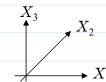
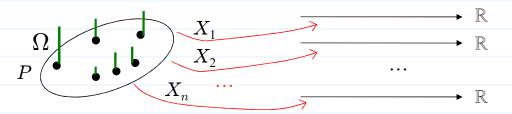
Jointly Distributed Random Variables

- Recall. In Chapters 4 and 5, focus on *univariate* random variable.
 - However, often a single experiment will have more than one random variables which are of interest.





Perinition. Given a sample space $\underline{\Omega}$ and a probability measure \underline{P} defined on the subsets of $\underline{\Omega}$, random variables

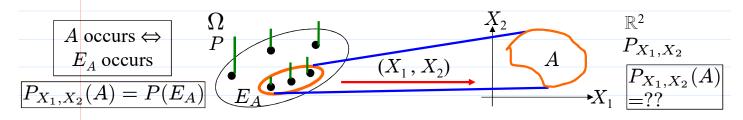
$$\underline{X_1, X_2, \ldots, X_n} : \underline{\Omega} \to \underline{\mathbb{R}}$$

are said to be jointly distributed.

• We can regard \underline{n} jointly distributed r.v.'s as a $\underline{random\ vector}$ $\mathbf{X}=(X_1,\ldots,X_n):\underline{\Omega}\to\mathbb{R}^n.$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

• Q: For $A \subset \mathbb{R}^n$, how to define the probability of $\{X \in A\}$ from P?



For
$$\underline{A \subset \mathbb{R}^n}$$
,
$$\underline{P_{X_1,...,X_n}(A)}$$

$$= \underline{P(\{\omega \in \Omega | (X_1(\omega),...,X_n(\omega)) \in A\})}$$
For $\underline{A_i \subset \mathbb{R}}$, $i=1,...,n$,

$$\frac{P_{X_1,...,X_n}(X_1 \in A_1, \cdots, X_n \in A_n)}{= P(\{\omega \in \Omega | X_1(\omega) \in A_1\} \cap \cdots \cap \{\omega \in \Omega | X_n(\omega) \in A_n\})}$$

Definition. The probability measure of \underline{X} ($\underline{P}_{\underline{X}}$, defined on subsets of \mathbb{R}^n) is called the *joint distribution* of $\underline{X}_{\underline{1}}$, ..., $\underline{X}_{\underline{n}}$. The probability measure of $\underline{X}_{\underline{i}}$ ($\underline{P}_{X_{\underline{i}}}$, defined on subsets of \mathbb{R}) is called the *marginal distribution* of $\underline{X}_{\underline{i}}$.

- Q: Why need joint distribution? Why are marginal distributions not enough?
 - Example (Coin Tossing, Toss a fair coin 3 times, LNp.5-3).

X_2 : # of head	X_1 : total # of heads				
on 1 st toss	0 (1/8)	1 (3/8)	2 (3/8)	3 (1/8)	
0 (1/2)	1/8 [1/16]	2/8 [3/16]	1/8 [3/16]	0 [1/16]	
1 (1/2)	0 [1/16]	1/8 [3/16]	2/8 [3/16]	1/8 [1/16]	

- <u>blue</u> numbers: joint distribution of X_1 and X_2
- (black numbers): marginal distributions
- [red numbers]: joint distribution of another (X_1', X_2')
- Some <u>findings</u>:
 - When joint distribution is given, its corresponding marginal distributions are known, e.g.,
 - $P(X_1=i)=P(X_1=i, X_2=0)+P(X_1=i, X_2=1), i=0, 1, 2, 3.$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

- $\underline{(X_{\underline{1}}, X_{\underline{2}})}$ and $\underline{(X_{\underline{1}'}, X_{\underline{2}'})}$ have <u>identical marginal</u> distributions but <u>different joint</u> distributions.
 - When the <u>marginal</u> distributions are <u>given</u>, the corresponding <u>joint</u> distribution is <u>still unknown</u>. There could be <u>many possible different joint distributions</u>. (A special case: $X_1, ..., X_n$ are <u>independent</u>.)
- □ Joint distribution offers more information, e.g.,
 - When not observing X_1 , the distribution of X_2 is: $P(X_2=0)=1/2$, $P(X_2=1)=1/2 \Rightarrow$ marginal distribution
 - When \underline{X}_1 was observed, say $\underline{X}_1 = 1$, the distribution of \underline{X}_2 is: $P(X_2 = 0|X_1 = 1) = (2/8)/(3/8) = \underline{2/3}$ and $P(X_2 = 1|X_1 = 1) = (1/8)/(3/8) = \underline{1/3} \Rightarrow$ the calculation requires the knowing of joint distribution
- We can <u>characterize</u> the <u>joint distribution</u> of <u>X</u> in terms of its
 1.<u>Joint Cumulative Distribution Function</u> (<u>joint cdf</u>)
 2.<u>Joint Probability Mass</u> (<u>Density</u>) Function (<u>joint pmf</u> or pdf)
 - 3. Joint Moment Generating Function (joint mgf, Chapter 7)

▶ Joint Cumulative Distribution Function

■ <u>Definition</u>. The <u>joint cdf</u> of $\underline{\mathbf{X}} = (X_1, ..., X_n)$ is defined as

$$F_{\mathbf{X}}(\underline{x_1,x_2}) \quad F_{\mathbf{X}}(\underline{x_1,\ldots,x_n}) = P(\underline{X_1 \le x_1, X_2 \le x_2,\ldots,X_n \le x_n}).$$

• Theorem. Suppose that F_X is a joint cdf. Then,

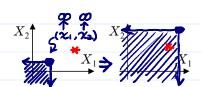
(i)
$$0 \le F_{\mathbf{X}}(x_1, ..., x_n) \le 1$$
, for $-\infty \le x_i \le \infty$, $i=1, ..., n$.

(ii)
$$\lim_{x_1, x_2, \dots, x_n \to \infty} F_{\mathbf{X}}(x_1, \dots, x_n) = 1$$

Proof. Let $z_{im} \uparrow \infty$, $1 \le i \le n$.

Let
$$A_m = (-\infty, z_{1m}] \times \cdots \times (-\infty, z_{nm}].$$

Then,
$$A_m \uparrow \mathbb{R}^n \Rightarrow \lim P(A_m) = P(\mathbb{R}^n) = 1$$
.



(iii) For any $i \in \{1, ..., n\}$,

$$\lim_{x_i\to-\infty}F_{\mathbf{X}}(x_1,\ldots,x_n)=\underline{0}.$$

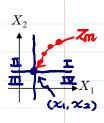


Proof. Let $z_{im} \downarrow -\infty$, for some i.

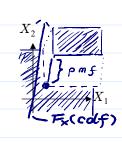
Let
$$A_m = (-\infty, x_1] \times \cdots \times (-\infty, z_{im}] \times \cdots \times (-\infty, x_n]$$

Then,
$$A_m \downarrow \emptyset \Rightarrow \lim P(A_m) = P(\emptyset) = 0$$
.

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)



(iv) $\underline{F_{\mathbf{X}}}$ is continuous from the right with respect to each of the coordinates, or any subset of them jointly, i.e., if $\underline{\mathbf{x}} = (x_1, \dots, x_n)$ and $\underline{\mathbf{z}}_{\underline{m}} = (z_{1m}, \dots, z_{nm})$ such that $\underline{\mathbf{z}}_m \downarrow \mathbf{x}$, then



p. 7-6

 $F_{\mathbf{X}}(\mathbf{z}_m) \downarrow F_{\mathbf{X}}(\mathbf{x}).$

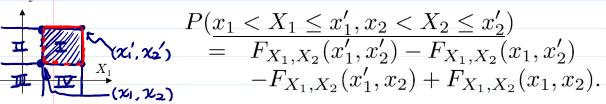
(v) If $x_i \leq x'_i, \underline{i=1,\ldots,n}$, then

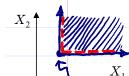
$$F_{\mathbf{X}}(\underline{x_1,\ldots,x_n}) \leq F_{\mathbf{X}}(\underline{t_1,\ldots,t_n}) \leq F_{\mathbf{X}}(\underline{x_1',\ldots,x_n'}).$$

where $t_i \in \{x_i, x_i'\}, i = 1, 2, \dots, n$. When $\underline{n=2}$, we have

$$F_{X_1,X_2}(\underline{x_1,x_2}) \le \left\{ \begin{array}{c} F_{X_1,X_2}(\underline{x_1,x_2'}) \\ F_{X_1,X_2}(\overline{x_1',x_2}) \end{array} \right\} \le F_{X_1,X_2}(\underline{x_1',x_2'}).$$

(vi) If $x_1 \le x_1'$ and $x_2 \le x_2'$, then





In particular, let
$$\underline{x_1'\uparrow\infty}$$
 and $\underline{x_2'\uparrow\infty}$, we get
$$P(\underline{x_1 < X_1 < \infty, x_2 < X_2 < \infty})$$

$$= 1 - \underline{F_{X_1}}(x_1) - \underline{F_{X_2}}(x_2) + F_{X_1,X_2}(x_1,x_2).$$

(vii) The joint cdf of $X_1, ..., X_k, k \le n$, is

(VII) The joint cdf of
$$X_{\underline{1}}, \dots, X_{\underline{k}}, \underline{k} < \underline{n}$$
, is
$$F_{X_1, \dots, X_k}(\underline{x_1, \dots, x_k}) = P(\underline{X_1 \le x_1, \dots, X_k \le x_k})$$

$$= P(X_1 \le x_1, \dots, X_k \le x_k,$$

$$-\infty < X_{k+1} < \infty, \dots, -\infty < X_n < \infty)$$

$$= \lim_{X_1 \to X_1} F_{\mathbf{X}_1}(x_1, \dots, x_k) = F_{\mathbf{X}_1}(x_1, \dots, x_k)$$

$$=\lim_{\substack{x_{2} \in \mathcal{X}_{2} \\ x_{2} \in \mathcal{X}_{2}}} F_{\mathbf{X}}(\underline{x_{1}, \dots, x_{k}}, \underline{x_{k+1}, \dots, x_{n}}).$$

In particular, the marginal cdf of X_1 is

$$\frac{F_{X_1}(x)}{=} \frac{P(X_1 \le x)}{\lim_{\underline{x_2, x_3, \dots, x_n \to \infty}} F_{\mathbf{X}}(\underline{x}, \underline{x_2, x_3, \dots, x_n}).$$

■ Theorem. A function $F_{\mathbf{X}}(x_1, ..., x_n)$ can be a joint cdf if $F_{\mathbf{X}}$ satisfies (i)-(v) in the previous theorem.

