Jointly Distributed Random Variables

* Recall. In Chapters 4 and 5, focus on univariate random variable.

»However, often a single experiment will have more [3 X,

than one random variables which are of interest.

» Definition. Given a sample space Q and a probability measure
P defined on the subsets of Q, random variables

Xy X5y ooy, X0 QR
are said to be jointly distributed.

= We can regard n jointly distributed r.v.’s as a

random vector X=( Xy LX) QR
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* Q: For ACR", how to define the probability of {X€A} from ?

Q X, R2

rown | ! [DE=
Px, x,(A) = P(Ea) X, i)%)b W
»For ACR™, X,
Px, .. x,(4) ;
= P{we Q(X1(w),...,X,(w)) € A}) -
»For A,CR, =1, ..., n, ::H X

PXl,...,Xn(Xl S A17 T '7Xn S An)
= PHweQXi(w)e A}n---N{we QX,(v) € A, })

» Definition. The probability measure of X (Px, defined on
subsets of R") is called the joint distribution of X, ...,
X,- The probability measure of X; (Py, , defined on
subsets of R) is called the marginal distribution of X,.




* Q: Why need joint distribution? Why are

marginal distributions not enough?

» Example (Coin Tossing, Toss a fair coin

3 times, LNp.5-3).

X,: # of head X: total # of heads
onl1¥toss| 0(1/8) | 1(3/8) | 2(3/8) | 3(1/8)
0(12) | 1/8[1/16]|2/8[3/16] | 1/8 [3/16] | 0[1/16]
1(1/2) 0[1/16] | 1/8[3/16] | 2/8 [3/16] | 1/8 [1/16]

= blue numbers: joint distribution of X, and X,

= (black numbers): marginal distributions

= [red numbers]: joint distribution of another (X,”, X,")

=« Some findings:

o When joint distribution is given, its corresponding
marginal distributions are known, e.g.,
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o(X,, X,) and (X,”, X,") have identical marginal
distributions but different joint distributions.

+ When the marginal distributions are given, the
corresponding joint distribution is still unknown. There
could be many possible different joint distributions.

(A special case: X, ..., X, are independent.)

o Joint distribution offers more information, e.g.,

+ When not observing X, the distribution of X, is:
P(X,=0)=1/2, P(X,=1)=1/2 = marginal distribution
+ When X, was observed, say X =1, the distribution of

X, is: P(X,=0|X,=1)=(2/8)/(3/8)=2/3 and
P(X,=1|X,=1)=(1/8)/(3/8)=1/3 = the calculation
requires the knowing of joint distribution

» We can characterize the joint distribution of X in terms of its
1.Joint Cumulative Distribution Function (joint cdf)
2.Joint Probability Mass (Density) Function (joint pmf or pdf)
3.Joint Moment Generating Function (joint mgf, Chapter 7)




> Joint Cumulative Distribution Function

2 uDefinition. The joint cdf of X=(X, ..., X)) is defined as

A€ Py (71, 20) = P(X1 <21, X2 < @0,..., X, < ).

- » X,
744 & Theorem. Suppose that Fy is a joint cdf. Then,

(1) 0L Fx(zy, ..., x,) < 1, for —oo<z;<oo, t=1, ..., n.

>

W
N

(i) limg, o, zn—o0 Fx(T1,...,2n) =1

Proof. Let 2, T 00,1 <i<n.
Let Am — (_OO Zlm] X ( 00, an (%o ’)&.
Then, A, T R" = lim P(4,,) = = 1. % %
(i11) For any ¢€{1, ..., n}, X %,2%)X,
. v | =
lim Fx(zy,...,2,) =0. %1@%1
xT;—>—00 _

Proof. Let z;, | —oo, for some 3.

Let A,, = (—00, 1] X+ X (=00, Zin] X =+ X (—00, Ty]

Then, A,, | 0 = lim P(A4,,) = P(0) = 0.

X, - (iv) F 1s continuous from the right with

respect to each of the coordinates,
& X, or any subset of them jointly, i.e.,
Gei, X 2) it x=(z, ...,z,)andz_=(2,, ---, 2
such that z,, | X, then

Fx(Zm> \l, Fx<X>.

W If z; <z, i=1,...,n, then
%',’é) Fx(z1,...,2p) < Fx(t1,...,tn) < Fx(z},...,2)).

n

where ¢; € {z;,x.},i=1,2,...,n. When n=2, we have

FX X (561 513,2)
< 1,<\2 9 < / / ]
FX1,X2(3717$2) = { FX1,X2(w/17x2) = FXl,X2($1?$2)

(vi) If z; < 2} and x5 < x5, then
P(x; < X; <2},19 < Xo < 1))

Nty = Fxyx (@ 25) - Fx, x (2, a))
1 _FXl,Xz(xlva)+FX1,X2($17$2)'

Lo |

(%, X2)




Xz‘ t/////z/gz In particular, let 2} 1 co and x5 1 oo, we get "

4;\ X, P(ZL’1<X1<OO,$2<X2<OO)

T — 1 —F_Xl(ajl) —@($2) + Fx, x,(%1,22).

(vi1) The joint cdfofgl s e Xp K<, 18
o FXh__‘,Xk(Zbl,...,CE‘k)IP(XlSZUl,...,XkSZEk)

X, Q(Z”‘?—) = P(Xl le,...,XkSZCk,
A — 00 < Xpa1 <00,...,—00 < X, < 00)

= lim Fx (1, oy Xy Tha1ye s Tpy)-
Th41,Lk42,""Ln —>00

%}

Ko
] F%\

1

In particular, the marginal cdf of X is

Fx,(z) = P(X) < x)

= lim Fx(x,x2,x3,...,Ts).
T2,L3, ", Lpn—>00 _

= Theorem. A function Fy(zy, ..., 2,) can be a joint cdf if Fy
satisfies (1)-(v) in the previous theorem

» Joint Probability Mass Function

= Definition. Suppose that X, ..., X, are discrete random
variables. The joint pmf of X= (X 1> ---» X ;) 1s defined as
px(x1,...,2,) = P(X1 =21,..., X5, = x,).
» Theorem. Suppose that py 1s a joint pmf. Then,

(@) px(x1,...,2n) >0, for —co < z; <o00,i=1,...,n.

