Jointly Distributed Random Variables

- Recall. In Chapters $\underline{4}$ and $\underline{5}$, focus on univariate random variable.
$>$ However, often a single experiment will have more than one random variables which are of interest.

Definition. Given a sample space $\underline{\Omega}$ and a probability measure \underline{P} defined on the subsets of Ω, random variables

$$
\underline{X_{1}}, X_{2}, \ldots, X_{\underline{n}}: \underline{\Omega} \rightarrow \underline{\mathbb{R}}
$$

are said to be jointly distributed.

- We can regard n jointly distributed r.v.'s as a random vector

$$
\underline{\mathbf{X}=\left(X_{1}, \ldots, X_{\underline{n}}\right): \underline{\Omega} \rightarrow \underline{\mathbb{R}^{n}} ~}
$$

- \mathbf{Q} : For $A \subset \mathbb{R}^{n}$, how to define the probability of $\{\mathbf{X} \in A\}$ from P ? ${ }^{\text {p.7.2 }}$

$>$ For $A \subset \mathbb{R}^{n}$,
$\underline{P_{X_{1}, \ldots, X_{n}}}$ (A)

$$
\left.=\underline{P}\left(\underline{\{\bar{\omega}} \in \Omega \mid\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right) \in A\right\}\right)
$$

$>$ For $\underline{A}_{i} \subseteq \mathbb{R}, i=1, \ldots, n$,

$$
\begin{aligned}
& \underline{P_{X_{1}, \ldots, X_{n}}}\left(\underline{X_{1} \in A_{1}, \cdots, X_{n} \in A_{n}}\right) \\
& =\underline{P}\left(\underline{\left\{\omega \in \Omega \mid X_{1}(\omega) \in A_{1}\right\} \cap \cdots \cap\left\{\omega \in \Omega \mid X_{n}(\omega) \in A_{n}\right\}}\right)
\end{aligned}
$$

 subsets of \mathbb{R}^{n}) is called the joint distribution of X_{1}, \ldots,
\underline{X}_{n}. The probability measure of $\underline{X}_{i}\left(\underline{P_{X_{i}}}\right.$, defined on subsets of \mathbb{R}) is called the marginal distribution of \underline{X}_{i}.

- Q: Why need joint distribution? Why are marginal distributions not enough?

Example (Coin Tossing, Toss a fair coin
 3 times, LNp.5-3).

2: \# of head on 1	X_{1} : total \# of heads			
	$1 / 8[1 / 8)$	$\mathbf{1}(3 / 8)$	$\mathbf{2}(3 / 8)$	$\mathbf{3}(1 / 8)$
$\mathbf{1}(1 / 2)$	$0[1 / 16]$	$2 / 8[3 / 16]$	$1 / 8[3 / 16]$	$0[1 / 16]$

- blue numbers: joint distribution of X_{1} and X_{2}
- (black numbers): marginal distributions
- [red numbers]: joint distribution of another $\left(\underline{X}_{1}{ }^{\prime}, X_{2}{ }^{\prime}\right)$
- Some findings:
\square When joint distribution is given, its corresponding marginal distributions are known, e.g.,
- $P\left(X_{1}=i\right)=P\left(X_{1}=i, X_{2}=0\right)+P\left(X_{1}=i, X_{2}=1\right), i=0,1,2,3$.
$\square\left(\underline{X_{1}}, X_{2}\right)$ and $\left(\underline{X}_{1}^{\prime} \underline{\underline{D}^{\prime}} \underline{X}_{2}^{\prime} \underline{\prime}\right)$ have identical marginal distributions but different joint distributions.
- When the marginal distributions are given, the corresponding joint distribution is still unknown. There could be many possible different joint distributions. (A special case: X_{1}, \ldots, X_{n} are independent.)
口 Joint distribution offers more information, e.g.,
- When not observing X_{1}, the distribution of X_{2} is: $P\left(X_{2}=0\right)=1 / 2, P\left(X_{2}=1\right)=1 / 2 \Rightarrow$ marginal distribution
- When \underline{X}_{1} was observed, say $\underline{X}_{1}=1$, the distribution of X_{2} is: $\bar{P}\left(X_{2}=0 \mid X_{1}=1\right)=(2 / 8) /(3 / 8)=2 / 3$ and $P\left(X_{2}=1 \mid X_{1}=1\right)=(1 / 8) /(3 / 8)=1 / 3 \Rightarrow$ the calculation requires the knowing of joint distribution
- We can characterize the joint distribution of $\underline{\mathbf{X}}$ in terms of its 1. Joint Cumulative Distribution Function (joint cdf)
2.Joint Probability Mass (Density) Function (joint pmf or pdf)
3.Joint Moment Generating Function (joint mgf, Chapter 7)

Joint Cumulative Distribution Function

- Definition. The joint cdf of $\underline{\boldsymbol{X}}=\left(X_{1}, \ldots, X_{n}\right)$ is defined as $\left(x_{1}, x_{2}\right) \quad F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)$.
- Theorem. Suppose that $\underline{F}_{\mathbf{X}}$ is a joint cdf. Then,
(i) $0 \leq F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \leq 1$, for $-\infty<x_{i}<\infty, i=1, \ldots, n$.
(ii) $\lim _{x_{1}, x_{2}, \cdots, x_{n} \rightarrow \infty} F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=1$

Proof. Let $z_{i m} \uparrow \infty, 1 \leq i \leq n$.
Let $A_{m}=\left(-\infty, z_{1 m}\right] \times \cdots \times\left(-\infty, z_{n m}\right]$.
Then, $A_{m} \uparrow \mathbb{R}^{n} \Rightarrow \lim P\left(A_{m}\right)=P\left(\mathbb{R}^{n}\right)=1$.

(iii) For any $i \in\{1, \ldots, n\}$,

$$
\lim _{x_{i} \rightarrow-\infty} F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\underline{0} .
$$

Proof. Let $z_{i m} \downarrow-\infty$, for some i.
Let $A_{m}=\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, z_{i m}\right] \times \cdots \times\left(-\infty, x_{n}\right]$
Then, $A_{m} \downarrow \emptyset \Rightarrow \lim P\left(A_{m}\right)=P(\emptyset)=0$.

(iv) $\underline{F}_{\mathbf{X}}$ is continuous from the right with respect to each of the coordinates, or any subset of them jointly, i.e., if $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$ and $\underline{\mathbf{z}}_{m}=\left(z_{1 m}, \ldots, z_{n m}\right)$
such that $\underline{\mathbf{z}}_{m} \downarrow \mathbf{x}$, then

$$
\underline{F_{\mathbf{X}}\left(\mathbf{z}_{m}\right) \downarrow F_{\mathbf{X}}(\mathbf{x})} .
$$

(v) If $x_{i} \leq x_{i}^{\prime}, i=1, \ldots, n$, then
${ }^{\left(x_{1}^{\prime},,_{2}^{\prime}\right)} F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \leq F_{\mathbf{X}}\left(t_{1}, \ldots, t_{n}\right) \leq F_{\mathbf{X}}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$.
$\xrightarrow{X_{1}}$ where $\underline{t_{i} \in\left\{x_{i}, x_{i}^{\prime}\right\}}, i=1,2, \ldots, n$. When $n=2$, we have

$$
F_{X_{1}, X_{2}}\left(\underline{\left(\underline{x_{1}}, x_{2}\right.}\right) \leq\left\{\begin{array}{l}
F_{X_{1}, X_{2}}\left(\underline{x_{1}, x_{2}^{\prime}}\right) \\
F_{X_{1}, X_{2}}\left(\underline{\left(x_{1}^{\prime}, x_{2}\right.}\right)
\end{array}\right\} \leq F_{X_{1}, X_{2}}\left(\underline{x_{1}^{\prime}, x_{2}^{\prime}}\right) .
$$

(vi) If $\underline{x_{1} \leq x_{1}^{\prime}}$ and $\underline{x_{2} \leq x_{2}^{\prime}}$, then

$$
\begin{aligned}
& P\left(\underline{\left.x_{1}<X_{1} \leq x_{1}^{\prime}, x_{2}<X_{2} \leq x_{2}^{\prime}\right)}\right. \\
& =F_{X_{1}, X_{2}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-F_{X_{1}, X_{2}}\left(x_{1}, x_{2}^{\prime}\right) \\
& \\
& \quad-F_{X_{1}, X_{2}}\left(x_{1}^{\prime}, x_{2}\right)+F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$ In particular, let $x_{1}^{\prime} \uparrow \infty$ and $x_{2}^{\prime} \uparrow \infty$, we get

$$
\begin{aligned}
& P\left(x_{1}<X_{1}<\infty, x_{2}<X_{2}<\infty\right) \\
& \quad=1-\underline{F_{X_{1}}}\left(x_{1}\right)-\underline{F_{X_{2}}}\left(x_{2}\right)+F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

(vii) The joint cdf of $\underline{X}_{1}, \ldots, X_{k}, k<n$, is

$$
\begin{aligned}
& \frac{F_{X_{1}, \ldots, X_{k}}}{=P\left(\underline{x_{1}, \ldots, x_{k}}\right)=P\left(\underline{X_{1} \leq x_{1}, \ldots, X_{k} \leq x_{k}}\right)} \\
& =P\left(X_{1} \leq x_{1}, \ldots, X_{k} \leq x_{k}\right. \\
& \\
& \left.-\infty<X_{k+1}<\infty, \ldots,-\infty<X_{n}<\infty\right)
\end{aligned}
$$

In particular, the marginal cdf of $\underline{X}_{\underline{1}}$ is

$$
\begin{aligned}
& \frac{F_{X_{1}}(x)}{=}=P\left(X_{1} \leq x\right) \\
& \lim _{x_{2}, x_{3}, \cdots, x_{n} \rightarrow \infty} F_{\mathbf{X}}\left(\underline{x}, \underline{x_{2}, x_{3}, \ldots, x_{n}}\right) .
\end{aligned}
$$

- Theorem. A function $\underline{F}_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)$ can be a joint cdf if $\underline{F}_{\mathbf{X}}$ satisfies (i)-(v) in the previous theorem.

$>$ Joint Probability Mass Function

- Definition. Suppose that $\underline{X}_{1}, \ldots, X_{n}$ are discrete random variables. The joint pmf of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is defined as

$$
\underline{p_{\mathbf{X}}}\left(\underline{x_{1}, \ldots, x_{n}}\right)=P\left(\underline{X_{1}=x_{1}, \ldots, X_{n}=x_{n}}\right) .
$$

- Theorem. Suppose that $\underline{p}_{\mathbf{x}}$ is a joint pmf. Then,
(a) $p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \geq 0$, for $-\infty<x_{i}<\infty, i=1, \ldots, n$.
(b) There exists a finite or countably infinite $\operatorname{set} \underline{\mathcal{X}} \subset \underline{\mathbb{R}^{n}}$ such that $p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=0$, for $\left(x_{1}, \ldots, x_{n}\right) \notin \mathcal{X}$.
(c) $\sum_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{X}}(\mathbf{x})=\underline{1}$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.
(d) For $\underline{A \subset \mathbb{R}^{n}}, P(\underline{\mathbf{X} \in A})=\sum_{\underline{\mathbf{x} \in A \cap \mathcal{X}}} p_{\mathbf{X}}(\mathbf{x})$.

(e) The joint pmf of $X_{1}, \ldots, X_{k}, k<n$, is

$$
p_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)
$$

$$
=P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right.
$$

marginal pmf

$$
\frac{\left.-\infty<X_{k+1}<\infty, \ldots,-\infty<X_{n}<\infty\right)}{\sum p_{\mathbf{X}}\left(\underline{x_{1}, \ldots, x_{k}}, \underline{x_{k+1}}, \ldots, x_{n}\right)}
$$

In particular, the marginal pmf of X_{1} is

$$
\frac{p_{X_{1}}(x)}{=}=P\left(X_{\substack{ \\\left(x, x_{2}, \ldots, x_{n}\right) \in \mathcal{X}}} \sum_{\substack{ \\-\infty<x_{2}<\infty, \ldots,-\infty<x_{n}<\infty}} \underline{x}, \underline{x_{2}, x_{3}, \ldots, x_{n}}\right)
$$

- Theorem. A function $\underline{p}_{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)$ can be a joint pmf if $\underline{p}_{\mathbf{x}}$ satisfies (a)-(c) in the previous theorem.
- Theorem. If $\underline{F}_{\mathbf{X}}$ and $\underline{p}_{\mathbf{X}}$ are the joint cdf and joint pmf of $\underline{\mathbf{X}}$,
(x,

$$
\underline{F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}=\sum_{\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{X}} \underline{p_{\mathbf{X}}\left(t_{1}, \ldots, t_{n}\right)}
$$

$\underline{t_{1} \leq x_{1}, \ldots, t_{n} \leq x_{n}}$
To derive $\underline{p}_{\mathbf{X}}$ from $\underline{F}_{\mathbf{X}}$, take $\underline{n=2}$ to illustrate:

$$
\left.\begin{array}{c}
p_{\mathbf{X}}\left(x_{1}, x_{2}\right)=\lim _{m \rightarrow \infty} P\left(\underline{\left(x_{1}-\frac{1}{m}<X_{1}\right.} \leq \underline{x_{1}+\frac{1}{m}}, x_{2}-\frac{1}{m}<X_{2} \leq x_{2}+\frac{1}{m}\right.
\end{array}\right)
$$

$>$ Joint Probability Density Function

- Definition. A function $\underline{f}_{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)$ can be a joint pdf if
(1) $f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \geq 0$, for $-\infty<x_{i}<\infty, i=1, \ldots, n$.
(2) $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}=\underline{1}$.