> NTHU MATH 2810, 2023, Lecture Notes nade by S.-W. Cheng (NTHU, Taiwan)

➤ Joint Probability Mass Function

- <u>Definition</u>. Suppose that $X_1, ..., X_n$ are <u>discrete</u> random variables. The joint pmf of $X = (X_1, \dots, X_n)$ is defined as $p_{\mathbf{X}}(x_1,\ldots,x_n) = P(X_1 = x_1,\ldots,X_n = x_n).$
- Theorem. Suppose that p_X is a joint pmf. Then,
 - (a) $p_{\mathbf{X}}(x_1, ..., x_n) \ge 0$, for $-\infty < x_i < \infty, i = 1, ..., n$.
 - (b) There exists a finite or countably infinite set $\underline{\mathcal{X}} \subset \underline{\mathbb{R}^n}$ such that $p_{\mathbf{X}}(x_1,\ldots,x_n)=0$, for $(x_1,\ldots,x_n)\notin\mathcal{X}$.
 - (c) $\sum_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{X}}(\mathbf{x}) = 1$, where $\mathbf{x} = (x_1, \dots, x_n)$.
 - (d) For $\underline{A \subset \mathbb{R}^n}$, $P(\underline{\mathbf{X} \in A}) = \sum_{\mathbf{x} \in A \cap \mathcal{X}} p_{\mathbf{X}}(\mathbf{x})$.
- The joint pmf of $X_{\underline{1}}, ..., X_{\underline{k}}, \underline{k < n}$, is

$$\underline{p_{X_1,\dots,X_k}(x_1,\dots,x_k)} = P(X_1 = x_1,\dots,X_k = x_k)
= P(X_1 = x_1,\dots,X_k = x_k,$$

$$= \frac{-\infty < X_{k+1} < \infty, \ldots, -\infty < X_n < \infty)}{\sum p_{\mathbf{X}}(x_1, \ldots, x_k, \underline{x_{k+1}}, \ldots, x_n)}.$$

p. 7-8

In particular, the marginal pmf of X_1 is

$$\frac{p_{X_1}(x)}{=} \sum_{\substack{(x, x_2, \dots, x_n) \in \mathcal{X} \\ -\infty < x_2 < \infty, \dots, -\infty < x_n < \infty}} p_{\mathbf{X}}(\underline{x, x_2, x_3, \dots, x_n}).$$

- Theorem. A function $\underline{p_{\mathbf{X}}(x_1, ..., x_n)}$ can be a joint pmf if $\underline{p_{\mathbf{X}}}$ satisfies (a)-(c) in the previous theorem.
- Theorem. If $\underline{F}_{\mathbf{X}}$ and $\underline{p}_{\mathbf{X}}$ are the joint cdf and joint pmf of $\underline{\mathbf{X}}$,

then
$$F_{\mathbf{X}}(x_1,\ldots,x_n) = \sum_{\substack{(t_1,\ldots,t_n)\in\mathcal{X}\\\underline{t_1\leq x_1,\ldots,t_n\leq x_n}}} \underline{p_{\mathbf{X}}(t_1,\ldots,t_n)}.$$

To derive $\underline{p}_{\mathbf{X}}$ from $\underline{F}_{\mathbf{X}}$, take $\underline{n=2}$ to illustrate:

NTHU MATH 2810, 2023, Lecture Notes

➤ Joint Probability Density Function

- <u>Definition</u>. A function $\underline{f}_{\underline{X}}(\underline{x}_1, ..., \underline{x}_n)$ can be a joint pdf if
 - (1) $f_{\mathbf{X}}(x_1, ..., x_n) \ge 0$, for $-\infty < x_i < \infty$, i=1, ..., n.

$$(2) \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_n) \ dx_1 \cdots dx_n = \underline{1}.$$

Definition. Suppose that $\underline{X_1, ..., X_n}$ are continuous r.v.'s. The joint pdf of $\mathbf{X}=(X_1, ..., X_n)$ is a function $\underline{f_{\mathbf{X}}(x_1, ..., x_n)}$ satisfying (1) and (2) above, and for any event $\underline{A} \subset \mathbb{R}^n$,

$$P(\underline{\mathbf{X}} \in \underline{A}) = \underline{\int \cdots \int_{\underline{A}} f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \cdots dx_n}.$$

Theorem. Suppose that $\underline{f}_{\underline{\mathbf{X}}}$ is the joint pdf of $\underline{\mathbf{X}} = (X_1, ..., X_n)$. Then, the joint pdf of $\underline{X}_{\underline{1}}, ..., \underline{X}_{\underline{k}}, \underline{k < n}$, is

$$\frac{f_{X_1,\dots,X_k}(x_1,\dots,x_k)}{=\underbrace{\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}} f_{\mathbf{X}}(\underline{x_1,\dots,x_k},\underline{x_{k+1},\dots,x_n}) \underline{dx_{k+1}\cdots dx_n}.$$

In particular, the marginal pdf of X_1 is

$$f_{X_1}(x) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(\underline{x}, \underline{x_2, \dots, x_n}) \underline{dx_2 \cdots dx_n}.$$

■ Theorem. If $\underline{F}_{\underline{X}}$ and $\underline{f}_{\underline{X}}$ are the joint cdf and joint pdf of \underline{X} , then

$$\frac{F_{\mathbf{X}}(x_1, \dots, x_n)}{= \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f_{\mathbf{X}}(t_1, \dots, t_n) dt_1 \dots dt_n, \text{ and}}$$

$$\underline{f_{\mathbf{X}}(x_1, \dots, x_n)} = \frac{\partial^n}{\partial x_1 \dots \partial x_n} \underline{F_{\mathbf{X}}(x_1, \dots, x_n)}.$$

at the continuity points of f_X .

- Examples.
 - Experiment. Two balls are drawn without replacement from a box with one ball labeled 1,

two balls labeled 2,

three balls labeled 3.

Let $X = \underline{label}$ on the $\underline{1^{st} ball}$ drawn, Y = label on the 2^{nd} ball drawn.

• The joint pmf and marginal pmfs of (X, Y) are

NTHU MATH 2810, 2023, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

made by o. vv. energ (ivilie, raiwaii)							
p(x, y)			(m)				
		1	2	3	$p_{Y}(y)$		
Y	1	0	2/30	3/30	1/6		
	2	2/30	2/30	6/30	2/6		
	3	3/30	6/30	6/30	3/6		
p_X	(x)	1/6	2/6	3/6			

 $\underline{\mathbf{Q}}$: The balls are drawn without replacement. Why do X (from 1^{st} ball) and Y (from 2^{nd} ball) have same marginal distributions?

 $\mathbb{Q}: P(|X-Y|=1)=??$

$$P(|X-Y|=1) = P(X=1, Y=2) + P(X=2, Y=1) + P(X=2, Y=3) + P(X=3, Y=2) = 8/15.$$

• Q: What are the joint pmf and marginal pmfs of (X, Y) if the balls are drawn with replacement (LNp. 4-6)?

p(x, y)			m (a)		
		1	2	3	$p_{Y}(y)$
	1	1/36	2/36	3/36	1/6
Y	2	2/36	4/36	6/36	2/6
	3	3/36	6/36	9/36	3/6
p_X	(x)	1/6	2/6	3/6	

Multinomial Distribution

- Recall. Partitions
 - \square If $\underline{n \ge 1}$ and $\underline{n_1, ..., n_m \ge 0}$ are integers for which

$$\underline{n}_1 + \cdots + \underline{n}_m = \underline{n},$$

then a set of \underline{n} elements may be partitioned into \underline{m} subsets of sizes $\underline{n}_1, \ldots, \underline{n}_m$ in

$$\binom{n}{n_1, \dots, n_m} = \frac{n!}{n_1! \times \dots \times n_m!}$$
 ways.

□ Example (LNp.2-8) : MISSISSIPPI

$$\binom{11}{4,1,2,4} = \frac{11!}{4!1!2!4!}.$$

- Example (Die Rolling).
 - Q: If a <u>balanced</u> (6-sided) <u>die</u> is rolled <u>12 times</u>, P(each face appears twice)=??
 - □ Sample space of rolling the die once (basic experiment): $\underline{\Omega}_0 = \{1, 2, 3, 4, 5, 6\}.$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

□ The sample space for the 12 trials is

$$\overline{\Omega} = \Omega_0 \times \cdots \times \Omega_0 = \Omega_0^{12}$$

An outcome $\underline{\omega} \in \underline{\Omega}$ is $\underline{\omega} = (i_1, i_2, ..., \overline{i_{12}})$, where $\underline{1 \leq i_1, ..., i_{12}} \leq \underline{6}$.

- There are 6^{12} possible outcomes in Ω, i.e., $\#Ω = 6^{12}$.
- □ Among <u>all</u> possible outcomes, there are $\frac{12}{2,2,2,2,2,2} = \frac{12!}{(2!)^6}$ of which each face appears twice.
- $P(\text{each face appears twice}) = \frac{12!}{(2!)^6} \left(\frac{1}{6}\right)^{12}.$
- Generalization.
 - Consider a <u>basic experiment</u> which can result in one of \underline{m} types of <u>outcomes</u>. Denote its <u>sample space</u> as

$$\underline{\Omega}_{\underline{0}} = \underline{\{1, 2, ..., m\}}.$$

Let $\underline{p}_i = P(\underline{\text{outcome } i \text{ appears } \text{in a } \underline{\text{basic }} \text{ experiment)},$

then, (i) $\underline{p_1}, ..., \underline{p_m} \ge 0$, and

(ii)
$$\underline{p}_1 + \cdots + \underline{p}_m = 1$$
.

$$\underline{\Omega} = \Omega_0 \times \cdots \times \Omega_0 = \underline{\Omega}_0^n$$

Let $\underline{X}_i = \underline{\#}$ of trials with outcome i, $\underline{i=1, ..., m}$,

Then,

(i)
$$\underline{X_1, ..., X_m}$$
: $\underline{\Omega} \rightarrow \mathbb{R}$, and

(ii)
$$X_1 + \cdots + X_m = n$$
.

 \square The joint pmf of $X_1, ..., X_m$ is

$$\frac{p_{\mathbf{X}}(x_1,\ldots,x_m)}{=\begin{pmatrix} p_{\mathbf{X}_1}=x_1,\ldots,X_m=x_m\\ p_1^{x_1}\times\cdots\times p_m^{x_m} \end{pmatrix}} = \begin{pmatrix} p_{\mathbf{X}_1}=x_1,\ldots,X_m=x_m\\ p_1^{x_1}\times\cdots\times p_m^{x_m} \end{pmatrix}.$$

for $\underline{x_1, ..., x_m \ge 0}$ and $\underline{x_1 + ... + x_m = n}$

<u>Proof.</u> The <u>probability</u> of any <u>sequence</u> with $\underline{x_i i's}$ is

$$p_1^{x_1} \times \cdots \times p_m^{x_m},$$

and there are

$$\binom{n}{x_1, \cdots, x_m}$$

such sequences.

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

- The <u>distribution</u> of a random vector $\underline{\mathbf{X}} = (X_1, \dots, X_m)$ with the <u>above joint pmf</u> is called the <u>multinomial</u> distribution with parameters n, m, and p_1, \dots, p_m , denoted by <u>Multinomial(n, m, p_1, \dots, p_m).</u>
 - ◆ The <u>multinomial distribution</u> is called after the <u>Multinomial Theorem</u>:

$$(a_1 + \dots + a_m)^n = \sum_{\substack{x_i \in \{0,\dots,n\}; i=1,\dots,m \\ x_1 + \dots + x_m = n}} \binom{n}{x_1,\dots,x_m} a_1^{x_1} \times \dots \times a_m^{x_m}.$$

- ◆ It is a generalization of the binomial distribution from 2 types of outcomes to m types of outcomes.
- □ Some Properties.
 - $\bullet \text{ Because} \underline{X_{\underline{i}}} = \underline{n (X_{\underline{1}} + \dots + X_{\underline{i-1}} + X_{\underline{i+1}} + \dots + X_{\underline{m}})}, \text{ and } \\ \underline{p_{\underline{i}}} = \underline{1 (p_{\underline{1}} + \dots + p_{\underline{i-1}} + p_{\underline{i+1}} + \dots + p_{\underline{m}})},$

WLOG, we can write

$$(X_1,...,X_{m-1},\underline{X}_m) \to (X_1,...,X_{m-1},\underline{n-(X_1+\cdots+X_{m-1})})$$

• Marginal Distribution. Suppose that

$$(\underline{X_1}, \ldots, \underline{X_m}) \sim \underline{\text{Multinomial}}(n, \underline{m}, \underline{p_1}, \ldots, \underline{p_k}, \underline{p_{k+1}}, \ldots, \underline{p_m}).$$

For $1 \le k \le m$, the <u>distribution</u> of

$$(\underline{X}_1, \ldots, \underline{X}_k, \underline{X}_{k+1} + \cdots + \underline{X}_m)$$

is Multinomial $(n, \underline{k+1}, \underline{p_1, ..., p_k}, \underline{p_{k+1}} + ... + \underline{p_m})$.