(b) There exists a finite or countably infinite set X C R” such
that px(z1,...,2,) =0, for (x1,...,2,) & X.

(©) D xex Px(x) =1, where x = (z1,...,2,).

(d) For ACR", P(X € A) = > canx PX(X).
£ I v*€(e) The joint pmf of X, ..., X;, k<n, is

PXx,,..., Xk(xla”'axk):P(Xl:xla"'an:xk)

X]
= P(Xlle,...,Xk:ZEk,
marginal pn§ — 00 < Xgp1 < 00,...,—00 < X, < 00)
= Z PX(T1y .oy Ty Thd 1y e v vy Tiy)-

(x1,..,xn)EX
—oo<ack_|_1 < OO, ..., —oco < xTn <O
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In particular, the marginal pmf of X, is
Px, (¢) = P(X1 = )
— Z pX(E,sz,[Cg,...,xn),

(x,x0,...,xn)EX
—oo< T <00,...,—00ol Ty <O

= Theorem. A function px(z,, ..., ,) can be a joint pmf if py
satisfies (a)-(c) in the previous theorem

= Theorem. If Fy and py are the joint cdf and joint pmf of X,

I lﬂ”tﬁen
/‘i Fx(l‘l,...,mn) — E pX(t17"'7tn)'
/ @)1 5! (t1,...1tn)EX

//// t1<zq tn<zn

.....

A

To derive py from Fy, take n=2 to illustrate:

1 1 1 1
7 *Xi px (21, 22) = lim P<$U1——<X1SSU1+—,582——<X2SZE2+—>
m m m m

m—0o0
XZ
A = lim [Fx(ajl—|—1/m,x2—|—1/m)—Fx(xl—l—l/m,asg—l/m)
m— o0
i X, —Fx(xl—l/m,x2+1/m)—|—FX(x1—1/m,x2—1/m)}

= Fx(xl,xz) — Fx(xl,l‘g—) — Fx(xl—,ilfz) —+ Fx(afl—,l‘g—)
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» Joint Probability Density Function

= Definition. A function fx(z, ..., ) can be a joint pdf if

(1) fx(zy, ..., 2,)>0, for —co<z,<oo, =1, ..., n.

(2)foo foo fx(x1,...,2p) dey---dr, =

?dg\f“ 2 Definition. Suppose that X, ..., X, are continuous r.v.’s.
= ’ﬁ The joint pdf of X=(X|, .. Xn) is a function fy(z,, ..., x,)

Eﬁg satisfying (1) and (2) above, and for any event ACR”,

 PXeA)y=[-[, fx(@1,...,2n) d1 - day,.

= Theorem. Suppose that fy is the joint pdf of X=(X, ..., X,).
Then, the joint pdf ofgl y e Xpy K<, 1S

O 5K
N lev'”an(:Cl?"‘)xk)

— ffooo .. ffooo fx(:ljl, WL -5 %, 1 W T ,xn) d;[jk+1 coodxy,.

X,
In particular, the marginal pdf of X, 1s

1 7] ~

S;A"g fx,(z) = f_oo e ffooo fx(z,x2,...,2,) dxa- - dxy,.
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= Theorem. If Fy and fy are the joint cdf and joint pdf of X,

then
Fx(x1,...,%y)
= ff’;o ff;o fx(t1,...,tn) dty ---dt,, and
fx(@1,. . an) = 5755 Fx(z1, . . ., ).

at the continuity points of fx.

» Examples.

» Experiment. Two balls are drawn without replacement from a
box with one ball labeled 1,

two balls labeled 2,
three balls labeled 3.

Let X = label on the 1%t ball drawn,
Y = label on the 2"¢ ball drawn.

= The joint pmf and marginal pmfs of (X, Y) are
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X
1 0 2/30 | 3/30 1/6

v [ 2] 230 [230]630] 2/6
3 | 330 [630]630] 36
p() 1/6 2/6 | 3/6

Q: The balls are drawn without replacement. Why do X (from
15t ball) and Y (from 2" ball) have same marginal distributions?

n Q: (| X-Y[=1)=2?
P|X-YF1)= AX=1, Y=2) + A(X=2, Y=1)
+ A(X=2, Y=3) + P(X=3, Y=2) = 8/15.
= Q:What are the joint pmf and marginal pmfs of (X, Y) if the
balls are drawn with replacement (LNp. 4-6)?

p(z, y) " X2 3 Py(Y)

1 1/36 | 2/36 | 3/36 | 1/6
Y | 2 2/36 | 4/36 | 6/36 | 2/6

3 3/36 | 6/36 | 9/36 | 3/6




p. 7-13

» Multinomial Distribution

= Recall. Partitions

olf n>1and n, ..., n,,> 0 are integers for which

then a set of n elements may be partitioned into m subsets
of sizesn,, ..., n,In

(nl,-l-’?,nm) — n1!><~7-1-!><nm! ways.
o Example (LNp.2-8) : MISSISSIPPI
( 11\ _ _ 11
4,1,2,4) — 41112141"

» Example (Die Rolling).

o Q: If a balanced (6-sided) die is rolled 12 times,
P(each face appears twice)=??

o Sample space of rolling the die once (basic experiment):
Q,=1{1,2,3,4,5, 6}.
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o The sample space for the 12 trials is
Q=0Q)x - xQy=0Q,=
An outcome W € Q is W=(i,, i, ..., i;,), where
1<y, ..., 1,<6. - N

o There are 6!2 possible outcomes in Q, i.e., #Q = 612

o Among all possible outcomes, there are ( 12 ) —

12!
2,2,2,2,2,2 )6

(2

of which each face appears twice.

. 12
o P(each face appears twice) = (;!2)!6 (%) :

= Generalization.

o Consider a basic experiment which can result in one of m

types of outcomes. Denote its sample space as
99= {1,2, ..., m}.

Let p; = M(outcome ¢ appears in a basic experiment),

then, (1) Pis o5 Py >0, and
(ii)]_91_+ -+ p. =1,
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o Repeat the basic experiment n times. Then, the sample
space for the n trials is
QZQOX e X QOZQOQ

Let X, = # of trials with outcome ¢, =1, ..., m,
Then, (1) Kl’ X, 0 Q =R, and
(i) Xy + -+ X, =

o The joint pmfof&l, ey X 1S

px(T1,..yTm) = P(Xy=uzy,..., Xm:a:m)
— (:131, )pl -ng,bm.

forgl, ...,xmz Oand§l+ -tz =n.