Definition. Suppose that $\underline{X}_{1}, \ldots, X_{n}$ are continuous r.v.'s. The joint pdf of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a function $\underline{f}_{\mathbf{X}}\left(\underline{x}_{1}, \ldots, x_{n}\right)$ satisfying (1) and (2) above, and for any event $A \subset \mathbb{R}^{n}$,

$$
P(\underline{\mathbf{X} \in A})=\int \cdots \int_{\underline{A}} f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n} .
$$

- Theorem. Suppose that $\underline{f}_{\mathbf{X}}$ is the joint pdf of $\underline{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$. Then, the joint pdf of $\underline{X}_{1}, \ldots, X_{k}, \underline{k<n}$, is

$$
\begin{aligned}
& \frac{f_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)}{=} \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}
\end{aligned} f_{\mathbf{X}}\left(\underline{x_{1}, \ldots, x_{k}}, \underline{x_{k+1}, \ldots, x_{n}}\right) \underline{d x_{k+1} \cdots d x_{n}} .
$$

In particular, the marginal pdf of \underline{X}_{1} is

$$
\underline{f_{X_{1}}(x)}=\underline{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}} f_{\mathbf{X}}\left(\underline{x}, x_{2}, \ldots, x_{n}\right) d x_{2} \cdots d x_{n} .
$$

- Theorem. If $\underline{F}_{\mathbf{X}}$ and $\underline{f}_{\mathbf{X}}$ are the joint cdf and joint pdf of $\underline{\mathbf{X}}$, then

$$
\begin{aligned}
& \quad \frac{F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}{=\int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}}} \frac{f_{\mathbf{X}}\left(t_{1}, \ldots, t_{n}\right)}{\partial^{n}} d t_{1} \cdots d t_{n}, \text { and } \\
& \quad \frac{f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}{\text { at the continuity points of } \underline{f_{\mathbf{X}}} .} \frac{\partial x_{\mathbf{X}}}{\partial x_{1} \cdots \partial x_{n}}
\end{aligned}
$$

- Examples.

Experiment. Two balls are drawn without replacement from a box with one ball labeled 1 , two balls labeled $\underline{2}$, three balls labeled 3 .
Let $\quad X=\underline{\text { label }}$ on the $\underline{1^{\text {st }} \text { ball drawn, }}$
$Y=\underline{\text { label }}$ on the $2^{\text {nd }}$ ball drawn.

- The joint pmf and marginal pmfs of (X, Y) are

$p(x, y)$	X			$p_{Y}(y)$	
	1	2	3		
Y	1	0	$2 / 30$	$3 / 30$	$1 / 6$
	2	$2 / 30$	$2 / 30$	$6 / 30$	$2 / 6$
	3	$3 / 30$	$6 / 30$	$6 / 30$	$3 / 6$
$p_{X}(x)$		$1 / 6$	$2 / 6$	$3 / 6$	

Q: The balls are drawn without replacement. Why do X (from $\underline{1}^{\text {st }}$ ball) and \underline{Y} (from $\underline{2}^{\text {nd }}$ ball) have same marginal distributions?

- $\mathrm{Q}: P(|X-Y|=1)=$?

$$
\begin{aligned}
P(|X-Y|=1)= & P(X=1, Y=2)+P(X=2, Y=1) \\
& +P(\underline{X=2, Y=3})+P(\underline{X=3, Y=2})=8 / 15 .
\end{aligned}
$$

- $\underline{\mathrm{Q}}$: What are the joint pmf and marginal pmfs of (X, Y) if the balls are drawn with replacement (LNp. 4-6)?

$p(x, y)$	X			$p_{Y}(y)$	
	1	2	3		
Y	1	$1 / 36$	$2 / 36$	$3 / 36$	$1 / 6$
	2	$2 / 36$	$4 / 36$	$6 / 36$	$2 / 6$
	3	$3 / 36$	$6 / 36$	$9 / 36$	$3 / 6$
$p_{X}(x)$		$1 / 6$	$2 / 6$	$3 / 6$	

- Recall. Partitions

- If $\underline{n \geq 1}$ and $\underline{n}_{1}, \ldots, n_{m} \geq 0$ are integers for which

$$
\underline{n}_{1}+\cdots+n_{\underline{m}}=n,
$$

then a set of n elements may be partitioned into m subsets of sizes n_{1}, \ldots, n_{m} in

$$
\binom{n}{n_{1}, \cdots, n_{m}}=\frac{n!}{\underline{n_{1}!\times \cdots \times n_{m}!}} \quad \text { ways. }
$$

- Example (LNp.2-8) : MISSISSIPPI

$$
\binom{11}{4,1,2,4}=\underline{\frac{11!}{4!1!2!4!}} .
$$

- Example (Die Rolling).
- Q: If a balanced (6-sided) die is rolled 12 times, $P($ each face appears twice $)=$??
\square Sample space of rolling the die once (basic experiment):

$$
\underline{\Omega}_{0}=\{1,2,3,4,5,6\} .
$$

- The sample space for the 12 trials is

$$
\underline{\underline{\Omega}}=\Omega_{0} \times \cdots \times \Omega_{0}=\underline{\Omega}_{\underline{1}} \underline{12}
$$

An outcome $\underline{\omega} \in \underline{\Omega}$ is $\underline{\omega}=\left(i_{1}, i_{2}, \ldots, i_{12}\right)$, where $1 \leq i_{1}, \ldots, i_{12} \leq 6$.

- There are $\underline{6^{12}}$ possible outcomes in $\underline{\Omega}$, i.e., $\# \Omega=6^{12}$.
- Among all possible outcomes, there are $\left(\begin{array}{c}12,2,2,2,2,2\end{array}\right)=\frac{12!}{(2!)^{6}}$ of which each face appears twice.
${ }_{\square} P\left(\underline{\text { each face appears twice })}=\frac{12!}{(2!)^{6}} \underline{\left(\frac{1}{6}\right)^{12}}\right.$.
- Generalization.
- Consider a basic experiment which can result in one of m types of outcomes. Denote its sample space as

$$
\underline{\Omega}_{0}=\{1,2, \ldots, m\} .
$$

Let $\underline{p}_{\underline{i}}=P$ (outcome i appears in a basic experiment), then,
(i) $\underline{p}_{1}, \ldots, \underline{p}_{\underline{m}} \geq 0$, and
(ii) $\underline{p}_{1}+\cdots+\underline{p}_{\underline{m}}=1$.
\square Repeat the basic experiment n times. Then, the sample space for the n trials is

$$
\underline{\Omega}=\Omega_{0} \times \cdots \times \Omega_{0}=\underline{\Omega}_{\underline{0}}^{\underline{n}}
$$

Let $\underline{X}_{\underline{i}}=\#$ of trials with outcome $i, \underline{i=1, \ldots, m}$, Then,

$$
\begin{aligned}
& \text { (i) } \underline{X}_{1}, \ldots, X_{\underline{m}}: \underline{\Omega \rightarrow \mathbb{R}} \text {, and } \\
& \text { (ii) } \underline{X}_{\underline{1}}+\cdots+X_{\underline{m}} \underline{=n} .
\end{aligned}
$$

- The joint pmf of $\underline{X}_{\underline{1}}, \ldots, X_{\underline{m}}$ is

$$
\begin{aligned}
p_{\mathbf{X}}\left(x_{1}, \ldots, x_{m}\right) & =P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}\right) \\
& =\left(\underline{x_{1}, \cdots, x_{m}}\right) \underline{p_{1}^{x_{1}} \times \cdots \times p_{m}^{x_{m}}}
\end{aligned}
$$

for $\underline{x}_{\underline{1}}, \ldots, x_{\underline{m}} \geq 0$ and $\underline{x}_{1}+\cdots+x_{\underline{m}}=n$.
Proof. The probability of any sequence with $\underline{x} \underline{i} \underline{i}$'s is

$$
\underline{p_{1}^{x_{1}} \times \cdots \times p_{m}^{x_{m}}}
$$

and there are

$$
\binom{n}{x_{1}, \cdots, x_{m}}
$$

such sequences.

- The distribution of a random vector $\underline{\mathbf{X}}=\left(X_{1}, \ldots, X_{m}\right)$ with ${ }^{\text {p-16 }}$ the above joint pmf is called the multinomial distribution with parameters n, m, and $p_{1}, \ldots, p_{\underline{m}}$, denoted by $\left.\underline{\operatorname{Multinomial}\left(n, m, p_{1}\right.}, \ldots, \underline{p}_{\underline{m}}^{-}\right)$.
- The multinomial distribution is called after the Multinomial Theorem:

$$
\begin{aligned}
& \left(a_{1}+\cdots+a_{m}\right)^{n} \\
& \quad=\sum_{\substack{x_{i} \in\{0, \ldots, n\} ; i=1, \ldots, m \\
x_{1}+\cdots+x_{m}=n}}\binom{n}{x_{1}, \cdots, x_{m}} a_{1}^{x_{1}} \times \cdots \times a_{m}^{x_{m}} .
\end{aligned}
$$

- It is a generalization of the binomial distribution from
$\underline{2}$ types of outcomes to m types of outcomes.
\square Some Properties.

$$
\left.\underline{p}_{\underline{i}}=\underline{1-\left(p_{1}\right.} \underline{+\cdots+p_{i-1}} \underline{+p_{i+1}}+\cdots+p_{\underline{m}}\right),
$$

WLOG, we can write

$$
\left.\left(X_{1}, \ldots, X_{m-1}, \underline{X}_{\underline{m}}\right) \rightarrow\left(X_{1}, \ldots, X_{m-1}, \underline{n-\left(X_{1}+\cdots+X_{\underline{m-1}}\right.}\right)\right)
$$

- Marginal Distribution. Suppose that
$\left(\underline{X_{1}}, \ldots, X_{\underline{m}}\right) \sim \underline{\operatorname{Multinomial}}\left(n, \underline{m}, \underline{p_{1}}, \ldots, \underline{p}_{\underline{k}}, \underline{p_{k+1}}, \ldots, \underline{p}_{\underline{m}}\right)$.
For $1 \leq k<m$, the distribution of

$$
\left(\underline{X}_{1}, \ldots, X_{k}, \underline{X}_{k+1}+\cdots+X_{\underline{m}}\right)
$$

is $\operatorname{Multinomial}\left(n, \underline{k+1}, \underline{p_{1}}, \ldots, p_{\underline{k}}, \underline{p}_{k+1}+\cdots+p_{\underline{m}}\right)$.
In particular, $X_{i} \sim \underline{\operatorname{Binomial}}\left(n, p_{i}\right)$

- Mean and Variance.

$$
\begin{aligned}
& \underline{E\left(X_{i}\right)=n p_{i}} \text { and } \underline{\operatorname{Var}\left(X_{i}\right)=n p_{i}} \underline{\left(1-p_{i}\right)} \\
& \text { for } i=1, \ldots, m .
\end{aligned}
$$

Example.