In particular, $X_i \sim \underline{\text{Binomial}}(\underline{n}, \underline{p}_i)$

• Mean and Variance.

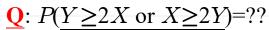
$$\underline{E(X_{\underline{i}})} = n\underline{p}_{\underline{i}}$$
 and $\underline{Var(X_{\underline{i}})} = n\underline{p}_{\underline{i}}(1-\underline{p}_{\underline{i}})$

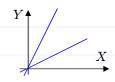
for i = 1, ..., m.

Example.

■ Suppose that the joint pdf of 2 continuous r.v.'s (X, Y) is

$$f(x,y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)}, & x \ge 0, y \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$





■ The event $\{\underline{Y \ge 2X}\} \cup \{\underline{X \ge 2Y}\}$ is

NTHU MATH 2810, 2023, Lecture Notes

■ So, $P(\underline{Y \ge 2X} \text{ or } \underline{X \ge 2Y}) = P(\underline{Y \ge 2X}) + P(\underline{X \ge 2Y}) = 2/3 \text{ because}^{p.7-18}$

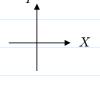
$$P(\underline{Y \ge 2X}) = \int_0^\infty \left[\int_{2x}^\infty \lambda^2 e^{-\lambda(x+y)} \, dy \right] dx$$

$$= \int_0^\infty -\lambda e^{-\lambda(x+y)} \Big|_{y=2x}^\infty dx = \int_0^\infty \lambda e^{-3\lambda x} \, dx$$

$$= (-1/3)e^{-3\lambda x} \Big|_{x=0}^\infty = \underline{1/3}.$$

and similarly, we can get $P(X \ge 2Y) = 1/3$ (exercise).

Example. Consider two continuous r.v.'s X and Y.

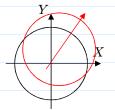


■ <u>Uniform</u> Distribution over a <u>region D</u>. If $\underline{D} \subset \mathbb{R}^2$ and $0 < \underline{\alpha} = \underline{\text{Area}(D)} \leq \underline{\infty}$, then

$$f(x,y) = c \cdot \mathbf{1}_D(x,y)$$

is a joint pdf when $c=1/\alpha$, called the uniform pdf over D.

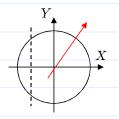
Let $\underline{D} = \{(x, y) : \underline{x^2 + y^2 \le 1}\}$, then $\underline{\alpha} = \text{Area}(D) = \underline{\pi}$ and $f(x, y) = \underline{\frac{1}{\pi}} \mathbf{1}_D(x, y)$



is a joint pdf.

ullet Marginal distribution. The marginal pdf of X is

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} \, dy = \frac{2}{\pi} \sqrt{1-x^2}$$



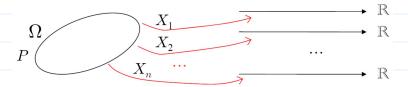
for $-1 \le x \le 1$, and $\underline{f}_{\underline{X}}(x) = 0$, otherwise.

(exercise: Find the $\overline{\text{marginal}}$ distribution of Y.)

* Reading: textbook, Sec 6.1

Independent Random Variables

- Recall.
 - ►If joint distribution is given, marginal distributions are known.
 - The converse statement does not hold in general.
 - However, when <u>random variables</u> are <u>independent</u>, <u>marginal</u> distributions + <u>independence</u> \Rightarrow <u>joint</u> distribution.



NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

• <u>Definition</u>. The <u>n</u> <u>jointly</u> distributed r.v.'s $X_{\underline{1}}, ..., X_{\underline{n}}$ are called (<u>mutually</u>) <u>independent</u> if and only if for <u>any</u> (measurable) sets $\underline{A}_i \subset \underline{\mathbb{R}}$, i=1, ..., n, the events

$$\{X_1 \in A_1\}, ..., \{X_n \in A_n\}$$

are (mutually) independent. That is,

$$P(X_{i_1} \in A_{i_1}, X_{i_2} \in A_{i_2}, \dots, X_{i_k} \in A_{i_k}) = P(X_{i_1} \in A_{i_1}) \times P(X_{i_2} \in A_{i_2}) \times \dots \times P(X_{i_k} \in A_{i_k}),$$

for $\underline{any} \ 1 \leq \underline{i_1} \leq \underline{i_2} \leq \cdots \leq \underline{i_k} \leq n; \underline{k=2, \dots, n}.$

► If $X_1, ..., X_n$ are independent, for $1 \le k \le n$,

$$P(X_{k+1} \in A_{k+1}, \dots, X_n \in A_n | X_1 \in A_1, \dots, X_k \in A_k) = P(X_{k+1} \in A_{k+1}, \dots, X_n \in A_n)$$

provided that $P(X_1 \in A_1, ..., X_k \in A_k) > 0$.

■ In other words, the <u>values</u> of $X_1, ..., X_k$ do <u>not carry any</u> information about the <u>distribution</u> of $X_{k+1}, ..., X_n$.

- Theorem (Factorization Theorem). The random variables $\mathbf{X} = (X_1, ..., X_n)$ are independent if and only if one of the following conditions holds.
 - (1) $F_{\mathbf{X}}(x_1,\ldots,x_n) = F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n)$, where $F_{\mathbf{X}}$ is the joint cdf of X and F_{X_i} is the marginal cdf of X_i for i=1,...,n.
 - (2) Suppose that $X_1, ..., X_n$ are discrete random variables. $\underline{p_{\mathbf{X}}(x_1,\ldots,x_n)} = \underline{p_{X_1}(\bar{x_1})} \times \cdots \times \underline{p_{X_n}(x_n)}, \text{ where } \underline{p_{\mathbf{X}}} \text{ is the } \underline{\text{point pmf of } \underline{\mathbf{X}}} \text{ and } \underline{p_{X_i}} \text{ is the } \underline{\text{marginal pmf of } \underline{X_i}} \text{ for } i=1,\ldots,n.$
 - (3) Suppose that $X_1, ..., X_n$ are <u>continuous</u> random variables. $f_{\mathbf{X}}(x_1,\ldots,x_n) = f_{X_1}(\bar{x}_1) \times \cdots \times f_{X_n}(x_n)$, where $\underline{f}_{\mathbf{X}}$ is the <u>joint pdf</u> of $\underline{\mathbf{X}}$ and \underline{f}_{X_i} is the <u>marginal pdf</u> of \underline{X}_i for i=1,...,n.

Proof.

independent
$$\Rightarrow$$
 (1). $F_{\mathbf{X}}(x_1, \dots, x_n) = P(X_1 \leq x_1, \dots, X_n \leq x_n)$

$$= P(X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n])$$

$$= P(X_1 \in (-\infty, x_1]) \times \dots \times P(X_n \in (-\infty, x_n])$$

$$= F_{X_1}(x_1) \times \dots \times F_{X_n}(x_n)$$

independent \Leftarrow (1). Out of the scope of this couse so skip.

$$\begin{array}{c} \text{independent} \Rightarrow (2). & \underbrace{p_{\mathbf{X}}(x_1,\ldots,x_n)}_{=P(X_1\in\{x_1\},\ldots,X_n\in\{x_n\})} = P(X_1\in\{x_1\},\ldots,X_n\in\{x_n\}) \\ & = P(X_1\in\{x_1\},\ldots,X_n\in\{x_n\}) \\ & = P(X_1\in\{x_1\})\times\cdots\times P(X_n\in\{x_n\}) \\ & = \underbrace{p_{X_1}(x_1)\times\cdots\times p_{X_n}(x_n)}_{=p_{X_1}(x_1)\times\cdots\times p_{X_n}(x_n)} \\ \\ (2)\Rightarrow (1). & \\ \hline F_{\mathbf{X}}(x_1,\ldots,x_n) = \sum_{\stackrel{(t_1,\ldots,t_n)\in\mathcal{X}}{t_1\leq x_1,\ldots,t_n\leq x_n}} p_{\mathbf{X}}(t_1,\ldots,t_n) \\ & = \sum_{\stackrel{(t_1,\ldots,t_n)\in\mathcal{X}}{t_1\leq x_1}} \underbrace{p_{X_1}(t_1)\times\cdots\times p_{X_n}(t_n)}_{\stackrel{(t_1,\ldots,t_n)\in\mathcal{X}}{t_1\leq x_1}} \\ & = \sum_{\stackrel{(t_1,\ldots,t_n)\in\mathcal{X}}{t_1\leq x_1}} p_{X_1}(t_1)\times\cdots\times \sum_{\stackrel{(t_1,\ldots,t_n)\in\mathcal{X}}{t_1\leq x_n}} p_{X_n}(t_n) = \underline{F_{X_1}(x_1)\times\cdots\times F_{X_n}(x_n)}_{\stackrel{(t_1,\ldots,t_n)\in\mathcal{X}}{t_1\leq x_1}} \\ \hline (3)\Rightarrow (1). & \\ \hline \end{array}$$

$$\frac{(3) \Rightarrow (1)}{F_{\mathbf{X}}(x_1, \dots, x_n)} = \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f_{\mathbf{X}}(t_1, \dots, t_n) dt_1 \dots dt_n$$

$$= \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f_{X_1}(t_1) \times \dots \times f_{X_n}(t_n) dt_1 \dots dt_n$$

$$= \int_{-\infty}^{x_1} f_{X_1}(t_1) dt_1 \times \dots \times \int_{-\infty}^{x_n} f_{X_n}(t_n) dt_n = \underline{F_{X_1}}(x_1) \times \dots \times F_{X_n}(x_n)$$

$$\frac{(3) \Leftarrow (1).}{f_{\mathbf{X}}(x_1, \dots, x_n)} = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{\mathbf{X}}(x_1, \dots, x_n).$$

$$= \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{X_1}(x_1) \times \dots \times F_{X_n}(x_n)$$

$$= \frac{\partial}{\partial x_1} F_{X_1}(x_1) \times \dots \times \frac{\partial}{\partial x_n} F_{X_n}(x_n) = \underline{f_{X_1}(x_1) \times \dots \times f_{X_n}(x_n)}$$

Remark. It follows from the Multiplication Law (LNp.4-11) that

$$\frac{F_{\mathbf{X}}(x_{1}, \dots, x_{n}) = P(X_{1} \leq x_{1}, \dots, X_{n} \leq x_{n})}{= P(X_{1} \leq x_{1})} = P(X_{1} \leq x_{1}) \qquad (= F_{X_{1}}(x_{1})) \\
\times P(X_{2} \leq x_{2} | X_{1} \leq x_{1}) \qquad (\stackrel{?}{=} P(X_{2} \leq x_{2}) = F_{X_{2}}(x_{2})) \\
\times P(X_{3} \leq x_{3} | X_{1} \leq x_{1}, X_{2} \leq x_{2}) \qquad (\stackrel{?}{=} P(X_{3} \leq x_{3}) = F_{X_{3}}(x_{3})) \\
\times \cdots \\
\times P(X_{n} \leq x_{n} | X_{1} \leq x_{1}, \dots, X_{n-1} \leq x_{n-1}) (\stackrel{?}{=} P(X_{n} \leq x_{n}) = F_{X_{n}}(x_{n}))$$

The independence can be established *sequentially*.

ightharpoonup Example. If $A_1, \ldots, A_n \subset \underline{\Omega}$ are independent events, then $\mathbf{1}_{A_1}, \dots, \mathbf{1}_{A_n}$, are independent random variables. For example,

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

$$\frac{P(\mathbf{1}_{A_1} = 1, \mathbf{1}_{A_2} = 0, \mathbf{1}_{A_3} = 1)}{= P(A_1 \cap A_2^c \cap A_3) = P(A_1)P(A_2^c)P(A_3)}
= P(\mathbf{1}_{A_1} = 1)P(\mathbf{1}_{A_2} = 0)P(\mathbf{1}_{A_3} = 1).$$

Theorem. If
$$\underline{\mathbf{X}} = (\underline{X_1}, \dots, X_n)$$
 are independent and
$$\underline{Y_i} = g_i(\underline{X_i}), i = 1, \dots, n,$$

$$\underline{Y_1} = g_i(\underline{X_i}), i = 1, \dots, n,$$

$$\underline{Y_1} = g_i(\underline{X_1}, \dots, \underline{X_{i_1}}),$$

$$\underline{Y_2} = g_2(\underline{X_{i_1+1}}, \dots, \underline{X_{i_2}}),$$
 then
$$\underline{Y_1}, \dots, \underline{Y_n} \text{ are independent.}$$

$$\underline{Y_k} = g_k(\underline{X_{i_{k-1}+1}}, \dots, \underline{X_{i_k}}).$$

Proof.