Proof. The probability of any sequence with x, ’s is
pijl X oo X p%m
and there are

(o1, )
L1, Lm

such sequences.
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o The distribution of a random vector X=(X,, ... , X)) with
the above joint pmf is called the multinomial distribution
with parameters n, m, and p,, ..., p,., denoted by
Multinomial(n, m, p,, ..., p,,).

« The multinomial distribution is called after the
Multinomial Theorem:

(a1 4+ am)"

n
- > Jattx o ox azp
L1y "y Lm

xz;€{0,...,n}; i=1,...,m
]+t T =n

o It is a generalization of the binomial distribution from
2 types of outcomes to m types of outcomes.

o Some Properties.
¢ Because X, =n — (X +---+X, +X,,,+---+X ), and

WLOG, we can write
(Xpees X

m—1° X ) — (Xl’ .o Xm—l’ TL—(Xl‘l‘---‘FXm—_l))
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+ Marginal Distribution. Suppose that
(X4, ..., X)) ~ Multinomial(n, m, py, ..., Prs Priseees Prn)-
For 1§k<;7,, the distribution of -
(Xp, oo, Xy Xyt oo +X0)
1s Multinomial(n, k+1, ]_?_l s Pies Q,ﬁ_lﬂm).

In particular, X, ~ Binomial(n, p,)
+ Mean and Variance.
E(X,)=np, and Var(X,)=np,(1-p;)
fori=1,...,r_n. - _ - -
»Example.
= Suppose that the joint pdf of 2 continuous r.v.’s (X, Y) is
ANe=AMaty) >0,y >0,

f@,y) = { 0, otherwise. Y
Q: AY 22X or X>2Y)=7? X

« The event {Y > 2X}U{X> 2V} is

= So, Y >2X or X>2¥)=P(Y >2X)+ (X >2Y)=2/3 becausé ™

P(Y >2X) = / [ / AZe~Mety) dy] dz
0
= _)\6_)‘(1;+y)

2x oo
dx:/ e 3N dp
0 - y=2x 0
= (-1/3)e7%| — =1/3.

>0

and similarly, we can get P(X>2Y)=1/3 (exercise).
» Example. Consider two continuous r.v.’s X and Y. ’
X

= Uniform Distribution over a region D. If
DCR? and 0 < a=Area(D) < oo, then

f(x,y) = C- 1p(x,y)
is a joint pdf when c=1/qa, called the uniform pdf over D.
» Let D= {(z, y): 2*+y°<1}, then a=Area(D)=Tt Y
and
f(%, y) — %1D($7 y)

1s a joint pdf.




= Marginal distribution. The marginal pdf of X is

V1—2x2
1 2
fX(as):/ —dy:—\/l—a:2
T T m

for —-1<x< 1, and fy(x)=0, otherwise.
(exercise: Find the marginal distribution of Y))

+ Reading: textbook, Sec 6.1

Independent Random Variables

 Recall.
> If joint distribution is given, marginal distributions are known.

» The converse statement does not hold in general.

»However, when random variables are independent,

marginal distributions + independence = joint distribution.

» R

W S, ~
0 > R
K —
P “on
b » R
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* Definition. The n jointly distributed r.v.’s X, ..., X are

called (mutually) independent if and only if for any
(measurable) sets A,CR, =1, ..., n, the events

(X,€A}, ..., {X €A}

are (mutually) independent. That is,

P(le € Az’l,Xig c Az'Q,---,X@'k € A’Lk)

= P(le c Azl) X P(XZQ < AZQ) X e X P(sz € AZk)?
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for any 1<4,<1,<---<¢;,<n; k=2, ..., n.

> If X Lo oees X, are independent, for 1<k<n,

P(Xpy1 € Ak, ..., Xpn € Ap| Xy € Ay, ..., X € Ag)
= P(Xpq1 € Apqr,..., X, € A)

provided that P(X; € Ay,..., X, € Ag) > 0.

= In other words, the values of X, ..., X, do not carry any
information about the distribution of X, ..., X

ne
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* Theorem (Factorization Theorem). The random variables
X=(X,, ..., X,) are independent if and only if one of the following
conditions holds.

(1) Fx(xl,.. wn) FX1($1>>< ce e X FX gwn},whereF 1S
the joint cdf of X and F'y 1s the margmal cdf of X, for i=1,.

(2) Suppose that X, ..., X X are discrete random variables.

px(T1,...,Tn) = Dx, (acl) X -+ X px, (€n), where py is the
joint pmf of X and Px, is the marginal pmf of X fori=1,...,n

(3) Suppose that X, ..., X, are continuous random variables.
fx(x1,.. fl?n) le (5131) X «--X fx, (z,), where fg 1s the
joint pdf of X and fy is the marginal pdf of X, for i=1,...,n
Proof.
independent = (1). Fx(z1,...,2,) = P(X; < xl, e Mg S By )
= P(X; € (—o00,x1],..., Xy, € (—00,2,])
P(X, € (—Oo>x1]) X P(Xy, € (=00, zn])

= FXl(xl) XK XFXn( n)

independent <= (1). Out of the scope of this couse so skip.

independent = (2) pX(xlw .. ,xn) = P(Xl = T1y... 7Xn = mn) P. 722
— P(Xl = {xl}a"'aXn € {Qﬁn}>
P(X; € {z1}) x -+ x P(X,, € {x})

= px,(T1) X - X px, (@) X,
(2) = (1)
FX(xh mn) - Z pX(tla atn) X,
(t1,.. . tn)EX
t1<21 5. tn <on
= > Y. pxi(t) X X px, (tn)
(t1,---s tn)EX (t1,.--s tn)EX
t1<xzq tn<xn
= >, px(t)x-ox Y px,(te) = Fx,(@1) X - X Fx, (wn)
(t15--es tn)EX (t1,---s tn)EX
152 tn<xp
(3) = ().