- Suppose that the joint pdf of 2 continuous r.v.'s (X, Y) is

$$
\begin{gathered}
\quad f(x, y)= \begin{cases}\lambda^{2} e^{-\lambda(x+y)}, & x \geq 0, y \geq 0 \\
0, & \text { otherwise }\end{cases} \\
\underline{\mathbf{Q}}: P(\underline{Y \geq 2 X \text { or } X \geq 2 Y})=? ?
\end{gathered}
$$

- The event $\{\underline{Y \geq 2 X}\} \underline{\cup}\{\underline{X \geq 2 Y}\}$ is
- So, $P(\underline{Y \geq 2 X \text { or } X \geq 2 Y})=P(Y \geq 2 X)+P(X \geq 2 Y)=2 / 3$ because $^{\text {p. } 7-18}$

$$
\begin{aligned}
& P \underline{(Y \geq 2 X)}=\underline{\int_{0}^{\infty}\left[\int_{2 x}^{\infty} \lambda^{2} e^{-\lambda(x+y)} d y\right] d x} \\
& \quad=\int_{0}^{\infty}-\left.\lambda e^{-\lambda(x+y)}\right|_{y=2 x} ^{\infty} d x=\int_{0}^{\infty} \lambda e^{-3 \lambda x} d x \\
& \quad=\left.(-1 / 3) e^{-3 \lambda x}\right|_{x=0} ^{\infty}=\underline{1 / 3}
\end{aligned}
$$

and similarly, we can get $P(X \geq 2 Y)=1 / 3$ (exercise).
$>$ Example. Consider two continuous r.v.'s \underline{X} and Y.

- Uniform Distribution over a region D. If $\underline{D} \subset \underline{\mathbb{R}^{2}}$ and $0<\underline{\alpha}=\underline{\operatorname{Area}(D)}<\boldsymbol{\infty}$, then

$$
f(x, y)=c \cdot \underline{\mathbf{1}_{D}(x, y)}
$$

is a joint pdf when $\underline{c=1 / \alpha}$, called the uniform pdf over \underline{D}.

- Let $\underline{D}=\left\{(x, y): \underline{x^{2}+y^{2} \leq 1}\right\}$, then $\underline{\alpha}=\operatorname{Area}(D)=\underline{\pi}$ and

$$
f(x, y)=\frac{1}{\pi} \mathbf{1}_{D}(x, y)
$$

is a joint pdf.

- Marginal distribution. The marginal pdf of X is

$$
f_{X}(x)=\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} d y=\frac{2}{\pi} \sqrt{1-x^{2}}
$$

for $-1 \leq x \leq 1$, and $\underline{f}_{X}(x)=0$, otherwise.

(exercise: Find the marginal distribution of \underline{Y}.)

* Reading: textbook, Sec 6.1

Independent Random Variables

- Recall.
$>$ If joint distribution is given, marginal distributions are known.
$>$ The converse statement does not hold in general.
$>$ However, when random variables are independent,
marginal distributions + independence \Rightarrow joint distribution.

- Definition. The \underline{n} jointly distributed r.v.'s $\underline{X_{1}}, \ldots, X_{n}$ are called (mutually) independent if and only if for any (measurable) sets $\underline{A}_{i} \subset \mathbb{R}, i=1, \ldots, n$, the events

$$
\left\{X_{1} \in A_{1}\right\}, \ldots,\left\{X_{n} \in A_{n}\right\}
$$

are (mutually) independent. That is,

$$
\begin{aligned}
& P \stackrel{\left(X_{i_{1}} \in A_{i_{1}}, X_{i_{2}} \in A_{i_{2}}, \cdots, X_{i_{k}} \in A_{i_{k}}\right)}{=} \underline{P\left(X_{i_{1}} \in A_{i_{1}}\right)} \times \underline{P\left(X_{i_{2}} \in A_{i_{2}}\right)} \times \cdots \times \underline{P\left(X_{i_{k}} \in A_{i_{k}}\right)},
\end{aligned}
$$

for any $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n ; k=2, \ldots, n$.
If $\underline{X}_{1}, \ldots, X_{\underline{n}}$ are independent, for $\underline{1 \leq k<n}$,

$$
\begin{aligned}
& P\left(X_{k+1} \in A_{k+1}, \ldots, X_{n} \in A_{n} \left\lvert\, \frac{\left.X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)}{=} P\left(\underline{X_{k+1} \in A_{k+1}, \ldots, X_{n}} \in A_{n}\right)\right.\right.
\end{aligned}
$$

provided that $P\left(X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)>0$.

- In other words, the values of $\underline{X}_{1}, \ldots, X_{k}$ do not carry any information about the distribution of $\underline{X}_{k+1}^{-}, \ldots, X_{n}$.
- Theorem (Factorization Theorem). The random variables
$\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ are independent if and only if one of the following conditions holds.
(1) $\underline{F}_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\underline{F}_{X_{1}}\left(x_{1}\right) \times \cdots \times \underline{F}_{X_{n}}\left(x_{n}\right)$, where $\underline{F}_{\mathbf{X}}$ is the joint cdf of $\underline{\mathbf{X}}$ and $\underline{F}_{X_{i}}$ is the marginal cdf of \underline{X}_{i} for $i=1, \ldots, n$.
(2) Suppose that X_{1}, \ldots, X_{n} are discrete random variables. $p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(\overline{x_{1}}\right) \times \cdots \times p_{X_{n}}\left(x_{n}\right)$, where $\underline{p}_{\mathbf{X}}$ is the joint pmf of $\underline{\mathbf{X}}$ and $\underline{p}_{X_{i}}$ is the marginal pmf of \underline{X}_{i} for $i=1, \ldots, n$.
(3) Suppose that $\underline{X}_{1}, \ldots, X_{n}$ are continuous random variables. $f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(\bar{x}_{1}\right) \times \cdots \times f_{X_{n}}\left(x_{n}\right)$, where $f_{\mathbf{X}}$ is the joint pdf of $\underline{\mathbf{X}}$ and $\underline{f}_{X_{i}}$ is the marginal pdf of \underline{X}_{i} for $i=1, \ldots, n$. Proof.

$$
\begin{aligned}
\text { independent } \Rightarrow(1) . & \begin{aligned}
F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) & =P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \\
& =P\left(X_{1} \in\left(-\infty, x_{1}\right], \ldots, X_{n} \in\left(-\infty, x_{n}\right]\right) \\
& =P\left(X_{1} \in\left(-\infty, x_{1}\right]\right) \times \cdots \times P\left(X_{n} \in\left(-\infty, x_{n}\right]\right) \\
& =F_{X_{1}}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right)
\end{aligned}
\end{aligned}
$$

independent $\Leftarrow(1)$. Out of the scope of this couse so skip.

$$
\begin{aligned}
& \underline{\text { independent } \Rightarrow(2)} \cdot \underline{p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
&=P\left(X_{1} \in\left\{x_{1}\right\}, \ldots, X_{n} \in\left\{x_{n}\right\}\right) \\
&=P\left(X_{1} \in\left\{x_{1}\right\}\right) \times \cdots \times P\left(X_{n} \in\left\{x_{n}\right\}\right) \\
&=p_{X_{1}}\left(x_{1}\right) \times \cdots \times p_{X_{n}}\left(x_{n}\right)
\end{aligned}
$$

$(2) \Rightarrow(1)$.

$$
\begin{aligned}
& \overline{F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}=\sum_{\substack{\left(1 t_{1}, \ldots, t_{n}\right) \in \mathcal{X} \\
t_{1} \leq x_{1}, \ldots, t_{n} \leq x_{n}}} p_{\mathbf{X}}\left(t_{1}, \ldots, t_{n}\right) \\
& =\sum_{\substack{\left(t_{1}, \ldots, t_{n}, \in \mathcal{X} \\
t_{1} \leq x_{1}\right.}} \cdots \sum_{\substack{\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{X} \\
t_{n} \leq x_{n}}} p_{X_{1}}\left(t_{1}\right) \times \cdots \times p_{X_{n}}\left(t_{n}\right) \\
& =\sum_{\substack{\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{X} \\
\underline{t_{1} \leq x_{1}}}}^{\frac{x_{1}+x_{1}}{}} p_{X_{1}}\left(t_{1}\right) \times \cdots \times \sum_{\substack{\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{X} \\
t_{n} \leq x_{n}}} p_{X_{n}}\left(t_{n}\right)=\underline{F_{X_{1}}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right)}
\end{aligned}
$$

$(3) \Rightarrow(1)$.

$$
\begin{aligned}
& \underline{F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}=\int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} f_{\mathbf{X}}\left(t_{1}, \ldots, t_{n}\right) d t_{1} \cdots d t_{n} \\
& \quad=\int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} \underline{f_{X_{1}}\left(t_{1}\right) \times \cdots \times f_{X_{n}}\left(t_{n}\right) d t_{1} \cdots d t_{n}} \\
& \quad=\int_{-\infty}^{x_{1}} f_{X_{1}}\left(t_{1}\right) d t_{1} \times \cdots \times \int_{-\infty}^{x_{n}} f_{X_{n}}\left(t_{n}\right) d t_{n}=F_{X_{1}}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right)
\end{aligned}
$$

$(3) \Leftarrow(1)$.

$$
\begin{aligned}
& \qquad \frac{f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}{}=\frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} F_{X_{1}}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right) \\
& \quad=\frac{\partial}{\partial x_{1}} F_{X_{1}}\left(x_{1}\right) \times \cdots \times \frac{\partial}{\partial x_{n}} F_{X_{n}}\left(x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \times \cdots \times f_{X_{n}}\left(x_{n}\right)
\end{aligned}
$$

$>\underline{\text { Remark. It follows from the Multiplication Law (LNp.4-11) that }}$

$$
\frac{F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)}{=P\left(\underline{X_{1} \leq x_{1}}\right)}=P\left(\underline{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}}\right)
$$

$$
\begin{array}{rlrl}
= & P\left(\underline{X_{1} \leq x_{1}}\right) & \left(=\underline{F_{X_{1}\left(x_{1}\right)}}\right) \\
& \times P\left(\underline{\left.X_{2} \leq x_{2} \mid X_{1} \leq x_{1}\right)}\right. & \left(\stackrel{?}{=} P\left(\underline{X_{2} \leq x_{2}}\right)=\underline{F_{X_{2}}\left(x_{2}\right)}\right) \\
& \times P\left(\underline{X_{3} \leq x_{3} \mid X_{1} \leq x_{1}, X_{2} \leq x_{2}}\right) & \left(\stackrel{?}{=} P\left(\underline{X_{3} \leq x_{3}}\right)=\underline{F_{X_{3}}\left(x_{3}\right)}\right) \\
& \times \cdots & \\
& \times P\left(\underline{\left(X_{n} \leq x_{n} \mid X_{1} \leq x_{1}, \ldots, X_{n-1} \leq x_{n-1}\right.}\right)\left(\stackrel{?}{=} P\left(\underline{X_{n} \leq x_{n}}\right)=\underline{F_{X_{n}}\left(x_{n}\right)}\right)
\end{array}
$$

The independence can be established sequentially.
$>\underline{\text { Example. If } \underline{A_{1}}, \ldots, A_{n} \subset \underline{\Omega} \text { are independent events, then }}$ $\mathbf{1}_{A_{1}}, \ldots, \mathbf{1}_{A_{n}}$, are independent random variables. For example,

$$
\begin{aligned}
& \underline{P\left(\mathbf{1}_{A_{1}}=1, \mathbf{1}_{A_{2}}=0, \mathbf{1}_{A_{3}}=1\right)} \\
& =P\left(A_{1} \cap A_{2}^{c} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}^{c}\right) P\left(A_{3}\right) \\
& =\underline{P\left(\mathbf{1}_{A_{1}}=1\right)} \underline{P\left(\mathbf{1}_{A_{2}}=0\right)} \underline{P\left(\mathbf{1}_{A_{3}}=1\right)} .
\end{aligned}
$$

are independent and

$$
\underline{Y_{i}}=g_{\underline{i}}\left(\underline{X_{i}}\right), i=1, \ldots, n
$$

then
$\underline{Y}_{\underline{1}}, \ldots, Y_{\underline{n}}$ are independent.
Proof.
Let $A_{i}(y)=\left\{x: g_{i}(x) \leq y\right\}, i=1, \ldots, n$, then

$$
\begin{aligned}
& F_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right)=P\left(\underline{Y_{1} \leq y_{1}, \ldots, Y_{n} \leq y_{n}}\right) \\
& \quad=P\left(\underline{X_{1} \in A_{1}\left(y_{1}\right), \ldots, X_{n} \in A_{n}\left(y_{n}\right)}\right) \\
& \quad=P\left(\underline{\left.X_{1} \in A_{1}\left(y_{1}\right)\right) \times \cdots \times P\left(\underline{X_{n} \in A_{n}\left(y_{n}\right)}\right)}\right) \\
& \quad=P\left(\underline{Y_{1} \leq y_{1}}\right) \times \cdots \times P\left(\underline{Y_{n} \leq y_{n}}\right) \\
& \quad=\underline{F_{Y_{1}}\left(y_{1}\right) \times \cdots \times F_{Y_{n}}\left(y_{n}\right)} .
\end{aligned}
$$