Let
$$A_i(y) = \{x : g_i(x) \le y\}, i=1, ..., n$$
, then
$$F_{\mathbf{Y}}(y_1, ..., y_n) = P(Y_1 \le y_1, ..., Y_n \le y_n)$$

$$= P(X_1 \in A_1(y_1), ..., X_n \in A_n(y_n))$$

$$= P(X_1 \in A_1(y_1)) \times \cdots \times P(X_n \in A_n(y_n))$$

$$= P(Y_1 \le y_1) \times \cdots \times P(Y_n \le y_n)$$

$$= F_{Y_1}(y_1) \times \cdots \times F_{Y_n}(y_n).$$

- Theorem. $X=(X_1, ..., X_n)$ are independent if and only if there exist univariate functions $g_i(x)$, i=1, ..., n, such that
 - (a) when $\underline{X_1}, \ldots, \underline{X_n}$ are <u>discrete</u> r.v.'s with <u>joint pmf</u> $p_{\underline{X}}$, $p_{\underline{X}}(x_1, \ldots, x_n) \underline{\propto} g_1(x_1) \times \cdots \times g_n(x_n), \underline{-\infty} < x_i < \infty, i=1,\ldots,n.$
 - (b) when $\underline{X_1, ..., X_n}$ are <u>continuous</u> r.v.'s with <u>joint pdf</u> $\underline{f_X}$, $f_X(x_1, ..., x_n) \underline{\propto} g_1(x_1) \times \cdots \times g_n(x_n), \underline{-\infty < x_i < \infty}, i=1,...,n.$

Sketch of proof for (b).

$$\underline{f_{X_1}(x_1)} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \underline{x_2, \dots, x_n}) \ dx_2 \cdots dx_n$$

$$\underline{\propto} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \underline{g_1(x_1)} \underline{g_2(x_2)} \cdots \underline{g_n(x_n)} \ dx_2 \cdots dx_n \ \underline{\propto} \ g_1(x_1).$$

Similarly,
$$\underline{f_{X_2}(x_2)} \propto g_2(x_2), \dots, \underline{f_{X_n}(x_n)} \propto g_n(x_n)$$

$$\Rightarrow f_{X_1}(x_1) \cdots f_{X_n}(x_n) \propto g_1(x_1) \cdots g_n(x_n)$$

$$\Rightarrow f_{\mathbf{X}}(x_1, \dots, x_n) \propto f_{X_1}(x_1) \cdots f_{X_n}(x_n)$$

$$\Rightarrow f_{\mathbf{X}}(x_1, \dots, x_n) = \underline{c} \cdot f_{X_1}(x_1) \cdots f_{X_n}(x_n)$$
for some constant c .

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Because
$$\frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, \dots, x_n) \underline{dx_1 \cdots dx_n} = 1, \text{ and}}{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1}(x_1) \cdots f_{X_n}(x_n) \underline{dx_1 \cdots dx_n} = 1, \Rightarrow \underline{c} = \underline{1}.}$$

 \triangleright Example.

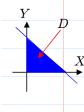
• If the joint pdf of (X, Y) is

$$f(x,y) \propto \underline{e^{-2x}}\underline{e^{-3y}}, \ \underline{0 < x < \infty}, \underline{0 < y < \infty},$$
 and $\underline{f(x,y)} = 0$, otherwise, i.e.,
$$f(x,y) \propto \underline{e^{-2x}}\underline{e^{-3y}}\underline{\mathbf{1}_{(0,\infty)}(x)}\underline{\mathbf{1}_{(0,\infty)}(y)},$$

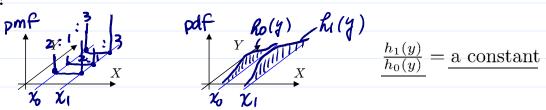
then \underline{X} and \underline{Y} are independent. Note that the region in which the joint pdf is nonzero can be expressed in the form $\{(x, y): x \in A, y \in B\}$.

• Suppose that the joint pdf of (X, Y) is

$$f(x,y) \propto \underline{xy}, \ \ \underline{0 < x < 1}, \ \underline{0 < y < 1}, \ \underline{0 < x + y < 1},$$
 and $\underline{f(x,y)}$ =0, otherwise, i.e., $f(x,y) \propto xy \cdot \underline{\mathbf{1}}_D(x,y),$ X and Y are not independent.



 \triangleright Q: For independent X and Y, how should their joint pdf/pmf look like?

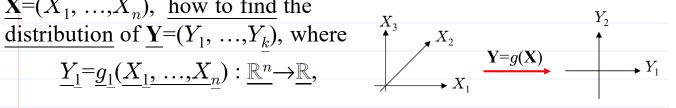


* Reading: textbook, Sec 6.2

Transformation

• Q: Given the joint distribution of $\overline{\mathbf{X}} = (X_1, ..., X_n)$, how to find the

$$\underline{Y}_{\underline{1}} = \underline{g}_{\underline{1}}(\underline{X}_{\underline{1}}, ..., \underline{X}_{\underline{n}}) : \underline{\mathbb{R}^n} \rightarrow \underline{\mathbb{R}},$$



$$\underline{Y}_k = \underline{g}_k(\underline{X}_1, ..., \underline{X}_n) : \underline{\mathbb{R}}^n \to \underline{\mathbb{R}},$$

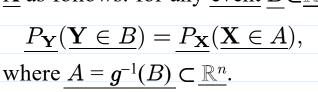
denoted by

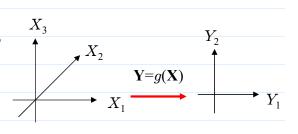
$$\underline{\mathbf{Y}} = \underline{\mathbf{g}}(\underline{\mathbf{X}}), \ \underline{\mathbf{g}} : \underline{\mathbb{R}}^n \longrightarrow \underline{\mathbb{R}}^k.$$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

p. 7-28

- The following methods are useful:
 - 1.Method of Events (\rightarrow pmf)
 - 2. Method of Cumulative Distribution Function
 - 3. Method of Probability Density Function
 - 4. Method of Moment Generating Function (chapter 7)
- ► Method of Events
 - Theorem. The distribution of **Y** is determined by the distribution of **X** as follows: for any event $B \subset \mathbb{R}^k$,





■ Example. Let X be a discrete random vector taking values

$$\underline{\mathbf{x}}_{i} = (x_{1i}, x_{2i}, ..., x_{ni}), \underline{i=1, 2, ...},$$

(i.e., $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots\}$) with joint pmf $p_{\mathbf{X}}$.

Then, Y=g(X) is also a discrete random vector.

Suppose that $\underline{\mathbf{Y}}$ takes values on $\underline{\mathbf{y}}_j$, $\underline{j=1, 2, ...}$. To determine p. 7-29 the joint pmf of $\underline{\mathbf{Y}}$, by taking $\underline{B} = \{ \underline{\mathbf{y}}_j \}$, we have

$$\underline{A} = \{ \underline{\mathbf{x}}_i \in \underline{\mathcal{X}} : \underline{g}(\underline{\mathbf{x}}_i) = \underline{\mathbf{y}}_j \}$$

and hence, the joint pmf of Y is

$$p_{\mathbf{Y}}(\mathbf{y}_j) = \underline{P_{\mathbf{Y}}}(\{\mathbf{y}_j\}) = \underline{P_{\mathbf{X}}}(\underline{A}) = \sum_{\mathbf{x}_i \in A} \underline{p_{\mathbf{X}}}(\mathbf{x}_i).$$

■ Example. Let X and Y be random variables with the joint pmf p(x, y). Find the distribution of Z=X+Y.

$$\Box \{Z=z\} = \{(X, Y) \in \{(x, y): x+y=z\}\}$$

$$p_Z(z) = P_Z(\{z\}) = P(X + Y = z) = \sum_{x \in \mathcal{X}_X} \underline{p(x, z - x)}.$$
hen X and Y are independent

 \square When X and Y are independent,

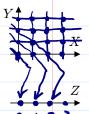
$$p(x, y) = p_X(x)p_Y(y),$$

So,
$$\underline{p_Z(z)} = \sum_{x \in \mathcal{X}_X} \underline{p_X(x)p_Y(z-x)}.$$

which is referred to as the <u>convolution</u> of \underline{p}_X and \underline{p}_Y .

$$\Box$$
 (Exercise) $Z=X-Y$

• Theorem. If X and Y are independent, and



$$\underline{X} \sim \underline{\text{Poisson}}(\underline{\lambda}_1), \quad \underline{Y} \sim \underline{\text{Poisson}}(\underline{\lambda}_2),$$

then
$$\underline{Z} = \underline{X + Y} \sim \underline{Poisson}(\underline{\lambda_1 + \lambda_2}).$$

<u>Proof.</u> For $\underline{z=0, 1, 2, ...}$, the pmf $\underline{p_z(z)}$ of \underline{Z} is

$$p_Z(z) = \sum_{x=0}^{z} p_X(x) p_Y(z-x) = \sum_{x=0}^{z} \frac{e^{-\lambda_1} \lambda_1^x}{x!} \frac{e^{-\lambda_2} \lambda_2^{z-x}}{(z-x)!}$$

$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} \left(\sum_{x=0}^{z} \frac{z!}{x!(z-x)!} \lambda_1^x \lambda_2^{z-x} \right) = \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} (\lambda_1 + \lambda_2)^z.$$

 \square Corollary. If $X_1, ..., X_n$ are independent, and

$$X_i \sim \underline{\text{Poisson}}(\underline{\lambda}_i), i=1, ..., n,$$

then
$$\underline{X_1 + \cdots + X_n} \sim \underline{\text{Poisson}}(\underline{\lambda_1 + \cdots + \lambda_n}).$$

Proof. By induction (exercise).

Method of cumulative distribution function

1.In the $(\underline{X_{\underline{1}},...,X_{\underline{n}}})$ space, find the <u>region</u> that corresponds to

$$\{Y_1 \leq y_1, ..., Y_k \leq y_k\}.$$

- 2.Find $F_{\underline{Y}}(\underline{y_1}, ..., \underline{y_k}) = P(\underline{Y_1} \leq \underline{y_1}, ..., \underline{Y_k} \leq \underline{y_k})$ by summing the joint pmf or integrating the joint pdf of $\underline{X_1}, ..., \underline{X_n}$ over the region identified in 1.
- 3.(for <u>continuous</u> case) Find the <u>joint pdf</u> of $\underline{\mathbf{Y}}$ by <u>differentiating</u> $F_{\mathbf{Y}}(y_1, ..., y_k)$, i.e.,

$$f_{\mathbf{Y}}(y_1,\ldots,y_k) = \frac{\partial^k}{\partial y_1 \cdots \partial y_k} F_{\mathbf{Y}}(y_1,\ldots,y_k).$$

■ Example. X and Y are random variables with joint pdf f(x, y). Find the distribution of Z=X+Y.

$$\Box \{Z \le z\} = \{(X, Y) \in \{(x, y): x + y \le z\}\}.$$
 So,

$$F_{Z}(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x,y) \, dy dx$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(s,t-s) \, ds dt \quad \left(\text{set } \left\{ \begin{array}{ccc} x & = & s \\ y & = & t-s \end{array} \right. \right)$$

made by S.-W. Cheng (NTHU, Taiwan)

and
$$f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$

 \square When X and Y are independent,

$$\underline{f(x, y) = f_X(x)f_Y(y)}.$$

So,
$$\underline{F_Z(z)} = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} \underline{f_X(x) f_Y(y)} \, dy dx$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-x} f_Y(y) \, dy \right] f_X(x) \, dx$$

$$= \int_{-\infty}^{\infty} F_Y(z-x) \underline{f_X(x)} \, dx$$

which is referred to as the <u>convolution</u> of F_X and F_Y , and

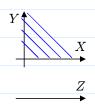
$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx$$

which is referred to as the <u>convolution</u> of $\underline{f}_{\underline{X}}$ and $\underline{f}_{\underline{Y}}$.

