X(x) = \int_0^\infty f(x, y) dy = -\frac{1}{(1+x+y)^2} \Big|_0^\infty = \frac{1}{(1+x)^2},$$

for $0 \leq x < \infty$. So,

$$f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)} = \frac{2(1+x)^2}{(1+x+y)^3},$$

$$\begin{aligned} \text{and, } P(Y > c | X = x) &= \int_c^\infty \frac{2(1+x)^2}{(1+x+y)^3} dy \\ &= -\frac{(1+x)^2}{(1+x+y)^2} \Big|_{y=c}^\infty = \frac{(1+x)^2}{(1+x+c)^2}. \end{aligned}$$

• Mixed Joint Distribution: Definition of conditional distribution can be similarly generalized to the case in which some random variables are discrete and the others continuous (see a later example).

• Theorem (Multiplication Law). Let \mathbf{X} and \mathbf{Y} be random vectors and (\mathbf{X}, \mathbf{Y}) have a joint pdf $f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$ /pmf $p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$$p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) = p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \times p_{\mathbf{X}}(\mathbf{x}), \text{ or}$$

$$f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) = f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \times f_{\mathbf{X}}(\mathbf{x}).$$

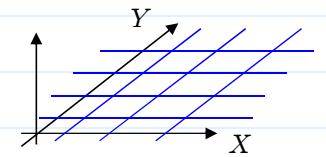
NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Proof. By the definition of conditional distribution.

• Theorem (Law of Total Probability). Let \mathbf{X} and \mathbf{Y} be random vectors and (\mathbf{X}, \mathbf{Y}) have a joint pdf $f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$ /pmf $p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$$p_{\mathbf{Y}}(\mathbf{y}) = \sum_{\mathbf{x}=-\infty}^{\infty} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x}), \text{ or}$$

$$f_{\mathbf{Y}}(\mathbf{y}) = \int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

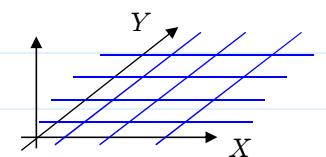


Proof. By the definition of marginal distribution and the multiplication law.

• Theorem (Bayes Theorem). Let \mathbf{X} and \mathbf{Y} be random vectors and (\mathbf{X}, \mathbf{Y}) have a joint pdf $f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$ /pmf $p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$$p_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \frac{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x})}{\sum_{\mathbf{x}=-\infty}^{\infty} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x})}, \text{ or}$$

$$f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \frac{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x})}{\int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}}.$$



Proof. By the definition of conditional distribution, multiplication law, and the law of total probability.

➤ Example.

- Suppose that $\underline{X} \sim \text{Uniform}(0, 1)$, and

$(\underline{Y}_1, \dots, \underline{Y}_n | \underline{X} = x)$ are i.i.d. with $\text{Bernoulli}(x)$, i.e.,

$$p_{\mathbf{Y}|X}(y_1, \dots, y_n | x) = x^{y_1 + \dots + y_n} (1 - x)^{n - (y_1 + \dots + y_n)},$$

for $y_1, \dots, y_n \in \{0, 1\}$.

- By the multiplication law, for $y_1, \dots, y_n \in \{0, 1\}$ and $0 < x < 1$,

$$p_{\mathbf{Y},X}(y_1, \dots, y_n, x) = x^{y_1 + \dots + y_n} (1 - x)^{n - (y_1 + \dots + y_n)}.$$

- Suppose that we observed $\underline{Y}_1 = 1, \dots, \underline{Y}_n = 1$.

- By the law of total probability,

$$\begin{aligned} P(\underline{Y}_1 = 1, \dots, \underline{Y}_n = 1) &= p_{\mathbf{Y}}(1, \dots, 1) \\ &= \int_0^1 p_{\mathbf{Y}|X}(1, \dots, 1 | x) f_X(x) dx \\ &= \int_0^1 x^n dx = \frac{1}{n+1} x^{n+1} \Big|_0^1 = \frac{1}{n+1}. \end{aligned}$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- And, by Bayes' Theorem,

$$\begin{aligned} f_{X|\mathbf{Y}}(x | \underline{Y}_1 = 1, \dots, \underline{Y}_n = 1) \\ = \frac{p_{\mathbf{Y}|X}(1, \dots, 1 | x) f_X(x)}{p_{\mathbf{Y}}(1, \dots, 1)} = (n+1)x^n. \end{aligned}$$

for $0 < x < 1$, i.e., $(\underline{X} | \underline{Y}_1 = 1, \dots, \underline{Y}_n = 1) \sim \text{Beta}(n+1, 1)$.

(cf., marginal distribution of $\underline{X} \sim \text{Uniform}(0, 1) = \text{Beta}(1, 1)$.)

- If there were an $(n+1)^{\text{st}}$ Bernoulli trial \underline{Y}_{n+1} ,

$$\begin{aligned} P(\underline{Y}_{n+1} = 1 | \underline{Y}_1 = 1, \dots, \underline{Y}_n = 1) \\ = \frac{P(\underline{Y}_1 = 1, \dots, \underline{Y}_{n+1} = 1)}{P(\underline{Y}_1 = 1, \dots, \underline{Y}_n = 1)} = \frac{1/(n+2)}{1/(n+1)} = \frac{n+1}{n+2}. \end{aligned}$$

- (exercise) In general, it can be shown that

$$(\underline{X} | \underline{Y}_1 = y_1, \dots, \underline{Y}_n = y_n) \sim \text{Beta}((y_1 + \dots + y_n) + 1, n - (y_1 + \dots + y_n) + 1).$$

- Theorem (Conditional Distribution & Independent). Let \underline{X} and \underline{Y} be random vectors and $(\underline{X}, \underline{Y})$ have a joint pdf $f_{\underline{X}, \underline{Y}}(\mathbf{x}, \mathbf{y})$ /pmf $p_{\underline{X}, \underline{Y}}(\mathbf{x}, \mathbf{y})$. Then, \underline{X} and \underline{Y} are independent, i.e.,

$$p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) = p_{\mathbf{X}}(\mathbf{x}) \times p_{\mathbf{Y}}(\mathbf{y}), \text{ or}$$

$$f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \times f_{\mathbf{Y}}(\mathbf{y}),$$

if and only if

$$\underline{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})} = \underline{p_{\mathbf{Y}}(\mathbf{y})}, \text{ or}$$

$$\underline{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})} = \underline{f_{\mathbf{Y}}(\mathbf{y})}.$$

Proof. By the definition of conditional distribution.

➤ Intuition.

- The 2 graphs about the joint pmf/pdf of independent r.v.'s in LNp.7-27
- $p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ or $f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ offers information about the distribution of \mathbf{Y} when $\mathbf{X}=\mathbf{x}$.

$p_{\mathbf{Y}}(\mathbf{y})$ or $f_{\mathbf{Y}}(\mathbf{y})$ offers information about the distribution of \mathbf{Y} when \mathbf{X} not observed.

❖ **Reading:** textbook, Sec 6.4, 6.5

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)