- Theorem. $\underline{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ are independent if and only if there exist univariate functions $g_{i}(x), i=1, \ldots, n$, such that
(a) when $\underline{X}_{1}, \ldots, X_{n}$ are discrete r.v.'s with joint $\operatorname{pmf} p_{\underline{\mathbf{X}}}$,

$$
p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \propto \underline{g_{1}\left(x_{1}\right)} \times \cdots \times \underline{g_{n}\left(x_{n}\right)},-\infty<x_{i}<\infty, i=1, \ldots, n .
$$

(b) when $\underline{X}_{1}, \ldots, X_{\underline{n}}$ are continuous r.v.'s with joint pdf $f_{\underline{\mathbf{X}}}$,

$$
f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \propto g_{1}\left(x_{1}\right) \times \cdots \times g_{n}\left(x_{n}\right),-\infty<x_{i}<\infty, i=1, \ldots, n .
$$

Sketch of proof for (b).

$$
\begin{aligned}
& \underline{f_{X_{1}}\left(x_{1}\right)}=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}\left(x_{1}, \underline{\left.x_{2}, \ldots, x_{n}\right)} d x_{2} \cdots d x_{n}\right. \\
& \underline{\propto} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \underline{g_{1}\left(x_{1}\right)} \underline{g_{2}\left(x_{2}\right)} \cdots \underline{g_{n}\left(x_{n}\right)} d x_{2} \cdots d x_{n} \underline{\propto g_{1}\left(x_{1}\right) .}
\end{aligned}
$$

Similarly, $\underline{f_{X_{2}}\left(x_{2}\right) \propto g_{2}\left(x_{2}\right)}, \ldots, \underline{f_{X_{n}}\left(x_{n}\right) \propto g_{n}\left(x_{n}\right)}$

$$
\begin{aligned}
& \Rightarrow \quad f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) \propto g_{1}\left(x_{1}\right) \cdots g_{n}\left(x_{n}\right) \\
& \Rightarrow \quad f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \propto f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) \\
& \Rightarrow \quad f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=c \cdot f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right)
\end{aligned}
$$

for some constant c.

Because

$$
\frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \underline{d x_{1} \cdots d x_{n}}=1, \text { and }}{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) \underline{d x_{1} \cdots d x_{n}}=1, \quad \Rightarrow}
$$

$>$ Example.

- If the joint pdf of $(\underline{X, Y)}$ is

$$
f(x, y) \propto \underline{e}^{-2 x} \underline{e^{-3 y}}, \underline{0<x<\infty}, \underline{0<y<\infty}
$$

and $f(x, y)=0$, otherwise, i.e.,

$$
f(x, y) \propto \underline{e}^{-2 x} \underline{e^{-3 y}} \underline{\mathbf{1}_{(0, \infty)}(x)} \underline{\mathbf{1}_{(0, \infty)}(y)}
$$

then X and Y are independent. Note that the region in which the joint pdf is nonzero can be expressed in the form $\{(x, y): x \in A, y \in B\}$.

- Suppose that the joint pdf of (X, Y) is

$$
f(x, y) \propto \underline{x} \underline{y}, \quad \underline{0}<x<1, \underline{0}<y<1, \underline{0<x+y<1}
$$

\underline{X} and Y are not independent.
$>\underline{\text { Q }}$: For independent \underline{X} and Y, how should their joint pdf/pmf ${ }^{\text {p.7.27 }}$ look like?

$$
\frac{h_{1}(y)}{h_{0}(y)}=\underline{\text { a constant }}
$$

* Reading: textbook, Sec 6.2

Transformation

- Q: Given the joint distribution of
$\underline{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$, how to find the distribution of $\underline{\mathbf{Y}}=\left(Y_{1}, \ldots, Y_{k}\right)$, where

$$
\begin{aligned}
& \underline{Y}_{1}=\underline{g}_{1}\left(\underline{X}_{1}, \ldots, X_{n}\right): \underline{\mathbb{R}^{n}} \rightarrow \mathbb{R}, \\
& \ldots, \\
& \underline{Y}_{k}=\underline{g}_{k}\left(\underline{X_{1}}, \ldots, X_{n}\right): \underline{\mathbb{R}}^{n} \rightarrow \underline{\mathbb{R}},
\end{aligned}
$$

denoted by

$$
\underline{\mathbf{Y}}=\underline{g}(\underline{\mathbf{X}}), \underline{g}: \mathbb{R}^{n} \rightarrow \underline{\mathbb{R}}^{k} .
$$

>The following methods are useful:
1.Method of Events ($\rightarrow \mathrm{pmf}$)
2.Method of Cumulative Distribution Function
3.Method of Probability Density Function
4.Method of Moment Generating Function (chapter 7)
$>$ Method of Events

- Theorem. The distribution of $\underline{\mathbf{Y}}$ is determined by the distribution of $\underline{\mathbf{X}}$ as follows: for any event $\underline{B} \subset \mathbb{R}^{k}$,

$$
\underline{P_{\mathbf{Y}}}(\underline{\mathbf{Y} \in B})=\underline{P_{\mathbf{X}}}(\underline{\mathbf{X} \in A}),
$$

where $A=g^{-1}(B) \subset \underline{\mathbb{R}}^{n}$.

- Example. Let $\underline{\mathbf{X}}$ be a discrete random vector taking values

$$
\underline{\mathbf{x}}_{\underline{i}}=\left(x_{1 i}, x_{2 i}, \ldots, x_{n i}\right), \underline{i=1,2, \ldots,}
$$

(i.e., $\mathcal{X}=\left\{\underline{\mathbf{x}}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots\right\}$) with joint $\operatorname{pmf} \underline{p_{\mathbf{X}}}$.

Then, $\mathbf{Y}=g(\mathbf{X})$ is also a discrete random vector.

Suppose that $\underline{\mathbf{Y}}$ takes values on $\mathbf{y}_{\underline{i}}, \underline{j}=1,2, \ldots$. To determine ${ }^{\text {p. } 7.2 \mathrm{~g}}$ the joint pmf of $\underline{\mathbf{Y}}$, by taking $\underline{B}=\left\{\mathbf{y}_{j}\right\}$, we have

$$
\underline{A}=\left\{\underline{\mathbf{x}_{\underline{i}}} \in \underline{\mathcal{X}}: \underline{\left.g\left(\mathbf{x}_{i}\right)=\mathbf{y}_{\underline{j}}\right\}, ~}\right.
$$

and hence, the joint pmf of $\underline{\mathbf{Y}}$ is

$$
\underline{p_{\mathbf{Y}}\left(\mathbf{y}_{j}\right)}=\underline{P_{\mathbf{Y}}}\left(\underline{\left\{\mathbf{y}_{j}\right\}}\right)=\underline{P_{\mathbf{X}}}(\underline{A})=\sum_{\underline{\mathbf{x}_{i} \in A}} \underline{p_{\mathbf{X}}\left(\mathbf{x}_{i}\right)} .
$$

- Example. Let X and Y be random variables with the joint $\operatorname{pmf} \underline{p(x, y)}$. Find the distribution of $\underline{Z}=\underline{X+Y}$.

$$
\begin{aligned}
& \therefore\{Z=z\}=\{(X, Y) \in\{(x, y): x+y=z\}\} \\
& \quad p_{Z}(z)=P_{Z}(\{z\})=P(X+Y=z)=\underline{\sum_{x \in \mathcal{X}_{X}}} \underline{p(x, z-x)} . \\
& \square \text { When } \underline{X} \text { and } Y \text { are } \underline{\text { independent },}
\end{aligned}
$$

$$
p(x, y)=p_{X}(x) p_{Y}(y),
$$

So,

$$
\underline{p_{Z}(z)}=\sum_{\underline{x \in \mathcal{X}_{X}}} \underline{p_{X}(x) p_{Y}(z-x) .}
$$

which is referred to as the convolution of \underline{p}_{X} and p_{Y}.
口 (Exercise) $Z=X-Y$

- Theorem. If X and Y are independent, and

$$
\underline{X} \sim \underline{\text { Poisson }}\left(\boldsymbol{\lambda}_{\underline{1}}\right), \quad \underline{Y} \sim \underline{\text { Poisson }}\left(\underline{\lambda}_{2}\right),
$$

then $\underline{Z}=\underline{X}+Y \sim \underline{\text { Poisson }}\left(\lambda_{1}+\lambda_{2}\right)$.

$$
\begin{aligned}
p_{Z}(z) & =\sum_{x=0}^{z} p_{X}(x) p_{Y}(z-x)=\sum_{x=0}^{z} \frac{e^{-\lambda_{1}} \lambda_{1}^{x}}{x!} \frac{e^{-\lambda_{2}} \lambda_{2}^{z-x}}{(z-x)!} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{z!} \underline{\left(\sum_{x=0}^{z} \frac{z!}{x!(z-x)!} \lambda_{1}^{x} \lambda_{2}^{z-x}\right)}=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{z!}\left(\lambda_{1}+\lambda_{2}\right)^{z} .
\end{aligned}
$$

व Corollary. If $\underline{X_{1}}, \ldots, X_{\underline{n}}$ are independent, and $\underline{X_{i}} \sim \underline{\operatorname{Poisson}}\left(\lambda_{i}\right), i=1, \ldots, n$,
then $\underline{X}_{1}+\cdots+X_{n} \sim \operatorname{Poisson}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$.
Proof. By induction (exercise).

Method of cumulative distribution function
1.In the $\left(\underline{X_{1}}, \ldots, X_{n}\right)$ space, find the region that corresponds to

$$
\left\{Y_{1} \leq y_{1}, \ldots, Y_{k} \leq y_{k}\right\} .
$$

2.Find $\underline{F}_{\mathbf{Y}}\left(\underline{y}_{1}, \ldots, y_{k}\right)=P\left(\underline{Y}_{1} \leq y_{1}, \ldots, Y_{k} \leq y_{k}\right)$ by summing the joint pmf or integrating the joint pdf of $\underline{X}_{\underline{1}}, \ldots, X_{\underline{n}}$ over the region identified in 1 .
3.(for continuous case) Find the joint pdf of $\underline{\mathbf{Y}}$ by differentiating $\underline{F}_{\underline{\mathbf{Y}}}\left(y_{1}, \ldots, y_{k}\right)$, i.e.,

$$
f_{\mathbf{Y}}\left(y_{1}, \ldots, y_{k}\right)=\frac{\partial^{k}}{\partial y_{1} \cdots \partial y_{k}} F_{\mathbf{Y}}\left(y_{1}, \ldots, y_{k}\right)
$$

- Example. X and Y are random variables with joint pdf $\underline{f(x, y)}$. Find the distribution of $\underline{Z}=\underline{X+Y}$.
\square ㅁ $Z \leq z\}=\{(X, Y) \in\{(x, y): x+y \leq z\}\}$. So,

$$
\begin{aligned}
& F_{Z}(z)=P(Z \leq z)=P(X+Y \leq z) \\
& \quad=\frac{\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) d y d x}{\quad=\frac{\int_{-\infty}^{z} \int_{-\infty}^{\infty}}{} f(s, t-s) d s d t \quad\left(\operatorname{set}\left\{\begin{array}{l}
x=s \\
y= \\
y=s
\end{array}\right)\right.}
\end{aligned}
$$

$$
\text { and } \underline{f_{Z}(z)}=\underline{\frac{d}{d z}} \underline{F_{Z}(z)}=\underline{\int_{-\infty}^{\infty} f(x, z-x) d x}
$$

\square When \underline{X} and Y are independent,

$$
f(x, y)=f_{X}(x) f_{Y}(y) .
$$

$$
\text { So, } \underline{F_{Z}(z)}=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} \underline{f_{X}(x) f_{Y}(y)} d y d x
$$

$$
=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{z-x} f_{Y}(y) d y\right] f_{X}(x) d x
$$

$$
=\int_{-\infty}^{\infty} F_{Y}(z-x) \underline{f_{X}(x)} d x
$$

which is referred to as the convolution of \underline{F}_{X} and $F_{\underline{Y}}$, and

$$
f_{Z}(z)=\underline{\int_{-\infty}^{\infty}} \underline{f_{X}(x) f_{Y}(z-x) \underline{d x}}
$$

which is referred to as the convolution of \underline{f}_{X} and $f_{\underline{Y}}$. - (exercise) $Z=\underline{X-Y}$.