Fy(z1,....7 / /fxtl,... Vdty - dty
:/ / P (1) X e % fx (tn) dby - dtn

= le (tl) dtl X - / fX n) dt FXl (.Tl) - X FXn (xn)

— 0




(3) = (1) "

fX('Tla o ee 7xn) = —FX(le, o o an>-

= mFXl ([Cl) X oo X FXn (.an)

= —Fx,(z1) x - x a%FXn(xn) = fx,(z1) X - X fx, (@)

»Remark. It follows from the Multiplication Law (LNp.4-11) that
Fx(z1,...,2,) =P(Xy <z1,..., X0 < )

= P(X, <) (= Fx, (1))
XP(Xy < 22X < 29) P(X5 < z3) = Fx,(z2)
XxP(X3 < x3| X1 < 21, X2 < x2) P(X3 <uz3) = Fx,(x3)
-

X P(Xp < o) X1 < 21,y Xno1 < Tn_ 1)(

F
Fx

f?
?

?

P(Xy < #0) = Fx, (za))

The independence can be established sequentially.

»Exam pl IfA4;, ..., A, UQ are independent events, then
la,,...,14,,are 1ndependent random variables. For example,
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P(ly, =1,14,=0,14, =1)
— P(ANASN A3) = P(A1)P(AS)P(As)
— P(1a, =1)P(1a, = 0)P(14, =1).

»Theorem. If X=(X,, ..., X,)
are independent and -

generalization
l=tp<u<---<ipy=n

Xzz_gzgzlﬂ 7::1, ceey 1, 4 (X1, Xiy)

Yy 92(Xir41,--, Xiy),

then
Yo = oe(Xo 415 005%5)

Y,, ..., Y, are independent.
Proof.

Let A;(y) = {z: g:(z) < y},=1, ..., n, then

FY(yla---yyn) :P(Yl <y,...,Yn Syn)
= P(Xi1€A1(y1),---,Xn € An(yn))

P(X1 € Ai(y1)) x -+ x P(Xy, € An(Yn))
P(Yy <y1) x - X P(Yn < yn)
= Fy,(y1) X -+ X Fy, (Yn).
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* Theorem. X=(X, ..., X, are independent if and only if there
exist univariate functions gi(a:) =1, ..., n, such that
(a) when X, ..., X X are discrete r.v.’s with joint pmf py,

pX(xlﬂ AR xn)ggl(xl)x xgn(xn)a _OO<CBZ~<OO, Z—l,.

(b) when X, ..., X X are continuous r.v.’s with joint pdf fy,

fX(xlﬂ ) xn)ggl(xl)x xgn(xn)ﬂ _OO<CBZ-<OO, 2_19"'9

Sketch of proof for (b).
le / / fX L1,L2,y... ) d:ljg d:Un

o /_Oo---/_mgl<x1>g2<x2>---gn<xn> Ay - di o g1 (1),

Similarly, fx,(z2) o< g2(z2), .-, fx, (Tn) o< gn(zs)
=4 le(ml)"’an(xn)chl(xl)"‘gn(mn)
= fx(T1,...,%0) o fx, (1) - fx, (Tn)
=  fx(z1,...,2,) =c- fx,(x1) - fx, (zn)
for some constant c.
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Because > >
/ / fx(z1,22,...,2,) dzy - - - dx, = 1, and
/ / fx,(x1) - fx, (xp) dxy -+ dx, =1, =c=1.

» Example.
= [f the joint pdf of (X, Y) is
flz,y) x e e, 0<z <00, 0<y < o0,

and f(x, y)=0, otherwise, i.e.,
F(z,y) < e”?"e %Y1 (5,001 (%) 1(0,00) (¥); 3

then X and Y are independent. Note that the region in which
the joint pdf is nonzero can be expressed in the form
{(z,y): z€A, yeB}.

. = Suppose that the joint pdf of (X, Y) is

D
flz,y) xzy, 0<zx<1,0<y<l,0<z+y<l,
X
and f(z, y)=0, otherwise, i.e., f(x,y) oxc zy - 1p(z,y),

X and Y are not independent.
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»Q: For independent X and Y, how should their joint pdf/pmf
look like?

me’-y':s‘a SO ACD
x it a3 — & constant

% X B L

+ Reading: textbook, Sec 6.2

Transformation

* Q: Given the joint distribution of
X=(X,, ...,X,), how to find the

distribution of Y=Y}, ....Y;), where 1’ x,
= . Rn Y=9(X) I L
}—/l_gl(gl’ 0 ’Xﬁ) R Ra > > 1

denoted by
Y=g(X), g:R" - R¥.
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» The following methods are useful:
1.Method of Events (-~ pmf)
2.Method of Cumulative Distribution Function
3.Method of Probability Density Function
4 Method of Moment Generating Function (chapter 7)

» Method of Events

» Theorem. The distribution of Y is
determined by the distribution of

X as follows: for any event BCRF, 7 Y,
Py(Y € B) = Px(X A, Y=9(X) x
where A = g"I(B) C R™. T

= Example. Let X be a discrete random vector taking values

Xg:(xua Ljy eees Tpy)y 0=1,2, o0y

(ie., &= {x;, X,, X3, ...}) with joint pmf py.
Then, Y=¢(X) is also a discrete random vector.
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Suppose that Y takes values on y,7=12,....To determine

the joint pmf of Y, by taking B={y}, we have
A={x0x:gx)=y;}

and hence, the joint pmf of Y 1s

py(y;) = Py({y;}) = Px(A) = 2 s caPx(Xi).

= Example. Let X and Y be random variables with the joint
pmf p(zx, y). Find the distribution of Z=X+Y.

I o{Z=z} = {(X,Y) € {(z, y): zty=2}}
- pz(z2)=Pz({z}) = P(X+Y =2) = Sj p(x,z — x).

o When X and Y are ‘mdependent, TEXX
p(x, y) = Px(@)pyY),
>0 = Y px(@)py(z —2).

which is referred to as the convolution of py and p,.
o (Exercise) Z=X-Y
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= Theorem. If X and Yare independent, and
Y4 n KN M(Aﬁa XN M(AZ) ’
> " then Z=X+Y~ Poisson@ﬁ)\z)-

yrrl Proof. For 2=0, 1, 2, ..., the pmf p(2) of Z is

o123

z _ _ —
)\1>\$€ AQAZ T

I

x=0

e —(A1+X2)

—(A1tA2) !

e 2!

- —)\:c)\z T = ——— () Ao )Z.
2! (Z) z!(z — x)! ) 2! (A1 + )

=

o Corollary. If X, ..., X, are independent, and
)_(Z-~P01sson(AZ-), =1, ...,
then X, +---+X, ~ Poisson(A,+---+A,).

