$>$ The pdf of Y, denoted by f_{Y}
1.Suppose that \underline{g} is a differentiable strictly increasing function.

$\Rightarrow f_{Y}(y)=0$ 2.Suppose that \underline{g} is a differentiable strictly decreasing function.

$$
\begin{aligned}
& \text { For } \underline{\underline{y} \in R_{\underline{Y}}} \text {, } \\
& f_{Y}(y)=\frac{d}{d y} F_{Y}(y) \stackrel{d}{=} \frac{d}{d y}\left(1-F_{X}\left(g^{-1}(y)\right)\right)
\end{aligned}
$$

g^{-1} exists and is also
strictly decreasing
C.f. OTheorem. Let X be a continuous random variable with pdf $^{\text {Th }}$ \underline{f}_{X}. Let $\underline{Y=g(X), ~ w h e r e ~} \underline{g}$ is differentiable and strictly
Theorem
?
for \underline{y} such that $\underline{y=g(x)}$ for some x, and $\underline{f_{\underline{Y}}}(y)=0$ otherwise.

- Q: What is the role of $\left|d g^{-1}(y) / d y\right|$? How to interpret it?

- Find the pdf $f_{\underline{Y}}$ of $Y=a X+b$, where $\underline{a \neq 0}$.
strictly monotone

$$
y=g(x)=a x+b \Rightarrow x=g^{-1}(y)=\frac{y-b}{a} \Rightarrow\left|\frac{d}{d y} g^{-1}(y)\right|=\frac{1}{|a|}
$$

$$
f_{Y}(y)=f_{X}\left(\frac{y-b}{a}\right) \cdot \frac{1}{|a|} \text { For } y \leqslant 0, F_{Y}(y)=P(Y \leqslant y)
$$

Find the pdf f_{Y} of $Y=\underline{1} / X$.

$$
\left.\begin{array}{r}
y=g(x)=\frac{1}{x} \Rightarrow x=g^{-1}(y)=\frac{1}{y} \Rightarrow\left|\frac{d}{d y} g^{-1}(y)\right|=\left|-y^{-2}\right|=\frac{1}{y^{2}} \\
f_{Y}(y)=f_{X}\left(\frac{1}{y}\right) \cdot \frac{1}{y^{2}}
\end{array} \right\rvert\, \begin{array}{r}
\text { For } y>0 . F_{Y}(y)=P(Y \leqslant \boldsymbol{y}) \\
=P(\{x \leqslant 0\} \cup\{\times 1 / y\}) \\
\\
=F_{X}(0)+1-F_{X}(1 / y)
\end{array}
$$

cf. © Find the cdt $F_{\underline{Y}}$ and pdf $f_{\underline{Y}}$ of $Y=X^{2}$.

$$
\text { ㅁ } F_{Y}(y)=P(Y \leq y)=P(-\sqrt{y} \leq X \leq \sqrt{y})
$$

in $\mathrm{N}_{\mathrm{p} .5}$-12
$[-\sqrt{y}, \sqrt{y}]=(-\infty, \sqrt{y}] \backslash(-\infty,-\sqrt{y})-\overline{\mathcal{F}} \quad P(X \in(-\infty, \sqrt{y}])-P(X \in(-\infty,-\sqrt{y}))$

For $y \leq 0, f_{Y}(y)=0$.

$$
\begin{gathered}
\left.f_{Y}(y)=\sum_{i=1}^{n} \frac{\delta_{i}}{9} \cdot f_{X}\left(g_{i}^{-1}(y)\right) \right\rvert\, \frac{d g_{i}^{-1}(y)}{d y} \\
\delta_{i}=\left\{\begin{array}{l}
1, \text { if } \exists x_{i} \text { s.t. } g_{i}\left(x_{i}\right)=y, \\
0, \text { otherwise }
\end{array}\right. \\
Q: \text { How to obtain } F_{Y}(y) \\
\text { from } F_{X}(x) ?
\end{gathered}
$$

- Expectation, Mean, and Variance
(C.5.) Definition. If \underline{X} has a pdf f_{X}, then the expectation of \underline{X} is $\begin{aligned} & \text { Definition } \\ & \text { in } L_{p} .5-13\end{aligned}$ defined by

$$
E(X)=\int_{-\infty}^{\infty} \underline{\underline{x} \cdot]} \sum_{x} \text { in discrete case } \cdot f_{X}(x) d x \text {, prob. that } \mathrm{X} \text { near } \boldsymbol{x}
$$ provided that the integral converges absolutely. $\iint_{-\infty}^{\infty}|x| f_{x}(x) d x<\infty$ (css)

$$
\begin{aligned}
f_{X}(x) & = \begin{cases}\frac{1}{\beta-\alpha}, & \text { if } \alpha<x \leq \beta \\
0, & \text { otherwise }\end{cases} \\
E(X) & =\int_{\alpha}^{\beta} x \cdot \frac{1}{\beta-\alpha} d x=\left.\frac{1}{2} \cdot \frac{x^{2}}{\beta-\alpha}\right|_{\alpha} ^{\beta} \\
& =\frac{1}{2} \cdot \frac{\beta^{2}-\alpha^{2}}{\beta-\alpha}=\frac{\alpha+\beta}{2}
\end{aligned}
$$

discrete case. QExpectation of Linear Function. For $a, b \in \mathbb{R}$, $L N_{p}$ 5-16

$$
\begin{aligned}
& \text { Expectation of Linear Function. For } a, b \in \mathbb{R} \text {, fixed constants } \\
& \text { (f. } \quad\left[\begin{array}{c}
\text { transformation } \\
Y=a X+b
\end{array}\right] \\
& \text { since } E(a X+b)=a \cdot E(X)+b \\
& E(Y)^{\prime \prime} \quad=a e_{-\infty}^{\infty}(a x+b) f_{X}(x) d x \\
& \quad=a \int_{-\infty}^{\infty} x \cdot f_{X}(x) d x+b \int_{-\infty}^{\infty} f_{X}(x) d x=a \cdot E(X)+b .
\end{aligned}
$$

c.f. \rightarrowDefinition. If \underline{X} has a pdf f_{X}, then the expectation of \underline{X} is also called the mean of \underline{X} or f_{X} and denoted by μ_{X}, so that

$$
\mu_{X}=E(X)=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x .
$$

The variance of X (or \underline{f}_{X}) is defined as $\sim \Sigma$ (discrete case)

deviation of
X from μ_{x}

$\int_{-\infty}^{\infty}(x-\mu)^{2} f_{x}(x) d x$
$=\int_{-\infty}^{\infty}\left(x^{2}-2 \mu x+\mu^{2}\right) f_{x}(x) d x$
$=\int_{-\infty}^{\infty} x^{2} f_{x}(x) d x$
$-2 \mu \int_{-\infty}^{\infty} x f_{x}(x) d x$
$+\mu^{2} \int_{-\infty}^{-\infty} f_{x}(x) d x$
$=E\left(x^{2}\right)-2 \mu^{2}+\mu^{2}$