- Theorem. If $\underline{X \text { and } Y}$ are independent, and $\underline{X} \sim \underline{\operatorname{Gamma}}\left(\underline{\alpha}_{\underline{1}}, \underline{\lambda}\right), \underline{Y} \underline{\operatorname{Gamma}}\left(\underline{\alpha_{2}}, \underline{\lambda}\right)$, then

$$
\underline{Z}=\underline{X+Y} \sim \underline{\operatorname{Gamma}}\left(\underline{\alpha_{1}} \underline{+\alpha_{2}}, \underline{\lambda}\right) .
$$

$$
\begin{aligned}
& f_{Z}(z)=\frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \int_{0}^{z} x^{\alpha_{1}-1}(z-x)^{\alpha_{2}-1} e^{-\lambda z} d x \\
& \quad=\frac{\lambda^{\alpha_{1}+\alpha_{2}} e^{-\lambda z}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \int_{0}^{1} z^{\left(\alpha_{1}-1\right)+\left(\alpha_{2}-1\right)+1} y^{\alpha_{1}-1}(1-y)^{\alpha_{2}-1} d y \\
& \quad=\frac{\lambda^{\alpha_{1}+\alpha_{2}} z^{\left(\alpha_{1}+\alpha_{2}\right)-1} e^{-\lambda z}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \times \frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} \\
& \quad \text { and } \underline{f_{Z}(z)=0, \text { for } z<0}
\end{aligned}
$$

- Corollary. If $\underline{X_{1}}, \ldots, X_{\underline{n}}$ are independent, and

$$
\underline{X_{i}} \sim \underline{\operatorname{Gamma}}\left(\underline{\alpha_{i}}, \underline{\lambda}\right), i=1, \ldots, n,
$$

$$
\text { then } \underline{X}_{\underline{1}}+\cdots+X_{\underline{n}} \sim \underline{\operatorname{Gamma}}\left(\underline{\alpha}_{\underline{1}}+\cdots+\alpha_{\underline{n}}, \underline{\lambda}\right)
$$

Proof. By induction (exercise).
口 Corollary. If $\underline{X_{1}, \ldots, X_{\underline{n}}}$ are independent, and $\underline{X_{i}} \sim \underline{\text { Exponential }}(\underline{\lambda}), i=1, \ldots, n$, then $\underline{X}_{1}+\cdots+X_{\underline{n}} \sim \underline{\operatorname{Gamma}}(\underline{n}, \underline{\lambda})$. Proof. (exercise).

- Theorem. If $\underline{X_{1}}, \ldots, X_{\underline{n}}$ are independent, and

$$
\underline{X_{i}} \sim \underline{\operatorname{Normal}}\left(\underline{\mu}_{\underline{i}}, \underline{\sigma}_{\underline{i}}^{2}\right), i=1, \ldots, n,
$$

then $\underline{X}_{1}+\cdots+X_{\underline{n}} \sim \underline{\operatorname{Normal}}\left(\underline{\mu}_{1}+\cdots+\mu_{\underline{n}}, \underline{\sigma}_{1}{ }^{2}+\cdots+\sigma_{\underline{n}}{ }^{2}\right)$.
Proof. (exercise).

- Example. \underline{X} and Y are random variables with joint pdf $\underline{f(x, y)}$. Find the distribution of $Z=\underline{Y / X}$.
口Let $\underline{Q_{z}}=\{(x, y): \underline{y / x \leq z}\}$

$$
\begin{aligned}
& =\{(x, y): \overline{x<0, y \geq z x\}} \\
& \quad \cup\{(x, y): x>0, y \leq z x\}
\end{aligned}
$$

$$
\text { then, } \underline{F_{Z}(z)}=\iint_{\underline{Q_{z}}} \underline{f(x, y)} d x d y
$$

$$
\left.\begin{array}{l}
=\frac{\int_{-\infty}^{0} \int_{x z}^{\infty}+\int_{0}^{\infty} \int_{-\infty}^{x z}}{} f(x, y) d y d x \quad\left(\text { set } \left\{\begin{array}{l}
x= \\
y \\
y \\
=
\end{array} s t\right.\right.
\end{array}\right)
$$

\square When \underline{X} and Y are independent,

$$
\underline{f(x, y)=f_{X}(x) f_{\underline{1}}(\underline{y}) . ~ . ~}
$$

So, $\quad F_{Z}(z)=\int_{-\infty}^{z} \int_{-\infty}^{\infty}|s| \underline{f_{X}(s) f_{Y}(s t)} d s d t$
and, $f_{Z}(z)=\int_{-\infty}^{\infty}|x| \underline{f_{X}(x) f_{Y}(z x)} d x$
口(exercise) $\underline{Z}=\underline{X Y}$

- If \underline{X} and Y are independent,

$$
\underline{X} \sim \underline{\exp } \underline{\operatorname{exnential}}\left(\underline{\lambda}_{1}\right), \text { and } \underline{Y} \sim \underline{\operatorname{exponential}}\left(\boldsymbol{\lambda}_{2}\right),
$$

Let $\underline{Z}=\underline{Y / X}$. The pdf of \underline{Z} is

$$
\begin{aligned}
& f_{Z}(z)=\int_{0}^{\infty} x\left(\lambda_{1} e^{-\lambda_{1} x}\right)\left[\lambda_{2} e^{-\lambda_{2}(x z)}\right] d x \\
& \quad=\frac{\lambda_{1} \lambda_{2} \Gamma(2)}{\left(\lambda_{1}+\lambda_{2} z\right)^{2}} \int_{0}^{\infty} \frac{\left(\lambda_{1}+\lambda_{2} z\right)^{2}}{\Gamma(2)} x^{2-1} e^{-\left(\lambda_{1}+\lambda_{2} z\right) x} d x \\
& \quad=\frac{\lambda_{1} \lambda_{2}}{\left(\lambda_{1}+\lambda_{2} z\right)^{2}}
\end{aligned}
$$

for $z \geq 0$, and 0 for $z<0$.

And, the cdf of \underline{Z} is

$$
\begin{aligned}
& F_{Z}(z)=\int_{0}^{z} \overline{f_{Z}}(t) d t=\int_{0}^{z} \frac{\lambda_{1} \lambda_{2}}{\left(\lambda_{1}+\lambda_{2} t\right)^{2}} d t \\
& \quad=\quad-\left.\frac{\lambda_{1} \lambda_{2}}{\lambda_{2}}\left(\lambda_{1}+\lambda_{2} t\right)^{-1}\right|_{0} ^{z}=1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2} z}
\end{aligned}
$$

for $z \geq 0$, and 0 for $z<0$.

$>$ Method of probability density function

- Theorem. Let $\underline{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ be continuous random variables with the joint pdf $\underline{f}_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)$. Let

$$
\underline{\mathbf{Y}}=\left(Y_{1}, \ldots, Y_{\underline{n}}\right)=\underline{g}(\underline{\mathbf{X}})
$$

where g is 1-to-1, so that its inverse exists and is denoted by

$$
\mathbf{x}=\underline{g^{-1}}(\mathbf{y})=\underline{w}(\mathbf{y})=\left(\underline{w_{1}}(\mathbf{y}), \underline{w}_{2}(\mathbf{y}), \ldots, \underline{w}_{\underline{n}}(\mathbf{y})\right) .
$$

Assume \underline{w} have continuous partial derivatives. Let

$$
J=\left|\begin{array}{cccc}
\frac{\partial w_{1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial w_{1}(\mathbf{y})}{\partial y_{2}} & \ldots & \frac{\partial w_{1}(\mathbf{y})}{\partial y_{n}} \\
\frac{\partial w_{2}(\mathbf{y})}{\partial y_{1}} & \frac{\partial w_{2}(\mathbf{y})}{\partial y_{2}} & \ldots & \frac{\partial w_{2}(\mathbf{y})}{\partial y_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial w_{n}(\mathbf{y})}{\partial y_{1}} & \frac{\partial w_{n}(\mathbf{y})}{\partial y_{2}} & \ldots & \frac{\partial w_{n}(\mathbf{y})}{\partial y_{n}}
\end{array}\right|_{n \times n}
$$

Then $\left.\quad \underline{f_{\mathbf{Y}}} \underline{\mathbf{y}}\right)=\underline{f_{\mathbf{X}}}\left(\underline{g^{-1}(\mathbf{y})}\right) \times \underline{|J|}$,
for $\underline{\mathbf{y}}$ s.t. $\underline{\mathbf{y}}=g(\mathbf{x})$ for some \mathbf{x}, and $\underline{f_{\mathbf{Y}}}(\mathbf{y})=0$, otherwise.
(Q: What is the role of $\underline{|J| ?}$?
$X_{2} \uparrow X_{1} \xrightarrow{\mathbf{Y}=g(\mathbf{X})} \xrightarrow{Y_{2} \uparrow}{ }_{Y_{1}}$

Proof. $\underline{F_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right)}=\underline{\int_{-\infty}^{y_{1}} \cdots \int_{-\infty}^{y_{n}} \underline{f_{\mathbf{Y}}}\left(t_{1}, \ldots, t_{n}\right) d t_{n} \cdots d t_{1}, ~}$

$$
=\int \cdots \int_{\substack{\left(x_{1}, \ldots, x_{n}\right): \\ g_{1}\left(x_{1}, \ldots, x_{n}\right) \leq y_{1}}}^{f_{\mathbf{X}}}\left(x_{1}, \ldots, x_{n}\right) d x_{n} \cdots d x_{1} .
$$

$$
\underline{g_{n}\left(x_{1}, \ldots, x_{n}\right) \leq y_{n}}
$$

It then follows from an exercise in advanced calculus that

$$
\begin{aligned}
& f_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right)=\frac{\partial^{n}}{\partial y_{1} \cdots \partial y_{n}} F_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right) \\
& =\underline{f_{\mathbf{X}}\left(w_{1}(\mathbf{y}), \ldots, w_{n}(\mathbf{y})\right) \times|J|}
\end{aligned}
$$

aRemark. When the dimensionality of $\underline{\mathbf{Y}}$ (denoted by \underline{k}) is less than n, we can choose another $n-k$ transformations $\underline{\mathbf{Z}}$ such that

$$
(\underline{\mathbf{Y}, \mathbf{Z}})=g(\mathbf{X})
$$

satisfy the assumptions in above theorem.

By integrating out the last $n-k$ arguments in the joint pdf of (\mathbf{Y}, \mathbf{Z}), the joint pdf of \mathbf{Y} can be obtained.

- Example. \underline{X}_{1} and X_{2} are random variables with joint pdf $\underline{f_{\mathbf{x}}}\left(x_{1}, x_{2}\right)$. Find the distribution of $\underline{Y}_{1}=X_{1} \underline{1}\left(X_{1} \underline{+} X_{2}\right)$. - Let $\underline{Y}_{2}=X_{1}+X_{2}$, then

$$
\begin{array}{ll}
x_{1}=y_{1} y_{2} & \equiv w_{1}\left(y_{1}, y_{2}\right) \\
x_{2}=y_{2}-y_{1} y_{2} & \equiv w_{2}\left(y_{1}, y_{2}\right)
\end{array}
$$

Since $\frac{\partial w_{1}}{\partial y_{1}}=y_{2}, \quad \frac{\partial w_{1}}{\partial y_{2}}=y_{1}, \quad \frac{\partial w_{2}}{\partial y_{1}}=-y_{2}, \quad \frac{\partial w_{2}}{\partial y_{2}}=1-y_{1}$,

$$
J=\left|\begin{array}{cc}
y_{2} & y_{1} \\
-y_{2} & 1-y_{1}
\end{array}\right|=y_{2}-y_{1} y_{2}+y_{1} y_{2}=y_{2}, \text { and } \underline{|J|=\left|y_{2}\right|}
$$

Therefore, $f_{\mathbf{Y}}\left(y_{1}, y_{2}\right)=f_{\mathbf{X}}\left(\underline{y_{1} y_{2}}, \underline{y_{2}-y_{1} y_{2}}\right)\left|y_{2}\right|$, and, $\underline{f_{Y_{1}}\left(y_{1}\right)}=\int_{-\infty}^{\infty} f_{\mathbf{Y}}\left(y_{1}, \underline{y_{2}}\right) \underline{d y_{2}}$

$$
\begin{aligned}
& =\quad \int_{-\infty}^{\infty} \frac{f_{\mathbf{X}}\left(y_{1} y_{2}, y_{2}-y_{1} y_{2}\right)\left|y_{2}\right|}{} d y_{2} \\
& \quad\left(=\int_{-\infty}^{\infty} \underline{f_{X_{1}}\left(y_{1} y_{2}\right) f_{X_{2}}\left(y_{2}-y_{1} y_{2}\right)}\left|y_{2}\right| d y_{2}\right.
\end{aligned}
$$

- Theorem. If \underline{X}_{1} and X_{2} are independent, and

$\xrightarrow{X_{1}}$ then $\underline{Y}_{1}=\underline{X}_{1} /\left(X_{1}+X_{2}\right) \sim \underline{\operatorname{Beta}}\left(\underline{\alpha}_{1}, \underline{\alpha_{2}}\right)$.