Proof. By induction (exercise).
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» Method of cumulative distribution function
L.In the (X, ..., X,) space, find the region that corresponds to
{Y <y1, .. Yk<yk£

2.Find Fy(y;, ..., y)=PY <y, ..., ¥;<y,) by summing the
joint pmf or integrating the joint pdf of X Xy ooy X X over the

region identified in 1.

3.(for continuous case) Find the joint pdf of Y by
differentiating Fy(y;, ..., Y), 1.€.,
fY(y17 55w 7yk) — —akuY(ylv * 7yk)

» Example. X and Y are random variables with joint pdf
f(x, y). Find the distribution of Z=X+Y.

> 0{Z< 2} = {(X, ) € {(z, y): z+y<z}}. So,

Fz(2)=P(Z<2)=P(X+Y <2)
s = oL °L fay) dyde )
f—oo f—oof Sat_s) dsdt set { Y

Il
~
|
@
.l
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and fz(z2) = éFZ(Z') = ffooo flz,z2 —z)dx
o When X and Y are independent,
[z, y) = fx(x)fy(y)-

50, Fy(z) = [7, J20 [x(@)fy (y) dyda
- [ff; fr () dy] fx(x) d
= ffooo Fy(z —z)fx(z) dzx

which is referred to as the convolution of F'y and Fy, and

f_ z)fy(z —x) dx

which is referred to as the convolution of f X and fX‘
o (exercise) Z=X-Y.

» Theorem. If X and Y are independent, and YE\
X

XN Gamma(gla A)a l_/N Gamma(gza A)a
then — <
Z=X+Y~ Gamma(a,+0,, A).
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Proof. For z>0,

Qg Z o — as—1,—Xz
fz(z) = FJ(;;)I:(;Q) fo Tz — )T lem M da
= TanTias) kzml”””]“%ﬂlWl—w”‘Hw
o )\a1+o¢22(o¢1+o¢2) 1 —Az % (CM1)F(OA2)
o F(Oél)F(OéQ) F(al—l—ag) ’

and fz(z) =0, for z2<0.

o Corollary. If X, ..., X, are independent, and
X~ Gamma(gi, A, =1, ...,
then X, + --- + X, ~ Gamma(Q,+--- +a,, A).

Proof. By induction (exercise).

o Corollary. If X, ..., X, are independent, and
X, ~ Exponentlal@), =1, ...,
then X, + --- + X ~ Gamma(n, A).

Proof. (exercise).
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= Theorem. If X, ..., X, are independent, and
X~ Normal(y;, 0 _2) i=1,
then X, + --- + X ~ Normal(p,+---+H,,, 012+ +0 2)

Proof. (exercise).

» Example. X and Y are random variables with joint pdf

N f(z, y). Find the distribution of Z=Y/X.
alet Q. = {(z.y):y/s <2}
{(z,y) 2 <0,y > zx}
U{(z,y):z >0,y < zx}
s then, Fz(z) = [ szf(a:, y) dxdy

1 S e h N R T R S

[
»
~

N———

— ﬁ St Jo Jo o F (s, st)]s] dtds
= [T 7 Islf(s, st) dtds
sl (s, st) dsdt
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and, f7(z) = LFz(z) = [ _|z|f(z, 2z) dx
o When X and Y are independent,
f(rI: y) = fx(x)fy(y)-
So, Fz(z)= ["_ [70 |s|fx(s)fy(st) dsdt
and, fz(z) = f_oo \x!fx(a:)fy(z:c) dx
a (exercise) Z=XY
olf X and Y_areEdependent,

X ~ exponential(A,), and Y ~ exponential(A,),
Let Z=Y/X. The pdf of Z is
v fz(2) = [0 2 (Ae™2%) [ e-MM} dx
X M AT(2 Ai+Ao2)? L+ A0 2)
= ()\1+2>\2(z))2 fo ( r(2§ L g2tem(atren)o gy
Z Az

= (>\1+A22)2

for z>0, and 0 for z < 0.

And, the C_df Ofg iS p. 7-36
& P.SP.V
= fo fz(t) fo [EYES WO dt
— 2422 (3 4 dot) ‘0—1_ A

Al%—kgz
for z>0, and 0 for z < 0.

» Method of probability density function
= Theorem. Let X=(X, ...,

X,) be continuous random

variables with the joint pdf fy(z), ..., z,). Let
Y=(Y,, ..., Y= g(X),

where g is 1-to-1, so that its inverse exists and is denoted by

x=g"'(y) = w(y) = (W (¥), wy(¥), - W,(¥)):
Assume w have continuous partial derivatives. Let

owi(y)  Owi(y) w1 (y)

oy Oya OYn
dws (y) Qwa (y) dwa(y)

J= o
Own(y) Own(y) Own (¥)

Oy1 0y2 OYn

nxn
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Then  fy(¥) = fx(g”'(¥) * |J],
for y s.t. y=¢g(x) for some x, and IX(Y):O’ otherwise.

(Q: What is the role of |J]?) Y—g(X)

PI’OOf Fy(’yl,...,yn fyl fyn fY t1,...,¢
= [ G1en): Ix(1,. . T0) dazn---dxl.

dn (fcl ----- iﬂn)<yn
It then follows from an exercise in advanced calculus that
8”

@i, Yn) = e, (W, - yn)
= fx(wi(y),. -, wa(y)) x [J].

oRemark. When the dimensionality of Y (denoted by k) is
less than n, we can choose another n—Fk transformations Z

such that

(Y, Z)=9(X)
satisfy the assumptions in above theorem.
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By integrating out the last n—k arguments in the joint
pdf of (Y, Z), the joint pdf of Y can be obtained.

= Example. X, and X, are random variables with joint pdf
Ix(x), ®,). Find the distribution of Y,=X,/(X,+.X,).

1 = Y1Y2 Ewl(yl,yz)
T2 = Y2 —Y1Y2 Ew2(3/17y2)-
. owy owy ows Oowo
Since 3% = Y2, G =YL 5, = —Y2s gy = L —u1,
J:‘ y2 1y1 = Yo — Y1Y2 + Y1Y2 = Y2, and |J| = |ya].
—Y2 — U

Therefore, fy(y1,y2) = fx(Y1Y2,y2 — y1Y2)|y2|,
and, fv,(y1) = |7 fy(y1,y2) dy2
= [T fx iy, y2 — v1y2)|ye| dys.