- \Box (exercise) Z = X Y.
- Theorem. If X and Y are independent, and

 $X \sim \underline{\text{Gamma}(\underline{\alpha}_{\underline{1}}, \underline{\lambda})}, \underline{Y} \sim \underline{\text{Gamma}(\underline{\alpha}_{\underline{2}}, \underline{\lambda})},$ then

 $\underline{Z} = \underline{X + Y} \sim \underline{\text{Gamma}}(\underline{\alpha}_1 + \underline{\alpha}_2, \underline{\lambda}).$



Proof. For
$$z \ge 0$$
,

$$f_{Z}(z) = \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{z} x^{\alpha_{1}-1} (z-x)^{\alpha_{2}-1} e^{-\lambda z} dx$$

$$= \frac{\lambda^{\alpha_{1}+\alpha_{2}} e^{-\lambda z}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{1} z^{(\alpha_{1}-1)+(\alpha_{2}-1)+1} y^{\alpha_{1}-1} (1-y)^{\alpha_{2}-1} dy$$

$$= \frac{\lambda^{\alpha_{1}+\alpha_{2}} z^{(\alpha_{1}+\alpha_{2})-1} e^{-\lambda z}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \times \frac{\Gamma(\alpha_{1})\Gamma(\alpha_{2})}{\Gamma(\alpha_{1}+\alpha_{2})}.$$

and $f_Z(z) = 0$, for z < 0.

 $\underline{X_{\underline{i}}} \sim \underline{\underline{\text{Gamma}}(\underline{\alpha_{\underline{i}}}, \underline{\lambda})}, \ i=1, \dots, n,$ then $\underline{X_1} + \dots + \underline{X_n} \sim \underline{\underline{\text{Gamma}}(\underline{\alpha_{\underline{i}}}, \underline{\lambda})}, \ i=1, \dots, n,$

Proof. By induction (exercise).

□ Corollary. If $X_1, ..., X_n$ are independent, and $X_i \sim \text{Exponential}(\lambda)$, i=1, ..., n, then $X_1 + \cdots + X_n \sim \text{Gamma}(n, \lambda)$.

Proof. (exercise).

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

■ Theorem. If $X_{\underline{1}}, ..., X_{\underline{n}}$ are independent, and

 $\underline{X}_i \sim \underline{\text{Normal}}(\underline{\mu}_i, \underline{\sigma}_i^2), i=1, ..., n,$

then $\underline{X_1} + \cdots + \underline{X_n} \sim \underline{\text{Normal}}(\underline{\mu_1} + \cdots + \underline{\mu_n}, \underline{\sigma_1}^2 + \cdots + \underline{\sigma_n}^2).$

Proof. (exercise).

■ Example. \underline{X} and \underline{Y} are random variables with joint pdf $\underline{f(x, y)}$. Find the distribution of $\underline{Z} = \underline{Y/X}$.

Let
$$Q_z = \{(x,y) : \underline{y/x \leq z}\}$$

= $\{(x,y) : \underline{x < 0, y \geq zx}\}$
 $\cup \{(x,y) : x > 0, y \leq zx\}$

then,
$$\underline{F_{Z}(z)} = \int \int_{Q_{z}} \underline{f(x,y)} \, dx dy$$

$$= \int_{-\infty}^{0} \int_{xz}^{\infty} + \int_{0}^{\infty} \int_{-\infty}^{xz} f(x,y) \, dy dx \quad \left(\text{set } \left\{\begin{array}{c} x = s \\ y = st \end{array}\right)\right)$$

$$= \int_{-\infty}^{0} \int_{-\infty}^{z} + \int_{0}^{\infty} \int_{-\infty}^{z} f(s,st) |s| \, dt ds$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z} |s| f(s,st) \, dt ds$$

 $=\int_{-\infty}^{z}\int_{-\infty}^{\infty}|s|f(s,st)\ dsdt$

and,
$$f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} |x| f(x, zx) dx$$

■ When X and Y are independent,

$$f(x, y) = f_X(x)f_Y(y).$$

So,
$$F_Z(z) = \int_{-\infty}^{z} \int_{-\infty}^{\infty} |s| \underline{f_X(s) f_Y(st)} \ ds dt$$

and, $f_Z(z) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(zx) \ dx$

$$\Box$$
 (exercise) $Z=XY$

□ If X and Y are independent,

 $X \sim \underline{\text{exponential}(\underline{\lambda}_1)}, \text{ and } \underline{Y} \sim \underline{\text{exponential}(\underline{\lambda}_2)},$

Let Z=Y/X. The pdf of Z is

$$f_{Z}(z) = \int_{0}^{\infty} x \left(\lambda_{1} e^{-\lambda_{1} x}\right) \left[\lambda_{2} e^{-\lambda_{2}(xz)}\right] dx$$

$$= \frac{\lambda_{1} \lambda_{2} \Gamma(2)}{(\lambda_{1} + \lambda_{2} z)^{2}} \int_{0}^{\infty} \frac{(\lambda_{1} + \lambda_{2} z)^{2}}{\Gamma(2)} x^{2-1} e^{-(\lambda_{1} + \lambda_{2} z)x} dx$$

$$= \frac{\lambda_{1} \lambda_{2}}{(\lambda_{1} + \lambda_{2} z)^{2}}$$

for $\underline{z \ge 0}$, and $\underline{0}$ for $\underline{z < 0}$.

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

And, the cdf of Z is

$$F_Z(z) = \int_0^z \overline{f_Z(t)} dt = \int_0^z \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2 t)^2} dt$$
$$= -\frac{\lambda_1 \lambda_2}{\lambda_2} (\lambda_1 + \lambda_2 t)^{-1} \Big|_0^z = 1 - \frac{\lambda_1}{\lambda_1 + \lambda_2 z}$$

for $z \ge 0$, and 0 for z < 0.

- Method of probability density function
 - Theorem. Let $X=(X_1, ..., X_n)$ be continuous random variables with the joint pdf $\bar{f}_{\mathbf{X}}(x_1, ..., x_n)$. Let

$$\underline{\mathbf{Y}} = (Y_1, \ldots, Y_n) = g(\underline{\mathbf{X}}),$$

where g is 1-to-1, so that its inverse exists and is denoted by

$$\mathbf{x} = \underline{\mathbf{g}}^{-1}(\mathbf{y}) = \underline{\mathbf{w}}(\mathbf{y}) = (\underline{\mathbf{w}}_1(\mathbf{y}), \underline{\mathbf{w}}_2(\mathbf{y}), \dots, \underline{\mathbf{w}}_n(\mathbf{y})).$$

Assume w have <u>continuous</u> partial derivatives. Let

$$\underline{J} = \begin{bmatrix}
\frac{\partial w_1(\mathbf{y})}{\partial y_1} & \frac{\partial w_1(\mathbf{y})}{\partial y_2} & \dots & \frac{\partial w_1(\mathbf{y})}{\partial y_n} \\
\frac{\partial w_2(\mathbf{y})}{\partial y_1} & \frac{\partial w_2(\mathbf{y})}{\partial y_2} & \dots & \frac{\partial w_2(\mathbf{y})}{\partial y_n} \\
\vdots & \vdots & & \vdots \\
\frac{\partial w_n(\mathbf{y})}{\partial y_1} & \frac{\partial w_n(\mathbf{y})}{\partial y_2} & \dots & \frac{\partial w_n(\mathbf{y})}{\partial y_n}
\end{bmatrix}_{n \times n}$$

Then
$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(g^{-1}(\mathbf{y})) \times |J|,$$

for $\underline{\mathbf{y}}$ s.t. $\underline{\mathbf{y}} = g(\underline{\mathbf{x}})$ for some $\underline{\mathbf{x}}$, and $\underline{f}_{\underline{\mathbf{Y}}}(\underline{\mathbf{y}}) = 0$, otherwise.

(Q: What is the role of
$$|J|$$
?)
$$X_2 \uparrow \qquad \qquad Y_2 \uparrow \qquad \qquad Y = g(X)$$

$$X_1 \longrightarrow Y_1$$

$$\underline{\underline{Proof.}} \underbrace{F_{\mathbf{Y}}(y_1, \dots, y_n)}_{= \int_{-\infty}^{(x_1, \dots, x_n):} \frac{f_{\mathbf{Y}}(t_1, \dots, t_n)}{f_{\mathbf{X}}(x_1, \dots, x_n)} dt_n \cdots dt_1}_{g_1(x_1, \dots, x_n) \le y_1} \underline{f_{\mathbf{X}}}(x_1, \dots, x_n) dx_n \cdots dx_1.$$

It then follows from an exercise in advanced calculus that

$$\frac{f_{\mathbf{Y}}(y_1,\ldots,y_n)}{=f_{\mathbf{X}}(w_1(\mathbf{y}),\ldots,w_n(\mathbf{y}))\times |J|}$$

Remark. When the dimensionality of \underline{Y} (denoted by \underline{k}) is less than \underline{n} , we can choose another $\underline{n-k}$ transformations \underline{Z} such that

$$(\underline{\mathbf{Y}}, \underline{\mathbf{Z}}) = g(\mathbf{X})$$

satisfy the assumptions in above theorem.

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

By integrating out the last n-k arguments in the joint pdf of (\mathbf{Y}, \mathbf{Z}) , the joint pdf of \mathbf{Y} can be obtained.

■ Example. X_1 and X_2 are random variables with joint pdf $f_{\mathbf{X}}(x_1, x_2)$. Find the distribution of $Y_1 = X_1/(X_1 + X_2)$.

$$\blacksquare$$
 Let $\underline{Y_2} = X_1 + X_2$, then

$$x_1 = y_1 y_2 \equiv w_1(y_1, y_2)$$

 $x_2 = y_2 - y_1 y_2 \equiv w_2(y_1, y_2).$

Since
$$\frac{\partial w_1}{\partial y_1} = y_2$$
, $\frac{\partial w_1}{\partial y_2} = y_1$, $\frac{\partial w_2}{\partial y_1} = -y_2$, $\frac{\partial w_2}{\partial y_2} = 1 - y_1$,

$$J = \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix} = y_2 - y_1 y_2 + y_1 y_2 = y_2$$
, and $J = |y_2|$.