So, for $0 \leq y_{1} \leq 1$,

$$
\begin{aligned}
& f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}}\left(y_{1} y_{2}\right) f_{X_{2}}\left(y_{2}-y_{1} y_{2}\right)\left|y_{2}\right| \underline{d y_{2}} \\
& =\quad \int_{0}^{\infty} \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}{}\left(y_{1} y_{2}\right)^{\alpha_{1}-1}\left(y_{2}-y_{1} y_{2}\right)^{\alpha_{2}-1} e^{-\lambda y_{2}} \cdot y_{2}} d y_{2} \\
& =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1} \\
& \quad \times \int_{0}^{\infty} \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} y_{2}^{\left(\alpha_{1}+\alpha_{2}\right)-1} e^{-\lambda y_{2}} d y_{2} \\
& =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1}
\end{aligned}
$$

and $\underline{f_{Y_{1}}}\left(y_{1}\right)=0$, otherwise.

- Example. Suppose that X and Y have a uniform distribution ${ }^{\text {p. } 740}$

$$
\underline{f_{X, Y}(x, y)}=\frac{1}{\pi} \mathbf{1}_{D}(x, y)
$$

Find the joint distribution of (R, Θ) and examine whether R and Θ are independent, where (R, Θ) is the polar coordinate representation of (X, Y), i.e.,

$$
\begin{aligned}
X & =\underline{R \cos (\Theta)} \equiv w_{1}(R, \Theta), \\
Y & =\underline{R \sin (\Theta)} \equiv w_{2}(R, \Theta) .
\end{aligned}
$$

\square Since $\frac{\partial w_{1}}{\partial r}=\cos (\theta), \quad \frac{\partial w_{1}}{\partial \theta}=-r \sin (\theta)$,

$$
\frac{\partial w_{2}}{\partial r}=\sin (\theta), \quad \frac{\partial w_{2}}{\partial \theta}=r \cos (\theta)
$$

$$
J=\left|\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right|=r \cos ^{2}(\theta)+r \sin ^{2}(\theta)=r
$$ and $|J|=|r|=r$.

\square For $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$, the joint pdf of $\underline{(R, \Theta)}$ is

$$
\underline{f_{R, \Theta}}(r, \theta)=\underline{f_{X, Y}}(\underline{r \cos (\theta)}, \underline{r \sin (\theta)}) \times \underline{|J|}=\underline{\frac{1}{\pi} r}
$$

and $\underline{f_{R, \Theta}}(r, \theta)=0$, otherwise.

$$
\begin{aligned}
& \text { Proof. For } x_{1}, x_{2} \geq 0 \text {, the joint pdf of } \underline{\mathbf{X}} \text { is } \\
& \underline{f_{\mathbf{X}}\left(x_{1}, x_{2}\right)}=\frac{\lambda^{\alpha_{1}}}{\Gamma\left(\alpha_{1}\right)} x_{1}^{\alpha_{1}-1} e^{-\lambda x_{1}} \times \frac{\lambda^{\alpha_{2}}}{\Gamma\left(\alpha_{2}\right)} x_{2}^{\alpha_{2}-1} e^{-\lambda x_{2}} \\
& =\frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} e^{-\lambda\left(x_{1}+x_{2}\right)} .
\end{aligned}
$$

-By the theorem in LNp.7-25, $(\underline{R, \Theta)}$ are independent.

- Example. Let $\underline{X}_{1}, \ldots, X_{n}$ be independent and identically distributed (i.e., i.i.d.) exponential $(\underline{\lambda})$. Let

$$
\underline{Y}_{\underline{i}}=\underline{X}_{1}+\cdots+X_{i}, i=1, \ldots, n .
$$

Find the distribution of $\underline{\mathbf{Y}}=\left(Y_{1}, \ldots, Y_{n}\right)$.
[Note. It has been shown that $\underline{Y_{i}} \sim \underline{\operatorname{Gamma}}(\underline{i}, \underline{\lambda}), i=1, \ldots, n$.]

- The joint pdf of $\underline{X}_{1}, \ldots, X_{n}$ is

$$
\begin{aligned}
& f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right) \\
& \quad=\prod_{i=1}^{n}\left(\lambda e^{-\underline{\lambda x_{i}}}\right)=\lambda^{n} e^{-\lambda \underline{x_{1}+\cdots+x_{n}}}
\end{aligned}
$$

for $0 \leq x_{i}<\infty, i=1, \ldots, n$.

ם Since $x_{1}=y_{1} \equiv w_{1}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\begin{aligned}
x_{2} & =y_{2}-y_{1} \equiv w_{2}\left(y_{1}, \ldots, y_{n}\right) \\
& \cdots \\
x_{n} & =y_{n}-y_{n-1} \equiv w_{n}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

we have

$$
\frac{\partial w_{i}}{\partial y_{j}}= \begin{cases}1, & \text { if } j=i \\ -1, & \text { if } j=i-1 \\ 0, & \text { otherwise }\end{cases}
$$

$$
J=\left|\begin{array}{rrrrr}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right|=1, \text { and }|J|=1
$$

- For $0 \leq y_{1} \leq y_{2} \leq \cdots \leq y_{i-1} \leq y_{i} \leq y_{i+1} \leq \cdots \leq y_{n}<\infty$,

$$
\begin{aligned}
\underline{f_{\mathbf{Y}}}\left(y_{1}, \ldots, y_{n}\right) & =\underline{f_{\mathbf{X}}}\left(y_{1}, y_{2}-y_{1}, \ldots, y_{n}-y_{n-1}\right) \times|J| \\
& =\lambda^{n} e^{-\lambda \underline{y_{n}}} .
\end{aligned}
$$

and $\underline{f}_{\mathbf{Y}}\left(y_{1}, \ldots, y_{n}\right)=0$, otherwise.

- The marginal pdf of $\underline{Y_{i}}$ is

$$
\begin{aligned}
& f_{Y_{i}}(y) \\
& \quad=\frac{\int_{0}^{y} \int_{y_{1}}^{y} \cdots \int_{y_{i-2}}^{y} \underline{\int_{y}^{\infty} \int_{y_{i+1}}^{\infty} \cdots \int_{y_{n-1}}^{\infty}}}{\lambda^{n} e^{-\lambda y_{n}} d y_{n} \cdots d y_{y_{i+2}} d y_{i+1} d y_{i-1} \cdots d y_{2} d y_{1}} \\
& \quad=\frac{\int_{0}^{y} \int_{y_{1}}^{y} \cdots \int_{y_{i-2}}^{y} \underline{\lambda^{i} e^{-\lambda y}} \underline{d y_{i-1} \cdots d y_{2} d y_{1}}}{\lambda^{i} e^{-\lambda y} \frac{y^{i-1}}{(i-1)!}}
\end{aligned}
$$

for $y \geq 0$, and $\underline{f_{Y_{i}}}(y)=0$, otherwise.

Method of moment generating function.

- Based on the uniqueness theorem of moment generating function to be explained later in Chapter 7
- Especially useful to identify the distribution of sum of independent random variables.

- Order Statistics

$\underline{\text { Definition. Let } X_{1}, \ldots, X_{n} \text { be random variables. We }}$ sort the X_{i} 's and denote by

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

the order statistics. Using the notation,
$\underline{X_{(i)}}=\underline{i \text { th-smallest value in } X_{1}, \ldots, X_{n}, i=1,2, \ldots, n,}$
$\underline{X}_{(1)}=\underline{\min }\left(X_{1}, \ldots, X_{n}\right)$ is the $\underline{\text { minimum }}$,
$\underline{X}_{(n)}=\underline{\max }\left(X_{1}, \ldots, X_{n}\right)$ is the $\underline{\text { maximum }}$,
$\underline{R} \equiv \underline{X_{(n)}-X_{(1)}}$ is called range,
$\underline{S}_{\underline{j}} \equiv \underline{X_{(\underline{j})}-X_{(j-1)}}, j=2, \ldots, n$, are called $\underline{j \text { th } \text { spacing } .}$.

Q: What are the joint distributions of various order statistics and their marginal distributions?
$\underline{\text { Definition. }} \underline{X_{1}}, \ldots, X_{n}$ are called i.i.d. (independent, identically
$\underline{\text { distributed) with cdf } \bar{F} / \mathrm{pdf} f / \mathrm{pmf} p \text { if the random variables }}$ X_{1}, \ldots, X_{n} are independent and have a common marginal distribution with cdf $F /$ pdf $f / \mathrm{pmf} p$.

- Remark. In the discussion about order statistics, we only consider the case that $\underline{X}_{\underline{1}}, \ldots, X_{\underline{n}}$ are i.i.d.
口 Note. Although $\underline{X}_{1}, \ldots, X_{n}$ are independent, their order statistics $\underline{X}_{(1)}, X_{(2)}, \cdots, X_{\underline{(n)}}^{-}$are not independent in general.
$>$ Theorem. Suppose that $\underline{X}_{1}, \ldots, X_{n}$ are i.i.d. with cdf F.
1.The $\underline{\text { cdf }}$ of $\underline{X}_{(1)}$ is $\underline{1-[1-F(x)]^{n}}$, and the cdf of $\underline{X_{(n)}}$ is $\underline{[F(x)]^{n}}$.
2.If $\underline{\mathbf{X}}$ are continuous and \underline{F} has a pdf f, then the pdf of $\underline{X}_{(1)}$ is $\underline{n f(x)[1-F(x)]^{n-1}}$, and the pdf of $\underline{X}_{(n)}$ is $\underline{n f(x)[F(x)]^{n-1} \text {. }}$
Proof. By the method of cumulative distribution function,

$$
\begin{aligned}
& \frac{1-F_{X_{(1)}}(x)}{\quad=P\left(\underline{X_{(1)}}>x\right)=P\left(\underline{X_{1}>x, \ldots, X_{n}>x}\right)} \\
& \quad=P\left(X_{1}>x\right) \cdots P\left(X_{n}>x\right)=\underline{[1-F(x)]^{n}} . \\
& \begin{aligned}
& \underline{F_{X_{(n)}}(x)}=P\left(\underline{X_{(n)} \leq x}\right)=P\left(\underline{\left.X_{1} \leq x, \ldots, X_{n} \leq x\right)}\right. \\
&=P\left(X_{1} \leq x\right) \cdots P\left(X_{n} \leq x\right)=\underline{[F(x)]^{n}} . \\
& \frac{f_{X_{(1)}}(x)}{=n[1-F(x)]^{n-1}}\left(\frac{d}{d x} F(x)\right)=n f(x)[1-F(x)]^{n-1} \\
& \quad \frac{d}{d x} F_{X_{(1)}}(x)
\end{aligned} \\
& \frac{f_{X_{(n)}}(x)=\frac{d}{d x} F_{X_{(n)}}(x)}{=n[F(x)]^{n-1}\left(\frac{d}{d x} F(x)\right)=n f(x)[F(x)]^{n-1} .}
\end{aligned}
$$

- Graphical interpretation for the pdfs of $\underline{X}_{(1)}$ and $\underline{X}_{\underline{(n)}}$.

- Example. n light bulbs are placed in service at time $\underline{t=0}$, and allowed to burn continuously. Denote their lifetimes by $\underline{X}_{1}, \ldots, X_{\underline{n}}$, and suppose that they are i.i.d. with $\underline{\operatorname{cdf} F}$.
If burned out bulbs are not replaced, then the room goes dark at time

$$
Y=\underline{X_{(n)}}=\max \left(X_{1}, \ldots, X_{n}\right)
$$

- If $\underline{n=5}$ and \underline{F} is exponential with $\underline{\lambda=1}$ per month, then

$$
F(x)=1-\mathrm{e}^{-x}, \text { for } x \geq 0, \text { and } 0, \text { for } x<0
$$

- The cdf of \underline{Y} is

$$
F_{Y}(y)=\left(1-\mathrm{e}^{-y}\right)^{5}, \text { for } \underline{y \geq 0}, \text { and } 0, \text { for } y<0
$$ and its pdf is $\underline{5\left(1-\mathrm{e}^{-y}\right)^{4} \mathrm{e}^{-y}}$, for $\underline{y \geq 0}$, and 0 , for $y<0$.