- ffooo Ix, (W1y2) fx, (2 — y1y2)|y2| dyo
when X7 and X5 are independent)
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= Theorem. If X, and X, are independent, and

X, X, ~ Gamma(a,, A), X,~ Gamma(Q,, A),
J_)@ then Y,=X /(X ,+X,) ~ Beta(q,, a,).

Proof. For z,, z, > 0, the joint pdf of X is

}/2 -
%—> Y, >\a1 a1—1 — Az >\a2 as—1 —AX2

_ Ax1tTe2 ot i 1x042 1 e~ Mzitz2)
I'(a1)(az) 1 2

So, for 0<y, < 1,

le y1 f Foex (y1y2)fx2 (Z/z - y1y2)|y2| dy2
a1+t _ g — . .
fo F(i\xll)r(;g) (y1y2)® (Y2 — y1y2)* e A2 yo dys

I'lag 4o oy — g —
= —_F((al)—Ii:(ag)) Yyt T — gy

0o \@1teaz (1 4asz)—1 _/\y2
0 T(aitas) Y2 dyo

F(a1+0é) a;—1
—r(al)r(ofg) yr (1

X

042—1

—?J1)

and fy, (y1) = 0, otherwise.
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» Example. Suppose that X and Y have a uniform distribution
Y| over the region D={(x, y): x*+y?><1}, i.e., their joint pdf is
X

fxy(@,y) = $1p(z,y).
© | Find the joint distribution of (R, ©) and examine whether

R and O are independent, where (R, ©) is the
polar coordinate representation of (X, Y), i.e.,

X = Rcos(0) =wi(R,0), | . X
Y = Rsin(0) =ws(R,0).

oSince 2% = cos(6), GuL — _rsin(6),
‘95‘7{2 = sin(6), ‘95”02 = r cos(h),

cos(f) —rsin(0)

sin(f)  rcos(0)
and |J| = |r| = .

o For 0<r<1 and 0<&<2T1, the joint pdf of (R, O) is

fre(r,0) = fxy(rcos(),rsin(f)) x |J| = %

= rcos?(f) + rsin?(0) = r,

and fr o(r,0) = 0, otherwise.
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o By the theorem in LNp.7-25, (R, ©) are independent.

= Example. Let X, ..., X, be independent and identically
distributed (i.c., i.i. d ) exponential(A). Let

Y X + - +X =1, ..., n.
Find the distribution of Y=(Y,, ..., Y).
[Note. It has been shown that Y- ~ Gamma(i, A), i=1, ..., n.]
o The joint pdf of X, ..., X 1s

fX(xla S 73377,) — HZ::L le ('CU’L)
=TI, (Ae i) = ANre~ M@t ton)
for 0<z <00, =1, ..., n.

o Since L1 = Y1 Ewl(y17°°°7yn)7
Lo — Y2 — Y1 Ew2(y17°"7yn)7
Y,
Tn = Yn = Yn-1 Ewn(yla-“’yn)a
we have 1, ifj =i,
Gus 1, ifj=i—1,
Yj .
L 0, otherwise,
1 0 0 0 "
1 1 0 --- 0
J = 0 -1 1 0 00 =1 and|J] =1.
0 00 - 1
oFor0<y, <9y, <<y SY; <Y < LY, <00,
ﬁ(yla"'ayn> - f_X<y17y2_y17"'7yn_yn—1) X |‘]‘
= \le Mn,

and fy(y1,...,y,) = 0, otherwise.

o The marginal pdf of Y is
fr. ()
- fO y1” Yi— zf fyz+1” fynl

Are= M dyy, - dyy,, dyipdyiy - - - dyadys
= fo yl'” Y NeTMdy; - dyady

Yi—2
i—1

_ )\z —\y (ZZ 57

for y>0, and fy. (y) = 0, otherwise.
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»Method of moment generating function.

» Based on the uniqueness theorem of moment generating
function to be explained later in Chapter 7

» Especially useful to identify the distribution of sum of
independent random variables.

* Order Statistics

X, X, X, X, X, X
o o o o o . » R
X(I)X(2) X(3) X(4) X(5) X(6)

» Definition. Let X, ..., X, be random variables. We
sort the X.’s and denote by

X< Xg <2 X,

the order statistics. Using the notation, :>

)_(@ = ¢th-smallest value in X, ..., X

n’

=1,2, ...,n,

XQ =min( X, ..., X, ) is the minimum,

X(n) max( X, ..., X, ) 1s the maximum,
R=X,) = X 1s called range,

§i =X ;)= X1 772, ..., n, are called jth spacing.

Q: What are the joint distributions of various order statistics
and their marginal distributions?

» Definition. X, ..., X, are called i.i.d. (independent, identically
distributed) with cdf F/pdf f/pmf p if the random variables
Xy, ..., X, are independent and have a common marginal
distribution with cdf F/pdf f/pmf p.

= Remark. In the discussion about order statistics, we only
consider the case that X, ..., X, are i.i.d.

o Note. Although X, ..., X, are independent, their order
statistics X ), XL’ - X (n) are not independent in general.
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»Theorem. Suppose that X, ..., X ., X, are 1.1.d. with cdf F.
1.The cdf of X ;) 1s 1-[1 F(a:)]”, and the c_dfofgﬁ 1s [ F(x)]".

2.If X are continuous and F'has a pdf f, then the pdf of X ) is
nf(z)[1=F(x)]""!, and the pdf of X, is nf(x)[ F{z)]""".
Proof. By the method of cumulative distribution function,
1—Fx,(z)
= PXy>2)=PXi>x,..., X, > 1)
= PXi>x)-P(X,>z)=[1-F(x)]".

= PXny<z)=PX:1<=z,...,X, <1
= P(X;<xz)---P(X,<z)=[F(2)]".

fX(l)(x) d:UFX(l)(:'U)
= n[l - F(@)]"! (&F(2) = nf(2)[l - Fz)]" "

fX(n)(x> — %Fx(n) (x)
= n[F(@)]" (G F (@) = nf(z)[F(z)"!
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= Graphical interpretation for the pdfs of X ;) and X,

Sopdx Sonydx
one one
R B g
— /-F)——> <_—ﬂ —
X1, Y = choose. | 4o put (B o) | | X, xn > choose | 4o puk (- & 1)
the st (%, m) the west r\, (00,')6]
(M) Foodx[1- Fea]™" (F) Soadx [Feo)™ -~

» Example. n light bulbs are placed in service at time ¢=0,
and allowed to burn continuously. Denote their lifetimes by
Xl’ ..., X,, and suppose that they are 1.1.d. with cdf F.