Therefore,
$$f_{\mathbf{Y}}(y_1, y_2) = f_{\mathbf{X}}(\underline{y_1 y_2}, \underline{y_2 - y_1 y_2})|y_2|,$$

and, $\underline{f_{Y_1}(y_1)} = \int_{-\infty}^{\infty} f_{\mathbf{Y}}(y_1, \underline{y_2}) \, \underline{dy_2}$
 $= \int_{-\infty}^{\infty} \underline{f_{\mathbf{X}}(y_1 y_2, y_2 - y_1 y_2)|y_2|} \, \underline{dy_2}.$
 $(= \underline{\int_{-\infty}^{\infty} f_{X_1}(y_1 y_2) f_{X_2}(y_2 - y_1 y_2)|y_2|} \, \underline{dy_2}$
when X_1 and X_2 are independent)

■ Theorem. If X_1 and X_2 are independent, and

$$\underline{X}_{\underline{1}} \sim \underline{\text{Gamma}}(\underline{\alpha}_{\underline{1}}, \underline{\lambda}), \quad \underline{X}_{\underline{2}} \sim \underline{\text{Gamma}}(\underline{\alpha}_{\underline{2}}, \underline{\lambda}),$$

then $\underline{Y}_1 = \underline{X}_1 / (\underline{X}_1 + \underline{X}_2) \sim \underline{\text{Beta}}(\underline{\alpha}_1, \underline{\alpha}_2).$

<u>Proof.</u> For $x_1, x_2 \ge 0$, the joint pdf of **X** is

$$\frac{f_{\mathbf{X}}(x_1, x_2)}{\Gamma(\alpha_1)} = \frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)} x_1^{\alpha_1 - 1} e^{-\lambda x_1} \times \frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)} x_2^{\alpha_2 - 1} e^{-\lambda x_2} \\
= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1} e^{-\lambda(x_1 + x_2)}.$$

So, for $0 \le y_1 \le 1$,

$$\frac{f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{X_1}(y_1 y_2) f_{X_2}(y_2 - y_1 y_2) |y_2| \underline{dy_2}}{= \int_{0}^{\infty} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} (y_1 y_2)^{\alpha_1 - 1} (y_2 - y_1 y_2)^{\alpha_2 - 1} e^{-\lambda y_2} \cdot y_2 \underline{dy_2}}$$

$$= \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} y_1^{\alpha_1 - 1} (1 - y_1)^{\alpha_2 - 1}$$

$$\times \int_{0}^{\infty} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} y_2^{(\alpha_1 + \alpha_2) - 1} e^{-\lambda y_2} \underline{dy_2}$$

$$= \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} y_1^{\alpha_1 - 1} (1 - y_1)^{\alpha_2 - 1}$$

and $f_{Y_1}(y_1) = 0$, otherwise.

NTHU MATH 2810, 2023, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Example. Suppose that X and Y have a uniform distribution over the region $D=\{(x,y): x^2+y^2\leq 1\}$, i.e., their joint pdf is

$$\underline{f_{X,Y}(x,y)} = \underline{\frac{1}{\pi}} \mathbf{1}_D(x,y).$$

Find the joint distribution of (R, Θ) and examine whether R and Θ are independent, where (R, Θ) is the polar coordinate representation of (X, Y), i.e.,

$$X = R\cos(\Theta) \equiv w_1(R, \Theta),$$

 $Y = R\sin(\Theta) \equiv w_2(R, \Theta).$

$$\begin{array}{ll} \text{ since } & \frac{\partial w_1}{\partial r} = \cos(\theta), & \frac{\partial w_1}{\partial \theta} = -r\sin(\theta), \\ & \frac{\partial w_2}{\partial r} = \sin(\theta), & \frac{\partial w_2}{\partial \theta} = r\cos(\theta), \end{array}$$

$$J = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r\cos^2(\theta) + r\sin^2(\theta) = r,$$

and |J| = |r| = r.

□ For $0 \le r \le 1$ and $0 \le \theta \le 2\pi$, the joint pdf of (R, Θ) is

$$\underline{f_{R,\Theta}}(r,\theta) = \underline{f_{X,Y}}(\underline{r\cos(\theta)},\underline{r\sin(\theta)}) \times \underline{|J|} = \underline{\frac{1}{\pi}r}$$

and $f_{R,\Theta}(r,\theta) = 0$, otherwise.

Θ

- \square By the theorem in LNp.7-25, (R, Θ) are independent.
- Example. Let $X_1, ..., X_n$ be independent and identically **distributed** (i.e., i.i.d.) exponential(λ). Let

$$\underline{Y}_{\underline{i}} = \underline{X}_{\underline{1}} + \dots + \underline{X}_{\underline{i}}, i = 1, \dots, n.$$

Find the distribution of $Y=(Y_1, ..., Y_n)$.

[Note. It has been shown that $Y_i \sim \underline{\text{Gamma}}(i, \underline{\lambda}), i=1, ..., n.$]

 \Box The joint pdf of $X_1, ..., X_n$ is

 X_2

 Y_2

$$\frac{f_{\mathbf{X}}(x_1,\dots,x_n) = \prod_{i=1}^n f_{X_i}(x_i)}{= \prod_{i=1}^n \left(\lambda e^{-\lambda x_i}\right) = \lambda^n e^{-\lambda (x_1 + \dots + x_n)}}.$$

for $0 \le x_i \le \infty$, i = 1, ..., n.

Since
$$x_1 = y_1 \equiv w_1(y_1, \dots, y_n),$$

 $x_2 = y_2 - y_1 \equiv w_2(y_1, \dots, y_n),$
...

$$x_n = y_n - y_{n-1} \equiv w_n(y_1, \dots, y_n),$$

we have
$$\frac{\partial w_i}{\partial y_j} = \begin{cases} 1, & \text{if } j = i, \\ -1, & \text{if } j = i-1, \\ 0, & \text{otherwise,} \end{cases}$$

$$J = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{vmatrix} = 1, \text{ and } |J| = 1.$$

and $f_{\mathbf{Y}}(y_1,\ldots,y_n)=0$, otherwise.

 \blacksquare The marginal pdf of \underline{Y}_i is

$$f_{Y_{i}}(y) = \underbrace{\int_{0}^{y} \int_{y_{1}}^{y} \cdots \int_{y_{i-2}}^{y} \int_{y}^{\infty} \int_{y_{i+1}}^{\infty} \cdots \int_{y_{n-1}}^{\infty}}_{\lambda^{n} e^{-\lambda y_{n}} \underbrace{dy_{n} \cdots dy_{y_{i+2}} dy_{i+1}}_{y} \underbrace{dy_{i-1} \cdots dy_{2} dy_{1}}_{dy_{i-1} \cdots dy_{2} dy_{1}}$$

$$= \underbrace{\int_{0}^{y} \int_{y_{1}}^{y} \cdots \int_{y_{i-2}}^{y} \underbrace{\lambda^{i} e^{-\lambda y}}_{(i-1)!} \underbrace{dy_{i-1} \cdots dy_{2} dy_{1}}_{dy_{i-1} \cdots dy_{2} dy_{1}}$$

$$= \lambda^{i} e^{-\lambda y} \underbrace{y^{i-1}}_{(i-1)!},$$

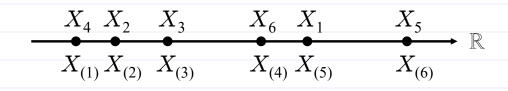
for $y \ge 0$, and $f_{Y_i}(y) = 0$, otherwise.

Method of moment generating function.

- Based on the *uniqueness theorem* of moment generating function to be explained later in Chapter 7
- Especially useful to identify the distribution of sum of independent random variables.

Order Statistics

 $\langle \Box$



▶ Definition. Let $X_1, ..., X_n$ be random variables. We sort the X_i 's and denote by

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

the order statistics. Using the notation,

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

p. 7-44 $\underline{X}_{(i)} = \underline{ith\text{-smallest}}$ value in $X_1, ..., X_n, i=1, 2, ..., n$,

 $X_{(1)} = \underline{\min}(X_1, ..., X_n)$ is the <u>minimum</u>,

 $X_{(n)} = \underline{\max}(X_1, ..., X_n)$ is the <u>maximum</u>,

 $R \equiv X_{(n)} - X_{(1)}$ is called <u>range</u>,

 $S_i \equiv X_{(i)} - X_{(i-1)}, j=2, ..., n$, are called jth spacing.

- Q: What are the joint distributions of various order statistics and their marginal distributions?
- ▶ Definition. $X_1, ..., X_n$ are called <u>i.i.d.</u> (independent, identically **d**istributed) with cdf F/pdf f/pmf p if the random variables $X_1, ..., X_n$ are independent and have a common marginal distribution with cdf F/pdf f/pmf p.
 - Remark. In the discussion about order statistics, we only consider the case that $X_1, ..., X_n$ are i.i.d.
 - \square Note. Although $X_1, ..., X_n$ are independent, their order statistics $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ are <u>not</u> independent in general.

Theorem. Suppose that $X_1, ..., X_n$ are <u>i.i.d.</u> with <u>cdf F</u>.

1. The $\underline{\operatorname{cdf}}$ of $\underline{X}_{(1)}$ is $\underline{1-[1-F(x)]^n}$, and the $\underline{\operatorname{cdf}}$ of $X_{(n)}$ is $\underline{[F(x)]^n}$.

2. If $\underline{\mathbf{X}}$ are <u>continuous</u> and F has a <u>pdf f</u>, then the <u>pdf</u> of $\underline{X}_{(1)}$ is $\underline{nf(x)[1-F(x)]^{n-1}}$, and the \underline{pdf} of $X_{(n)}$ is $\underline{nf(x)[F(x)]^{n-1}}$.

Proof. By the method of cumulative distribution function,

$$\frac{1 - F_{X_{(1)}}(x)}{= P(X_{(1)} > x) = P(X_1 > x, \dots, X_n > x)}$$
$$= P(X_1 > x) \cdots P(X_n > x) = [1 - F(x)]^n.$$

$$F_{X_{(n)}}(x) = P(\underline{X_{(n)}} \le x) = P(\underline{X_1} \le x, \dots, X_n \le x)$$
$$= P(X_1 \le x) \cdots P(X_n \le x) = [F(x)]^n.$$

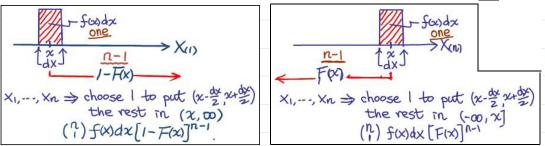
$$\frac{f_{X_{(1)}}(x)}{=n[1-F(x)]^{n-1}} \frac{\frac{d}{dx}F_{X_{(1)}}(x)}{\left(\frac{d}{dx}F(x)\right) = nf(x)[1-F(x)]^{n-1}}.$$

$$\frac{f_{X_{(n)}}(x) = \frac{d}{dx} F_{X_{(n)}}(x)}{= n[F(x)]^{n-1} \left(\frac{d}{dx} F(x)\right) = nf(x)[F(x)]^{n-1}}.$$

NTHU MATH 2810, 2023, Lecture Note made by S.-W. Cheng (NTHU, Taiwan)

• Graphical interpretation for the pdfs of $X_{(1)}$ and $X_{(n)}$.

(1) fx)dx[1-F(x)]"



• Example. n light bulbs are placed in service at time t=0, and allowed to burn continuously. Denote their lifetimes by X_1, \ldots, X_n , and suppose that they are i.i.d. with cdf F.

If burned out bulbs are not replaced, then the room goes dark at time $Y = X_{(n)} = \max(X_1, ..., X_n).$

 \square If n=5 and F is exponential with $\lambda = 1$ per month, then

$$F(x) = 1 - e^{-x}$$
, for $x \ge 0$, and 0, for $x < 0$.

 \blacksquare The cdf of Y is

$$F_Y(y) = (1-e^{-y})^5$$
, for $y \ge 0$, and 0, for $y < 0$, and its pdf is $5(1-e^{-y})^4e^{-y}$, for $y \ge 0$, and 0, for $y < 0$.