- The probability that the room is still lighted after two months is $P(\underline{Y>2})=1-\overline{F_{Y}(2)}=1-\left(1-\mathrm{e}^{-2}\right)^{5}$.
Theorem. Suppose that $\underline{X}_{1}, \ldots, X_{n}$ are i.i.d. with pmf $p / \operatorname{pdf} f$. Then, the joint pmf/pdf of $\underline{X}_{(1)}, \ldots, X_{(n)}$ is

$$
\begin{aligned}
& \frac{p_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)}{=\underline{n!} \times p\left(x_{1}\right) \times \cdots \times p\left(x_{n}\right)},
\end{aligned}
$$

or $f_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)$
$=n!\times f\left(x_{1}\right) \times \cdots \times f\left(x_{n}\right)$,
for $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, and 0 otherwise.
Proof. For $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{aligned}
& \frac{p_{X_{(1)}, \ldots, X_{(n)}\left(x_{1}, \ldots, x_{n}\right)}}{} \quad=P\left(X_{(1)}=x_{1}, \ldots, X_{(n)}=x_{n}\right) \\
& \quad=\sum_{\substack{\left(i_{1}, \ldots, i_{n}\right): \\
\text { permutations of } \\
(1, \ldots, n)}}^{P\left(X_{1}=x_{i_{1}}, \ldots, X_{n}=x_{i_{n}}\right)} \\
& \quad=\sum_{\substack{\left(i_{1}, \ldots, i_{n}\right) \\
\text { permutaions of } \\
(1, \ldots, n)}} p\left(x_{1}\right) \times \cdots \times p\left(x_{n}\right) \\
& \quad=n!\times p\left(x_{1}\right) \times \cdots \times p\left(x_{n}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& f_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n} \\
& \approx P\left(\underline{x_{1}-\frac{d x_{1}}{2}<X_{(1)}<x_{1}+\frac{d x_{1}}{2}, \ldots,}\right. \\
& \left.x_{n}-\frac{d x_{n}}{2}<X_{(n)}<x_{n}+\frac{d x_{n}}{2}\right) \\
& =\sum_{\substack{\left(i_{1}, \ldots, i_{n}\right): \\
\text { permutations of } \\
(1, \ldots, n)}} P\left(\frac{x_{i_{1}}-\frac{d x_{i_{1}}}{2}<X_{1}<x_{i_{1}}+\frac{d x_{i_{1}}}{2}, \ldots,}{\left.\underline{x_{i_{n}}-\frac{d x_{i_{n}}}{2}<X_{n}<x_{i_{n}}+\frac{d x_{i_{n}}}{2}}\right)}\right. \\
& \approx \sum_{\substack{\left(i_{1}, \ldots, i_{n}\right): \\
\text { permutations of }}} f\left(x_{1}\right) \times \cdots \times f\left(x_{n}\right) d x_{1} \cdots d x_{n} \\
& \frac{(1, \ldots, n)}{\times f\left(x_{1}\right) \times} \\
& =n!\times f\left(x_{1}\right) \times \cdots \times f\left(x_{n}\right) d x_{1} \cdots d x_{n} .
\end{aligned}
$$

- $\underline{\text { Q: Examine }}$ whether $\underline{X}_{(1)}, \ldots, X_{(n)}$ are independent using the Theorem in LNp.7-25.

$>$ Theorem. If $\underline{X_{1}}, \ldots, X_{n}$ are $\underline{\text { i.i.d. with }}$ cdf F and pdf f, then
1.The pdf of the $k^{\text {th }}$ order statistic $\underline{X}_{(k)}$ is

$$
\begin{aligned}
& \frac{f_{X_{(k)}}(x)}{} \\
& \quad=\binom{n}{\underline{1, k-1, n-k})} \underline{f(x)} \underline{F(x)^{k-1}} \underline{1-F(x)]^{n-k} .} .
\end{aligned}
$$

2.The cdf of $\underline{X}_{(k)}$ is

$$
F_{X_{(k)}}(x)=\sum_{m=k}^{n}\binom{n}{m}[F(x)]^{m}[1-F(x)]^{n-m} .
$$

Proof.

$$
\begin{aligned}
& F_{X_{(k)}}(x)=P\left(\underline{\left.X_{(k)} \leq x\right)}\right. \\
& =P\left(\underline{\text { at least } k} \text { of the } \underline{X_{i} ' s} \text { are } \leq x\right) \\
& \quad=\sum_{m=k}^{n} P\left(\underline{\text { exact } m} \text { of the } \underline{X_{i} ' s}\right. \text { are } \\
& \quad=\sum_{m=k}^{n} \underline{\binom{n}{m} \underline{[F(x)]^{m}}} \underline{[1-F(x)]^{n-m}}
\end{aligned}
$$

$$
=\underline{\sum_{m=k}^{n}} P\left(\underline{\text { exact } m} \text { of the } \underline{X_{i} ' s} \text { are } \leqq x\right) \quad X_{(k)}
$$

$>$ Theorem. If $\underline{X}_{1}, \ldots, X_{n}$ are i.i.d. with $\underline{\operatorname{cdf} F}$ and pdf f, then

1. The joint pdf of $\underline{X}_{(1)}$ and $X_{(n)}$ is

$$
\underline{f_{X_{(1)}, X_{(n)}}(s, t)}=\underline{n(n-1} \underline{f(s) f(t) \underline{[F(t)-F(s)]^{n-2}}, ~}
$$

for $s \leq t$, and 0 otherwise.
2. The pdf of the range $\underline{R=X_{(n)}-X_{(1)}}$ is

$$
\underline{f_{R}(r)}=\underline{\int_{-\infty}^{\infty}} \underline{f_{X_{(1)}, X_{(n)}}(u, u+r)} d u
$$

for $r \geq 0$, and 0 otherwise.

1. The joint pdf of $\underline{X}_{(\underline{i})}$ and $X_{(\underline{j})}$, where $\underline{1 \leq i<j \leq n \text {, is }}$

$$
\frac{f_{X_{(i)}, X_{(j)}}(s, t)}{}=\frac{\frac{n!}{(i-1)!(j-i-1)!(n-j)!}}{\times \underline{[F(s)]^{i-1}} \underline{[F(s) f(t)} \underline{\underline{(F)}} \underline{\underline{(s)}]^{j-i-1}} \underline{[1-F(t)]^{n-j}},}
$$

for $s \leq t$, and 0 otherwise.
2. The pdf of the $j^{\text {th } \text { spacing }} \underline{S}_{j}=X_{(j)}-X_{(j-1)}$ is

$$
\underline{f_{S_{j}}(s)}=\underline{\int_{-\infty}^{\infty}} \underline{f_{X_{(j-1)}, X_{(j)}}(u, u+s)} d u
$$

for $\mathrm{s} \geq 0$, and zero otherwise.

Conditional Distribution

- Definition. Let $\underline{\mathbf{X}}\left(\underline{\in \mathbb{R}^{n}}\right)$ and $\underline{\mathbf{Y}}\left(\underline{\in \mathbb{R}^{m}}\right)$ be discrete
 then the conditional joint pmf of \mathbf{Y} given $\mathbf{X}=\mathbf{x}$ is defined as

$$
\begin{aligned}
\left.p_{\underline{\mathbf{Y} \mid \mathbf{X}}} \underline{\mathbf{y} \mid \mathbf{x}}\right) \equiv P(\underline{\{\mathbf{Y}=\mathbf{y}\}} \mid \underline{\{\mathbf{X}=\mathbf{x}\}}) & =\frac{P(\{\mathbf{X}=\mathbf{x}, \mathbf{Y}=\mathbf{y}\})}{P(\{\mathbf{X}=\mathbf{x}\})} \\
& =\frac{p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}{p_{\mathbf{X}}(\mathbf{x})}=\frac{\text { joint }}{\text { marginal }}
\end{aligned}
$$

if $\underline{p_{\mathbf{x}}}(\mathbf{x})>0$. The probability is defined to be zero if $\underline{p_{\mathbf{x}}}(\mathbf{x})=0$.
$>$ Some Notes.

- For each fixed $\mathbf{x}, \underline{p}_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$ is a joint pmf for \mathbf{y}, since

$$
\underline{\sum_{\mathbf{y}}} p_{\underline{\mathbf{Y} \mid \mathbf{X}}}(\underline{\mathbf{y}} \mid \mathbf{x})=\frac{1}{p_{\mathbf{X}}(\mathbf{x})} \underline{\sum_{\mathbf{y}}} p_{\underline{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \underline{\mathbf{y}})=\frac{1}{p_{\mathbf{X}}(\mathbf{x})} \times \underline{p_{\mathbf{X}}(\mathbf{x})}=1
$$

- For an event B of $\underline{\mathbf{Y}}$, the probability that $\underline{\mathbf{Y} \in B}$ given $\mathbf{X}=\mathbf{x}$ is

$$
P(\underline{\mathbf{Y} \in B} \mid \underline{\mathbf{X}=\mathbf{x}})=\sum_{\mathbf{u} \in B} p_{\underline{\mathbf{Y} \mid \mathbf{X}}}(\underline{\mathbf{u}} \mid \mathbf{x}) .
$$

- The conditional joint $c d f$ of $\underline{\mathbf{Y}}$ given $\mathbf{X}=\mathbf{x}$ can be similarly defined from the conditional joint $\operatorname{pmf} \underline{p}_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$, i.e.,

$$
F_{\underline{\mathbf{Y} \mid \mathbf{X}}}(\underline{\mathbf{y}} \mid \mathbf{x})=P\left(\underline{\mathbf{Y} \leq \underline{\mathbf{y}} \mid \underline{\mathbf{X}=\mathbf{x}})=\sum_{\underline{\mathbf{u} \leq \mathbf{y}}} p_{\underline{\mathbf{Y} \mid \mathbf{X}}}(\underline{\mathbf{u}} \mid \mathbf{x})}\right.
$$

\rightarrow Theorem. Let $\underline{X}_{1}, \ldots, X_{m}$ be independent and

$$
\underline{X_{i}} \underline{\operatorname{Poisson}}\left(\underline{\lambda}_{\underline{i}}\right), i=1, \ldots, \underline{m}
$$

Let $Y=X_{1}+\cdots+X_{m}$, then

$$
\left(X_{1}, \ldots, X_{m} \mid \underline{Y=n}\right) \sim \underline{\text { Multinomial }}\left(\underline{n}, \underline{m}, \underline{p_{1}}, \ldots, \underline{p}_{\underline{m}}\right)
$$

where $\underline{p}_{i}=\lambda_{i} \underline{i}\left(\lambda_{1} \underline{\left.+\cdots+\lambda_{\underline{m}}\right)}\right.$ for $i=1, \ldots, m$.

Proof. The joint pmf of $\left(\underline{X_{1}}, \ldots, X_{\underline{m}}, \underline{Y}\right)$ is

$$
\begin{aligned}
& p_{\mathbf{X}, Y}\left(x_{1}, \ldots, x_{m}, n\right)=P\left(\left\{X_{1}=\bar{x}_{1}, \ldots, X_{m}=x_{m}\right\} \cap\{Y=n\}\right) \\
& \quad= \begin{cases}P\left(X_{1}=x_{1}, \ldots, \overline{X_{m}=x_{m}}\right), & \text { if } \frac{x_{1}+\cdots+x_{m}=n}{} \\
\hline \underline{x_{1}+\cdots+x_{m} \neq n}\end{cases}
\end{aligned}
$$

Furthermore, the distribution of Y is Poisson $\left(\lambda_{1}+\cdots+\lambda_{m}\right)$, i.e., ${ }^{\text {p.7.53 }}$

$$
p_{Y}(n)=P(Y=n)=\frac{\frac{e^{-\left(\lambda_{1}+\cdots+\lambda_{m}\right)}\left(\lambda_{1}+\cdots+\lambda_{m}\right)^{n}}{n!} .}{}
$$

Therefore, for $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{m}\right)$ wheres $x_{i} \in\{0,1,2, \ldots\}, i=1, \ldots, m$, and $\underline{x}_{1}+\cdots+x_{\underline{m}}=\underline{n}$, the conditional joint pmf of $\underline{\mathbf{X}}$ given $Y=n$ is

$$
\begin{aligned}
& \underline{p_{\mathbf{X} \mid Y}(\mathbf{x} \mid n)}=\frac{\frac{p_{\mathbf{X}, Y}\left(x_{1}, \ldots, x_{m}, n\right)}{p_{Y}(n)}=\frac{\prod_{i=1}^{m} \frac{e^{-\lambda_{i} \lambda_{i}^{x_{i}}}}{x_{i}!}}{\frac{e^{-\left(\lambda_{1}+\cdots+\lambda_{m}\right)}\left(\lambda_{1}+\cdots+\lambda_{m}\right)^{n}}{n!}}}{\quad=\frac{n!}{x_{1}!\times \cdots \times x_{m}!} \times\left(\frac{\lambda_{1}}{\lambda_{1}+\cdots+\lambda_{m}}\right)^{x_{1}} \times \cdots \times\left(\frac{\lambda_{m}}{\lambda_{1}+\cdots+\lambda_{m}}\right)^{x_{m}} .} \\
& \quad=\quad .
\end{aligned}
$$

- Definition. Let $\underline{\mathbf{X}}\left(\underline{\in \mathbb{R}^{n}}\right)$ and $\underline{\mathbf{Y}}\left(\in \mathbb{R}^{m}\right)$ be continuous random vectors and ($\mathbf{X , Y}$) have a joint pdf $f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then the conditional joint pdf of $\underline{\mathbf{Y}}$ given $\mathbf{X}=\mathbf{x}$ is defined as

$$
\underline{f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})} \equiv \frac{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})}=\frac{\text { joint }}{\underline{\text { marginal }}}
$$

if $f_{\mathbf{X}}(\mathbf{x})>0$, and 0 otherwise.