If burned out bulbs are not replaced, then the room goes dark
at ime Y= X, = max(Xy, ..., X,).
o If n=5 and F'is exponential with A = 1 per month, then
F(x)=1-¢7%, for x> 0, and 0, for < 0.
o The cdf of Yis
F(y) = (1-e™)°, for y> 0, and 0, for y< 0,

and its pdf is 5(1—-e¥)*¥, for y> 0, and 0, for y< 0.
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o The probability that the room is still lighted after two
months is P(Y>2) = 1-Fy(2) = 1-(1-e2)°.
» Theorem. Suppose that X, ..., X ., X, are i.1.d. with pmf p/pdf f.
Then, the joint pmf/pdf ofX (1) oo Xy 18
pX(l),...,X(n) (x].? c e axn)
= nlXxp@y) X - X p(n),
or fX(l),,X(n) (xlw"axn)
=l () x o x f(),
for ,<x,<---<z,, and 0 otherwise.
Proof. For z,<z,<---<z_,

pX(l) ..... X(n) (:E].?"°7x’n>
= P(X(l) = ml,...,X(n) — ZEn)

- Z (i1 ip ) P(Xlzxil,...,Xn:aZin)

permutations of

(n)

(1,..., n)
= Z (i1 rin): p(331) X X p(afn)
permutations of
(1,..., n)

= n!xp(@1) X X p(zn).

£o6:)d%, p. 7-48
fX(l)v-'-aX(n) (xla---axn) dxi---dzxy Gty ﬁ%ﬂn
~ P(xl_—<X(1)<$1+df§1,---, 'll'/i 75/2. 3{7
n
Lpp—— dw” < X(n) < L=k dgn) <l l.__|>{%mdxl-~-$tmdm

dx; dx;
= Z (i, e in):fp(xil_ 21<X1<£U7;1—|- 21,...,
permutations o d:]l‘l dIIJz
TP APy

Z (i15erin): f(CL’l) X oo X f(xn) dxy---dx,

Q

(1,...,n)
= TL' X f(a:l) X oo X f(xn) dQ}l .. dJ}n X0
= Q: Examine whether X, ..., X X(n) are -
independent using the Theorem in LNp.7-25. v

»Theorem. If X, ..., X, are i.i.d. with cdf F'and pdf f, then

1.The pdf of the k_th order statistic X k) 1S
Ixp (@)
= (ip_tap) f@F @)1= Fa)".

2.The cdf of X, 1s
Fx () = X () [F @)1 = F(2)]" ™.
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%X —~Xn = choose | ‘o p\o.«z, [\ (x———— %—rdx>
2kl (-, 1)
Ky = n-K= = 3 K(X 2 09> -
n - - n
&g l—%_) (l K1 rv—K) fode [Foa]™ - Fl
Fxy, (@) = P(X@) < @)
= P(at least k of the X;'s are < )
= Yn_, P(exact m of the X,’s are < z) - X,

= Xk () [F@)]" 1 = F(@)]"™
»Theorem. If X, ..., X, are L.i.d. with cdf F'and pdf f, then
1.The joint pdf ofgﬁl and X, 1s

fX(l)’X(n) (87 t) — ﬂn_—l)f(s)f(t)[F(t) — F(S)]n_2a

for s<¢, and 0 otherwise.
2.The }&f of the range R = X, —X 1s

fr(r) = [T fx )Xo (W, u+ 1) du,
for r>0, and 0 otherwise.

D p. 7-50
d:b Xi,-— Xn> chovse. one o 'Pla,cl n'\,(S—— dsv
Stods one. b= dbt*d/“’)
the est e (s.t) s
2 i <‘ T L) Tensftnde (:F«:)—F(sﬂ
L =

»Theorem. If X, ..., X, are L.i.d. with cdf Fand pdf f, then
1.The joint pdf ofg@ and X(j), where 1<i<j<n, 1s

fX(sz(j)(S’t) —  G=DIG—i— 1)'(n J)'f( $)f () o ,
x [F(s)I'MF(t) = F(s) "L = F)" 7,
for s<¢, and 0 otherwise.
2.The pdf of the j™ spacing S, = X ;=X ) is
fs;(s) = ffooo fx_1.x0 (W, u+s) du,
for s > 0, and zero otherwise.

X1,-— Xn=> chose. one 4o place ™ (5% LS+
Seds o - - - (& dt«e;f‘*/ﬁ)

7 t= = = = (—oo s)

7 s e P

7 T % 5 therest - - - (£, @)

D s e £ &2 ;) S6)s St dt
K AR -F)—  |-T® 1A, J-1,n-3) SO f‘*

e . N <‘ g ﬁ;qs)] T R (00)

% Reading: textbook, Sec 6.3, 6.6, 6.7
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Conditional Distribution

B
* Definition. Let X (JR"™) and Y (JR™) be discrete ' Y

random vectors and (X, Y) have a joint pmf py y(X, ¥), X
then the conditional joint pmf of Y given X=X is

defined as

pix(yh) = P({Y =y}l (X =x}) = TS ZxX M

 pxy(xy) _ joint
px(X) marginal

if px(x)>0. The probability is defined to be zero if py(x)=0.