- □ The probability that the room is still lighted after two months is $P(Y > 2) = 1 - F_V(2) = 1 - (1 - e^{-2})^5$.
- Theorem. Suppose that $X_1, ..., X_n$ are <u>i.i.d.</u> with pmf p/pdf f. Then, the joint pmf/pdf of $X_{(1)}$, ..., $X_{(n)}$ is

$$\frac{p_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n)}{= \underline{n!} \times \underline{p(x_1) \times \dots \times p(x_n)},$$

or
$$\underline{f_{X_{(1)},\dots,X_{(n)}}}(x_1,\dots,x_n)$$

= $\underline{n!} \times \underline{f(x_1) \times \dots \times f(x_n)},$

for $x_1 \le x_2 \le \dots \le x_n$, and 0 otherwise.

<u>Proof.</u> For $x_1 \leq x_2 \leq \cdots \leq x_n$,

$$p_{X_{(1)},\ldots,X_{(n)}}(x_1,\ldots,x_n)$$

$$\frac{p_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n)}{= P(X_{(1)} = x_1,\dots,X_{(n)} = x_n)}$$

$$= \sum_{\substack{(i_1,\dots,i_n):\\ \text{permutations of}\\ (1,\dots,n)}} P(X_1 = x_{i_1},\dots,X_n = x_{i_n})$$

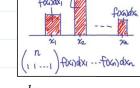
$$= \sum_{\substack{(i_1,\dots,i_n): \\ \text{permutations of} \\ (1,\dots,n)}} \underline{p(x_1) \times \dots \times p(x_n)}$$

$$= \underline{n!} \times p(x_1) \times \cdots \times p(x_n).$$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

$$P(x_1 - \frac{dx_1}{dx_1} < X_1) < x_1 + \frac{dx_1}{dx_1}$$

$$\frac{f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n)}{\approx P\left(\underline{x_1 - \frac{dx_1}{2}} < X_{(1)} < x_1 + \frac{dx_1}{2},\dots, \frac{dx_n}{2} < X_{(n)} < x_n + \frac{dx_n}{2}\right)}$$



$$= \sum_{\substack{(i_1, \dots, i_n): \\ \text{permutations of} \\ (1, \dots, n)}} P\left(\underline{x_{i_1} - \frac{dx_{i_1}}{2} < X_1 < x_{i_1} + \frac{dx_{i_1}}{2}, \dots, \atop x_{i_n} - \frac{dx_{i_n}}{2} < X_n < x_{i_n} + \frac{dx_{i_n}}{2}}\right)$$

$$\approx \sum_{\substack{(i_1,\dots,i_n):\\ \text{permutations of} \\ (1,\dots,n)}} \frac{f(x_1) \times \dots \times f(x_n)}{dx_1 \cdots dx_n}$$

$$= \underline{n!} \times f(x_1) \times \cdots \times f(x_n) \ dx_1 \cdots dx_n.$$

• Q: Examine whether $X_{(1)}$, ..., $X_{(n)}$ are independent using the Theorem in LNp.7-25.

- Theorem. If $X_1, ..., X_n$ are <u>i.i.d.</u> with <u>cdf F</u> and <u>pdf f</u>, then
 - 1. The <u>pdf</u> of the $\underline{k^{th}}$ order statistic $\underline{X}_{(k)}$ is

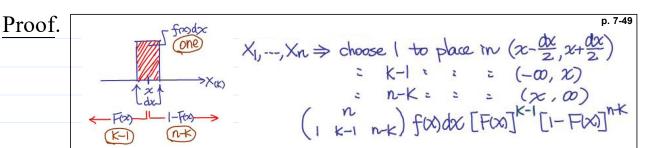
$$f_{X_{(k)}}(x)$$

$$= {n \choose 1, k-1, n-k} \underline{f(x)} \underline{F(x)}^{k-1} [\underline{1 - F(x)}]^{n-k}.$$

2. The $\underline{\operatorname{cdf}}$ of $X_{(k)}$ is

$$F_{X_{(k)}}(x) = \sum_{m=k}^{n} {n \choose m} [F(x)]^m [1 - F(x)]^{n-m}.$$

p. 7-48



$$F_{X_{(k)}}(x) = P(\underline{X_{(k)} \le x})$$

 $= P(\text{at least } k \text{ of the } X_i \text{'s are } \leq x)$

$$=\sum_{m=k}^{n} P(\underbrace{\text{exact } m} \text{ of the } \underline{X_i\text{'s}} \text{ are } \underline{\leq x})$$

$$= \overline{\sum_{m=k}^{n} \binom{n}{m} \left[F(x) \right]^{m} \left[1 - F(x) \right]^{n-m}}$$

Theorem. If $X_1, ..., X_n$ are i.i.d. with cdf F and pdf f, then

1. The joint pdf of $X_{(1)}$ and $X_{(n)}$ is

$$\underline{f_{X_{(1)},X_{(n)}}(s,t)} = \underline{n(n-1)}\underline{f(s)}\underline{f(t)}[F(t) - F(s)]^{n-2},$$

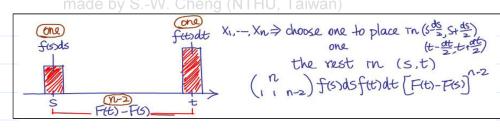
for s < t, and 0 otherwise.

2. The <u>pdf</u> of the <u>range</u> $R = X_{(n)} - X_{(1)}$ is

$$\underline{f_R(r)} = \int_{-\infty}^{\infty} \underline{f_{X_{(1)},X_{(n)}}(u,u+r)} \, du,$$

for $r \ge 0$, and 0 otherwise.

NTHU MATH 2810, 2023, Lecture Notes



p. 7-50

Theorem. If X_1, \ldots, X_n are i.i.d. with $\underline{\operatorname{cdf}} F$ and $\underline{\operatorname{pdf}} f$, then

1. The joint pdf of $X_{(i)}$ and $X_{(j)}$, where $1 \le i \le j \le n$, is

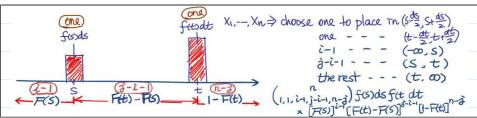
$$\frac{f_{X_{(i)},X_{(j)}}(s,t)}{\sum_{s=0}^{n!} \frac{n!}{(i-1)!(j-i-1)!(n-j)!} f(s)f(t)} \times \frac{f(s)f(t)}{\sum_{s=0}^{n!} [F(s)]^{i-1} [F(t)-F(s)]^{j-i-1}} [1-F(t)]^{n-j},$$

for $s \le t$, and 0 otherwise.

2. The <u>pdf</u> of the <u>jth spacing</u> $S_j = X_{(j)} - X_{(j-1)}$ is

$$f_{S_j}(s) = \int_{-\infty}^{\infty} f_{X_{(j-1)}, X_{(j)}}(u, u + s) du,$$

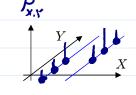
for $s \ge 0$, and zero otherwise.



Reading: textbook, Sec 6.3, 6.6, 6.7

Conditional Distribution

• <u>Definition</u>. Let $\underline{\mathbf{X}}$ ($\in \mathbb{R}^n$) and $\underline{\mathbf{Y}}$ ($\in \mathbb{R}^m$) be <u>discrete</u> random vectors and (\mathbf{X} , \mathbf{Y}) have a joint pmf $\underline{p}_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$, then the <u>conditional joint pmf</u> of $\underline{\mathbf{Y}}$ given $\mathbf{X} = \mathbf{x}$ is defined as



$$p_{\underline{\mathbf{Y}}|\mathbf{X}}(\underline{\mathbf{y}}|\mathbf{x}) \equiv P\left(\{\underline{\mathbf{Y}} = \underline{\mathbf{y}}\} | \{\underline{\mathbf{X}} = \mathbf{x}\}\right) = \frac{P\left(\{\mathbf{X} = \mathbf{x}, \mathbf{Y} = \underline{\mathbf{y}}\}\right)}{P\left(\{\mathbf{X} = \mathbf{x}\}\right)}$$
$$= \frac{p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\underline{\mathbf{y}})}{p_{\mathbf{X}}(\mathbf{x})} = \frac{\text{joint}}{\text{marginal}}$$

if $p_{\mathbf{X}}(\mathbf{x}) > 0$. The probability is <u>defined</u> to be <u>zero</u> if $p_{\mathbf{X}}(\mathbf{x}) = 0$.

- Some Notes.
 - For each fixed \mathbf{x} , $\underline{p}_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ is a joint pmf for \mathbf{y} , since

$$\underline{\sum_{\mathbf{y}}} \ p_{\underline{\mathbf{Y}} \mid \underline{\mathbf{X}}}(\underline{\mathbf{y}} \mid \mathbf{x}) = \underline{\frac{1}{p_{\mathbf{X}}(\mathbf{x})}} \underline{\sum_{\mathbf{y}}} \ p_{\underline{\mathbf{X}}, \underline{\mathbf{Y}}}(\mathbf{x}, \underline{\mathbf{y}}) = \underline{\frac{1}{p_{\mathbf{X}}(\mathbf{x})}} \times \underline{p_{\mathbf{X}}(\mathbf{x})} = \underline{1}.$$

■ For an event B of Y, the probability that $Y \in B$ given X = x is

$$P(\underline{\mathbf{Y}} \in B | \underline{\mathbf{X}} = \underline{\mathbf{x}}) = \underline{\sum_{\mathbf{u} \in B} p_{\underline{\mathbf{Y}} | \underline{\mathbf{X}}} (\underline{\mathbf{u}} | \underline{\mathbf{x}}).$$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

■ The <u>conditional joint cdf</u> of \underline{Y} given $\underline{X} = \underline{x}$ can be <u>similarly</u> defined from the <u>conditional joint pmf</u> $p_{Y|X}(y|x)$, i.e.,

$$F_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{y}}|\mathbf{x}) = P(\underline{\mathbf{Y}} \leq \underline{\mathbf{y}}|\underline{\mathbf{X}} = \underline{\mathbf{x}}) = \sum_{\mathbf{u} \leq \underline{\mathbf{y}}} p_{\underline{\mathbf{Y}}|\underline{\mathbf{X}}}(\underline{\mathbf{u}}|\mathbf{x}).$$

Theorem. Let $X_1, ..., X_m$ be independent and

$$\underline{X}_i \sim \underline{\text{Poisson}}(\underline{\lambda}_i), i=1, ..., \underline{m}.$$

Let $\underline{Y}=X_1+\cdots+X_m$, then

$$(X_1, ..., X_m | \underline{Y=n}) \sim \underline{\text{Multinomial}(\underline{n}, \underline{m}, \underline{p_1, ..., p_m})},$$

where $\underline{p_i} = \lambda_i / (\lambda_1 + \cdots + \lambda_m)$ for $i=1, \ldots, m$.