Some Notes.

- $\underline{\mathrm{P}(\mathbf{X}=\mathbf{x})=0}$ for a continuous random vector $\underline{\mathbf{X}}$.
- The justification of $\underline{f}_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$ comes from

$$
\begin{aligned}
& P(\underline{\mathbf{Y} \leq \mathbf{y} \mid} \underline{\mathbf{x}-(\Delta \mathbf{x} / 2)<\mathbf{X} \leq \mathbf{x}+(\Delta \mathbf{x} / 2))} \\
& =\frac{\int_{-\infty}^{\mathbf{y}} \int_{\mathbf{x}-(\Delta \mathbf{x} / 2)}^{\mathbf{x}+(\Delta \mathbf{2})} f_{\mathbf{X}, \mathbf{Y}(\mathbf{u}, \mathbf{v}) d \mathbf{u} d \mathbf{v}}}{\int_{\mathbf{x}-(\Delta \mathbf{x} / 2)}^{\mathrm{x}+(\Delta x)} f_{\mathbf{X}}(\mathbf{t}) d \mathbf{t}} \\
& \approx \frac{\int_{-\infty}^{\mathbf{y}} f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{v})|\Delta \mathbf{x}| d \mathbf{v}}{f_{\mathbf{X}}(\mathbf{x})|\Delta \mathbf{x}|}=\int_{-\infty}^{\mathbf{y}} \frac{\frac{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{v})}{f_{\mathbf{X}}(\mathbf{x})}}{\mathbf{x}^{2}} d \mathbf{v}
\end{aligned}
$$

- For each fixed $\mathbf{x}, \underline{f_{\mathbf{Y} \mid \mathbf{X}}}(\mathbf{y} \mid \mathbf{x})$ is a joint pdf for \mathbf{y}, since

$$
\underline{\int_{-\infty}^{\infty}} f_{\mathbf{Y} \mid \mathbf{X}}(\underline{\mathbf{y}} \mid \mathbf{x}) d \mathbf{y}=\frac{1}{f_{\mathbf{X}}(\mathbf{x})} \underline{\int_{-\infty}^{\infty}} \underline{f_{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \underline{\mathbf{y}}) d \mathbf{y}=\frac{1}{f_{\mathbf{X}}(\mathbf{x})} \times f_{\mathbf{X}}(\mathbf{x})=1 .
$$

- For an event B of \mathbf{Y}, we can write

$$
P(\underline{\mathbf{Y} \in B} \mid \underline{\mathbf{X}=\mathbf{x}})=\int_{\underline{B}} f_{\underline{\mathbf{Y} \mid \mathbf{X}}}(\underline{\mathbf{y}} \mid \mathbf{x}) d \mathbf{y} .
$$

- The conditional joint cdf of $\underline{\mathbf{Y}}$ given $\mathbf{X}=\mathbf{x}$ can be similarly defined from the conditional joint pdf $\underline{f}_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$, i.e.,

$$
\underline{F_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})}=P(\underline{\mathbf{Y} \leq \mathbf{y}} \mid \mathbf{X}=\mathbf{x})=\underline{\int_{-\infty}^{\mathbf{y}}} f_{\underline{\mathbf{Y} \mid \mathbf{X}}}(\underline{\mathbf{t}} \mid \mathbf{x}) d \mathbf{t} .
$$

Example. If X and Y have a joint pdf

$$
f(x, y)=\frac{2}{(1+x+y)^{3}}
$$

for $0 \leq x, y<\infty$, then

$$
f_{X}(x)=\int_{0}^{\infty} f(x, y) d y=-\left.\frac{1}{(1+x+y)^{2}}\right|_{0} ^{\infty}=\frac{1}{(1+x)^{2}},
$$

for $0 \leq x<\infty$. So,

$$
\underline{f_{Y \mid X}(y \mid x)}=\frac{f(x, y)}{f_{X}(x)}=\frac{2(1+x)^{2}}{(1+x+y)^{3}},
$$

and, $P(Y>c \mid X=x)=\int_{c}^{\infty} \frac{2(1+x)^{2}}{(1+x+y)^{3}} d y$

$$
=-\left.\frac{(1+x)^{2}}{(1+x+y)^{2}}\right|_{y=c} ^{\infty}=\frac{(1+x)^{2}}{(1+x+c)^{2}} .
$$

- Mixed Joint Distribution: Definition of conditional distribution can be similarly generalized to the case in which some random variables are discrete and the others continuous (see a later example).
- Theorem (Multiplication Law). Let \mathbf{X} and \mathbf{Y} be random vectors and $(\underline{\mathbf{X}}, \mathbf{Y})$ have a joint pdf $\underline{f}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) / \mathrm{pmf} \underline{p}_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$$
\begin{aligned}
& p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})=\frac{p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})}{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}=\underline{f}_{\mathbf{Y} \mid \mathbf{X}(\mathbf{X}(\mathbf{y})}(\mathbf{x})
\end{aligned} \underline{f}_{f_{\mathbf{X}}(\mathbf{x})} \text {, or }
$$

Proof. By the definition of conditional distribution.

- Theorem (Law of Total Probability). Let \mathbf{X} and \mathbf{Y} be random vectors and $(\underline{\mathbf{X}, \mathbf{Y}})$ have a joint $\mathrm{pdf} \underline{f_{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \mathbf{y}) / \mathrm{pmf} \underline{p_{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \mathbf{y})$, then

$$
\begin{aligned}
p_{\mathbf{Y}}(\mathbf{y}) & =\underline{\sum_{\mathbf{x}=-\infty}^{\infty}} \underline{p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})} p_{\mathbf{X}}(\mathbf{x})
\end{aligned} \text {, or }, \text {, }
$$

Proof. By the definition of marginal distribution and the multiplication law.

- Theorem (Bayes Theorem). Let \mathbf{X} and \mathbf{Y} be random vectors and $(\underline{\mathbf{X}, \mathbf{Y}})$ have a joint pdf $\underline{f}_{\underline{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \mathbf{y}) / \mathrm{pmf} \underline{p}_{\underline{\mathbf{X}, \mathbf{Y}}}(\mathbf{x}, \mathbf{y})$, then

$$
\begin{aligned}
& \underline{p_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})}=\frac{p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) p_{\mathbf{X}}(\mathbf{x})}{\sum_{\mathbf{x}=-\infty}^{\infty} p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) p_{\mathbf{X}}(\mathbf{x})}, \text { or } \\
& \underline{f_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})}=\frac{f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) f_{\mathbf{X}}(\mathbf{x})}{\int_{-\infty}^{\infty} f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}}
\end{aligned}
$$

Proof. By the definition of conditional distribution, multiplication law, and the law of total probability.

- Suppose that $\underline{X} \sim \underline{\operatorname{Uniform}}(0,1)$, and $\left(\underline{Y}_{1}, \ldots, Y_{\underline{n}} \mid \underline{X=x}\right)$ are i.i.d. with $\underline{\operatorname{Bernoulli}}(\underline{x})$, i.e.,

$$
p_{\mathbf{Y} \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=x^{y_{1}+\cdots+y_{n}}(1-x)^{n-\left(y_{1}+\cdots+y_{n}\right)}
$$ for $y_{1}, \ldots, y_{n} \in\{0,1\}$.

- By the multiplication law, for $y_{1}, \ldots, y_{n} \in\{0,1\}$ and $\underline{0<x<1}$,

$$
\underline{p_{\mathbf{Y}, X}\left(y_{1}, \ldots, y_{n}, x\right)}=x \underline{\underline{y_{1}+\cdots+y_{n}}}(1-x)^{\left.n-\underline{\left(y_{1}+\cdots+y_{n}\right.}\right)}
$$

- Suppose that we observed $\underline{Y}_{1}=1, \ldots, Y_{\underline{n}}=1$.
- By the law of total probability,

$$
\begin{aligned}
& P\left(\underline{\left.Y_{1}=1, \ldots, Y_{n}=1\right)}=\underline{p_{\mathbf{Y}}}(\underline{1, \ldots, 1)}\right. \\
& \quad=\int_{0}^{1} \underline{p_{\mathbf{Y} \mid X}(1, \ldots, 1 \mid x) f_{X}(x) d x} \\
& \quad=\int_{0}^{1} x^{n} d x=\left.\frac{1}{n+1} x^{n+1}\right|_{0} ^{1}=\underline{\frac{1}{n+1}}
\end{aligned}
$$

- And, by Bayes’ Theorem,

$$
\begin{aligned}
& f_{X \mid \mathbf{Y}}\left(x \mid Y_{1}=1, \ldots, Y_{n}=1\right) \\
& \quad=\frac{p_{\mathbf{Y} \mid X}(1, \ldots, 1 \mid x) f_{X}(x)}{p_{\mathbf{Y}}(1, \ldots, 1)}=\underline{(n+1) x^{n}}
\end{aligned}
$$

for $\underline{0<x<1}$, i.e., $\left(\underline{X} \mid \underline{Y_{1}}=1, \ldots, Y_{\underline{n}} \underline{=1}\right) \sim \underline{\operatorname{Beta}}(\underline{n+1}, \underline{1})$.
(cf., marginal distribution of $\underline{X} \sim \underline{\operatorname{Uniform}(0,1)}=\underline{\operatorname{Beta}}(\underline{1}, \underline{1})$.

$$
\begin{aligned}
& P\left(\underline{Y_{n+1}=1} \mid \underline{Y_{1}=1, \ldots, Y_{n}=1}\right) \\
& \quad=\frac{P\left(Y_{1}=1, \ldots, Y_{n+1}=1\right)}{P\left(Y_{1}=1, \ldots, Y_{n}=1\right)}=\frac{1 /(n+2)}{1 /(n+1)}=\frac{n+1}{n+2} .
\end{aligned}
$$

- (exercise) In general, it can be shown that

$$
\left.\left(\underline{X} \mid \underline{Y_{1}}=\underline{y}_{\underline{1}}, \ldots, Y_{\underline{n}}=\underline{y}_{\underline{n}}\right) \sim \underline{\operatorname{Beta}}\left(\underline{y_{1}} \underline{+\cdots+y_{n}}\right)+1, \underline{n-\left(y_{1}\right.} \underline{\left.+\cdots+y_{\underline{n}}\right)+1}\right)
$$

- Theorem (Conditional Distribution \& Independent). Let $\underline{\mathbf{X} \text { and } \mathbf{Y} \text { be }}$
 Then, $\underline{\mathbf{X} \text { and } \mathbf{Y}}$ are independent, i.e.,

$$
\begin{aligned}
p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) & =p_{\mathbf{X}}(\mathbf{x}) \times p_{\mathbf{Y}}(\mathbf{y}), \text { or } \\
f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) & =f_{\mathbf{X}}(\mathbf{x}) \times f_{\mathbf{Y}}(\mathbf{y}),
\end{aligned}
$$

if and only if

$$
\begin{aligned}
& p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})=p_{\mathbf{Y}}(\mathbf{y}), \\
& f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})=\text { or } \\
& f_{\mathbf{Y}}(\mathbf{y})
\end{aligned}
$$

Proof. By the definition of conditional distribution. $>$ Intuition.

- The 2 graphs about the joint pmf/pdf of independent r.v.'s in LNp.7-27
- $p_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$ or $f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x})$ offers information about the distribution of \mathbf{Y} when $\underline{X}=\mathbf{x}$.
$p_{\mathbf{Y}}(\mathbf{y})$ or $f_{\mathbf{Y}}(\mathbf{y})$ offers information about the distribution of \mathbf{Y} when $\underline{\mathbf{X}}$ not observed.
* Reading: textbook, Sec 6.4, 6.5