» Some Notes.
= For each fixed x, pyx(y[x) 1s a joint pmf for y, since

5, pyix (y1%) = 2= 3, pxoy (x,y) = =15 % px(x) = 1.
« For an event B of Y, the probability that YeB given X=x is

P(Y € BIX =x) = ) yep Pyx (ulx).
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« The conditional joint cdf of Y given X=x can be similarly
defined from the conditional joint pmf py x(y[x), i.e.,

Fyix(ylx) = P(Y < y|X = x) = 3o, pyix (ulx).
»Theorem. Let X, ..., X, be independent and
)_(Z-~P01sson@i), =1, ...,m
Let Y=X,+---+X , then _
(X, ..y X,,[Y=n) ~ Multinomial(n, m, p,, ..., p,,);
where p, = A /(A +---+A, ) for i=1, ..., m

Proof. The joint pmf of (X, ..., X, , ¥) is

pxy (1, ..., Tm,n) = P({Xl—xl,... X = NA{Y =n})
B P(Xy=z1,...,X;pn =2p), ifx1+---4+z,=n,
B 0, ifxy+---+ 2 #n.
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Furthermore, the distribution of Y'is Poisson()\ +e oA ), ie.,

—(>\1+ +Am) A2,
py(n) = P(Y =n) = i :
Therefore, for x=(z,, ..., z,,) wheres x,€{0,1,2, ...}, =1, ..., m,
and x,+---+x, =n, the conditional joint pmf of X given Y=n is
m e i ATE
_ px,v(T1,..xm,m) Hi: !
pX|Y(X‘n) - py(n) - e—(>\1+"'+A1m)()\1_|_..._|_)\m)n

n!

n! A 1 A Tm
= e x () xoex (e

* Definition. Let X (R"™) and Y (UR™) be
continuous random vectors and (X, Y)

have a joint pdf Iﬂgx, y), then the v
conditional joint pdf of Y given X=x is X

defined as

fxvy(x,y)  joint
frix(yx) fx(x)  marginal’

if fx(x)>0, and 0 otherwise.

» Some Notes. . 7-54

« P(X=x)=0 for a continuous random vector X.

= The justification of fyx(y|x) comes from
P(Y <y|lx— (Ax/2) < X < x+ (Ax/2))

f fx+(AX/2) fxyy(u,v) dudv

- 25

fx_(Ax/2) fx(t) dt
~ f_yoo Ixx (x.v)|Ax]| dv _ fy fx, v (x,v) dv
~ fx (x)|Ax] oo fx(x)

= For each fixed x, fyx(y[x) is a joint pdf for y, since

J 2o Feix () dy = 755 J 2 Fxy (%03) dy = 5 % fx(x) = 1.
« For an event B of Y, we can write
P(Y € BIX =x) = f_B fm(ﬂx) dy.

» The conditional joint cdf of Y given X=x can be similarly
defined from the conditional joint pdf fyx(y[x), i.e.,

Fypx(ylx) = P(Y < y[X = x) = [¥_ fyix(t) db




»Example. If X and Y have a joint pdf 0. 755

flz,y) = W)
for 0<z, y< oo, then
fx(x) = fooo f(z,y) dy = —m
for 0<z< 00. So,

[©.@)

1
o (I+x)*°

flzy)  2(14ax)?
fwx(y\ﬂf) — fx(z) — (+z+y)3’

and, P(Y > c|X =2) = [~ (%% dy
_ (14a)* _ _(+a)?
- Atety)®? | T (I4zte)®

» Mixed Joint Distribution: Definition of conditional distribution can
be similarly generalized to the case in which some random variables
are discrete and the others continuous (see a later example).

* Theorem (Multiplication Law). Let X and Y be random vectors
and (X, Y) have a joint pdf fy y(x, y)/pmf py (X, y), then
px, Y (X,y) = pyix(¥|x) X px(x), or
fxx(xy) = frx(yx) x fx(x).
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Proof. By the definition of conditional distribution.

* Theorem (Law of Total Probability). Let X and Y be random
vectors and (X, Y) have a joint pdf fx y(x, y)/pmf py y(X, y), then

py(¥) =D m oo Pyix(¥[x)px (%), or
Fr(y) = [, Frix (y1%) fx () dx. v

Proof. By the definition of marginal distribution

and the multiplication law. -
* Theorem (Bayes Theorem). Let X and Y be random vectors
and (X, Y) have a joint pdf fx y(X, y)/pmf py y(X, y), then
_ Py |x (¥|x)px(x)
Pxiy(Xly) = =" b’ O v
_ vy x (¥]x) fx(x)
Sy (1Y) = 7= o e d "

Proof. By the definition of conditional distribution,
multiplication law, and the law of total probability.
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»Example.

— st o 2nd ——() (LNp.4-14)
= Suppose that X ~ Uniform(0, 1), and
(Y}, ..., Y| X=x) are i.i.d. with Bernoulli(z), i.e.,
PY|x (Y1, oy Ynlx) = 2T (1 — )"~ Wit tun),

fory,, ..., y,€{0, 1}.

» By the multiplication law, for y,, ..., y,€{0, 1} and 0<z<I,
pY,X(yl, - e Yn, w) = a:u‘(l — x)”_(w)

= Suppose that we observed Y,=1, ..., ¥, =1.

= By the law of total probability,
PYi=1,....Y,=1)=py(1,...,1)

. 1 _ 1 n+1
= foaj df’:_n+1x 0 ntl
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= And, by Bayes’ Theorem,

fxy(lY1=1,....Y,=1)
leX(lv ! 1’33)]0)((3?)
py(1,...,1)
for 0<z<l, i.e., (X|Y|=1, ..., Y, =1) ~ Beta(n+1, 1).

(cf., marginal distribution of X ~ Uniform(0, 1)=Beta(l, 1).)

=(n+4+ 1)z".

= If there were an (n+1)* Bernoulli trial Y, .,
PY, i 1=1¥r1=1,....Y,=1)

PY,=1,....Y,=1) 1/(n+1) n+2
= (exercise) In general, it can be shown that
XY=y, ... Y,=y,) ~ Beta((y, +---+y, )+ 1,n=(y, +---+y, ) +1).

* Theorem (Conditional Distribution & Independent). Let X and Y be
random vectors and (X, Y) have a joint pdf fﬁ(x, y)/pmf py y(x, y).
Then, X and Y are independent, 1.e.,
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Px,Y(X,y) = px(x) X py(y), or

fxy(xy) = fx(x)x fr(y),
if and only if

pyx(¥|x) = py(y), or
fY|X(Y|X) = fy(y).

Proof. By the definition of conditional distribution.

> Intuition.

= The 2 graphs about the joint pmf{/pdf of independent r.v.’s
in LNp.7-27

= Py |x(¥[X) or fyx(¥|x) offers information about the
distribution of Y when X=x.

py(y) or fy(y) offers information about the
distribution of Y when X not observed.

+ Reading: textbook, Sec 6.4, 6.5