<u>Proof.</u> The joint pmf of $(X_1, ..., X_m, Y)$ is

$$\frac{p_{\mathbf{X},Y}(x_1,\ldots,x_m,n) = \overline{P(\{X_1 = x_1,\ldots,X_m = x_m\} \cap \{Y = n\})}}{= \begin{cases} P(X_1 = x_1,\ldots,X_m = x_m), & \text{if } \underline{x_1 + \cdots + x_m = n}, \\ 0, & \text{if } \underline{x_1 + \cdots + x_m \neq n}. \end{cases}}$$

Furthermore, the <u>distribution</u> of \underline{Y} is <u>Poisson($\lambda_1 + \cdots + \lambda_m$)</u>, i.e.,

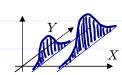
$$p_Y(n) = P(Y = n) = \frac{e^{-(\lambda_1 + \dots + \lambda_m)}(\lambda_1 + \dots + \lambda_m)^n}{n!}.$$

Therefore, for $\underline{\mathbf{x}} = (x_1, ..., x_m)$ wheres $x_i \in \{0, 1, 2, ...\}, i = 1, ..., m$, and $\underline{x_1} + \cdots + \underline{x_m} = n$, the <u>conditional joint pmf</u> of $\underline{\mathbf{X}}$ given $\underline{Y} = n$ is

$$\underline{p_{\mathbf{X}|Y}(\mathbf{x}|n)} = \underline{\frac{p_{\mathbf{X},Y}(x_1,\dots,x_m,n)}{p_Y(n)}} = \underline{\frac{\prod_{i=1}^m \frac{e^{-\lambda_i \lambda_i^{x_i}}}{x_i!}}{e^{-(\lambda_1 + \dots + \lambda_m)(\lambda_1 + \dots + \lambda_m)n}}}$$

$$= \underline{\frac{n!}{x_1! \times \dots \times x_m!} \times \left(\frac{\lambda_1}{\lambda_1 + \dots + \lambda_m}\right)^{x_1} \times \dots \times \left(\frac{\lambda_m}{\lambda_1 + \dots + \lambda_m}\right)^{x_m}}.$$

• Definition. Let $\underline{\mathbf{X}} \ (\in \mathbb{R}^n)$ and $\underline{\mathbf{Y}} \ (\in \mathbb{R}^m)$ be continuous random vectors and (\mathbf{X}, \mathbf{Y}) have a joint pdf $\underline{f}_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then the conditional joint pdf of $\underline{\mathbf{Y}}$ given $\underline{\mathbf{X}} = \underline{\mathbf{x}}$ is defined as



$$f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \equiv \frac{f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})} = \frac{\text{joint}}{\text{marginal}},$$

if $f_{\mathbf{X}}(\mathbf{x}) > 0$, and 0 otherwise.

NTHU MATH 2810, 2023, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Some Notes.

p. 7-54

- P(X=x)=0 for a continuous random vector X.
- The justification of $\underline{f}_{Y|X}(y|x)$ comes from

$$P(\mathbf{Y} \leq \mathbf{y} | \mathbf{x} - (\Delta \mathbf{x}/2) < \mathbf{X} \leq \mathbf{x} + (\Delta \mathbf{x}/2))$$

$$= \frac{\int_{-\infty}^{\mathbf{y}} \int_{\mathbf{x} - (\Delta \mathbf{x}/2)}^{\mathbf{x} + (\Delta \mathbf{x}/2)} f_{\mathbf{x}, \mathbf{y}}(\mathbf{u}, \mathbf{v}) d\mathbf{u} d\mathbf{v}}{\int_{\mathbf{x} - (\Delta \mathbf{x}/2)}^{\mathbf{x} + (\Delta \mathbf{x}/2)} f_{\mathbf{x}}(\mathbf{t}) d\mathbf{t}}$$

$$\approx \frac{\int_{-\infty}^{\mathbf{y}} f_{\mathbf{x}, \mathbf{y}}(\mathbf{x}, \mathbf{v}) |\Delta \mathbf{x}| d\mathbf{v}}{f_{\mathbf{x}}(\mathbf{x}) |\Delta \mathbf{x}|} = \int_{-\infty}^{\mathbf{y}} \frac{f_{\mathbf{x}, \mathbf{y}}(\mathbf{x}, \mathbf{v})}{f_{\mathbf{x}}(\mathbf{x})} d\mathbf{v}$$

■ For each fixed \underline{x} , $\underline{f}_{Y|X}(\underline{y}|\underline{x})$ is a joint pdf for \underline{y} , since

$$\underline{\int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \ d\mathbf{y} = \frac{1}{f_{\mathbf{X}}(\mathbf{x})} \underline{\int_{-\infty}^{\infty} f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) \ d\mathbf{y} = \frac{1}{f_{\mathbf{X}}(\mathbf{x})} \times f_{\mathbf{X}}(\mathbf{x}) = 1.}$$

 \blacksquare For an event B of Y, we can write

$$P(\underline{\mathbf{Y}} \in B | \underline{\mathbf{X}} = \underline{\mathbf{x}}) = \int_B f_{\mathbf{Y}|\mathbf{X}}(\underline{\mathbf{y}}|\underline{\mathbf{x}}) d\underline{\mathbf{y}}.$$

• The <u>conditional joint cdf</u> of \underline{Y} given $\underline{X} = \underline{x}$ can be <u>similarly</u> defined from the <u>conditional joint pdf</u> $f_{Y|X}(\underline{y}|\underline{x})$, i.e.,

$$F_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = P(\underline{\mathbf{Y}} \leq \underline{\mathbf{y}}|\mathbf{X} = \mathbf{x}) = \int_{-\infty}^{\mathbf{y}} f_{\underline{\mathbf{Y}}|\mathbf{X}}(\underline{\mathbf{t}}|\mathbf{x}) d\mathbf{t}.$$

 \blacktriangleright Example. If X and Y have a joint pdf

for
$$0 \le x$$
, $y < \infty$, then $f(x,y) = \frac{2}{(1+x+y)^3}$,

$$f_X(x) = \int_0^\infty f(x,y) \ dy = -\frac{1}{(1+x+y)^2} \Big|_0^\infty = \frac{1}{(1+x)^2},$$
 for $0 \le x < \infty$. So,
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{2(1+x)^2}{(1+x+y)^3},$$

and,
$$P(\underline{Y} > c | X = x) = \int_{c}^{\infty} \frac{2(1+x)^{2}}{(1+x+y)^{3}} dy$$

= $-\frac{(1+x)^{2}}{(1+x+y)^{2}} \Big|_{u=c}^{\infty} = \frac{(1+x)^{2}}{(1+x+c)^{2}}.$

- <u>Mixed</u> Joint Distribution: Definition of <u>conditional distribution</u> can be <u>similarly generalized</u> to the case in which <u>some</u> random variables are discrete and the others continuous (see a later example).
- Theorem (Multiplication Law). Let $\underline{\mathbf{X}}$ and $\underline{\mathbf{Y}}$ be random vectors and $(\underline{\mathbf{X}}, \underline{\mathbf{Y}})$ have a joint pdf $\underline{f}_{\underline{\mathbf{X}},\underline{\mathbf{Y}}}(\mathbf{x}, \underline{\mathbf{y}})/\mathrm{pmf} \underline{p}_{\underline{\mathbf{X}},\underline{\mathbf{Y}}}(\mathbf{x}, \underline{\mathbf{y}})$, then $\underline{p}_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\underline{\mathbf{y}}) = \underline{p}_{\mathbf{Y}|\mathbf{X}}(\underline{\mathbf{y}}|\underline{\mathbf{x}}) \times \underline{p}_{\mathbf{X}}(\underline{\mathbf{x}}), \text{ or } \underline{f}_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\underline{\mathbf{y}}) = \underline{f}_{\mathbf{Y}|\mathbf{X}}(\underline{\mathbf{y}}|\underline{\mathbf{x}}) \times \underline{f}_{\mathbf{X}}(\underline{\mathbf{x}}).$

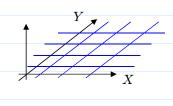
NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Proof. By the definition of conditional distribution.

p. 7-56

• Theorem (Law of Total Probability). Let $\underline{\mathbf{X}}$ and $\underline{\mathbf{Y}}$ be random vectors and $(\underline{\mathbf{X}}, \underline{\mathbf{Y}})$ have a joint pdf $\underline{f}_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \underline{\mathbf{y}})/\underline{\mathrm{pmf}}$ $\underline{p}_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \underline{\mathbf{y}})$, then

Proof. By the <u>definition</u> of <u>marginal</u> distribution and the multiplication law.



• Theorem (Bayes Theorem). Let \underline{X} and \underline{Y} be random vectors and $(\underline{X}, \underline{Y})$ have a joint pdf $\underline{f}_{X,Y}(x, y)/pmf$ $\underline{p}_{X,Y}(x, y)$, then

$$\underline{p_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y})} = \frac{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x})}{\sum_{\mathbf{x}=-\infty}^{\infty} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x})}, \text{ or }
\underline{f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y})} = \frac{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x})}{\int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}}.$$

<u>Proof.</u> By the <u>definition</u> of <u>conditional</u> distribution, <u>multiplication law</u>, and the <u>law</u> of total probability.

Example.

• Suppose that $X \sim \text{Uniform}(0, 1)$, and

$$(\underline{Y}_1, ..., \underline{Y}_n | \underline{X} = \underline{x})$$
 are i.i.d. with Bernoulli(x), i.e.,

$$p_{\mathbf{Y}|X}(y_1,\ldots,y_n|x) = x^{y_1+\cdots+y_n}(1-x)^{n-(y_1+\cdots+y_n)},$$

for $y_1, ..., y_n \in \{0, 1\}$.

■ By the multiplication law, for $y_1, ..., y_n \in \{0, 1\}$ and $0 \le x \le 1$, $p_{\mathbf{Y},X}(y_1,\ldots,y_n,x) = x^{y_1+\cdots+y_n}(1-x)^{n-(y_1+\cdots+y_n)}$

- Suppose that we observed $Y_1=1, ..., Y_n=1$.
- By the law of total probability,

$$P(\underline{Y_1 = 1, \dots, Y_n = 1}) = \underline{p_Y}(\underline{1, \dots, 1})$$

$$= \int_0^1 \underline{p_{Y|X}(1, \dots, 1|x)} f_X(x) dx$$

$$= \int_0^1 x^n dx = \frac{1}{n+1} x^{n+1} \Big|_0^1 = \frac{1}{n+1}.$$

NTHU MATH 2810, 2023, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

And, by Bayes' Theorem,

$$\frac{f_{X|\mathbf{Y}}(x|Y_1=1,\ldots,Y_n=1)}{p_{\mathbf{Y}|X}(1,\ldots,1|x)f_X(x)} = \underline{(n+1)x^n}.$$

for $\underline{0 \le x \le 1}$, i.e., $(\underline{X}|\underline{Y_1}=1, ..., \underline{Y_n}=1) \sim \underline{\text{Beta}}(\underline{n+1}, \underline{1})$.

(cf., <u>marginal</u> distribution of $X \sim \text{<u>Uniform}(0, 1) = \text{Beta}(1, 1)$.)</u>

• If there were an $(n+1)^{st}$ Bernoulli trial Y_{n+1} ,

$$\frac{P(Y_{n+1}=1|Y_1=1,\ldots,Y_n=1)}{P(Y_1=1,\ldots,Y_n=1)} = \frac{1/(n+2)}{1/(n+1)} = \frac{n+1}{n+2}.$$

- (exercise) In general, it can be shown that $(X|Y_1 = y_1, ..., Y_n = y_n) \sim Beta((y_1 + ... + y_n) + 1, n - (y_1 + ... + y_n) + 1).$
- Theorem (Conditional Distribution & Independent). Let X and Y be random vectors and (\mathbf{X}, \mathbf{Y}) have a joint pdf $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})/\text{pmf} p_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})$. Then, X and Y are independent, i.e.,

$$p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = p_{\mathbf{X}}(\mathbf{x}) \times p_{\mathbf{Y}}(\mathbf{y}), \text{ or } f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \times f_{\mathbf{Y}}(\mathbf{y}),$$

if and only if

$$\frac{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})}{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})} = \frac{p_{\mathbf{Y}}(\mathbf{y})}{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})}, \text{ or}$$

Proof. By the definition of conditional distribution.

➤ Intuition.

- The 2 graphs about the joint pmf/pdf of independent r.v.'s in LNp.7-27
- $p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ or $f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ offers information about the distribution of \mathbf{Y} when $\mathbf{X}=\mathbf{x}$.

 $\underline{p_{\mathbf{Y}}(\mathbf{y})}$ or $f_{\mathbf{Y}}(\mathbf{y})$ offers information about the distribution of \mathbf{Y} when \mathbf{X} not observed.

* Reading: textbook, Sec 6.4, 6.5

NTHU MATH 2810, 2023, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan