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The pdf of Y, denoted by fY

1.Suppose that g is a differentiable strictly increasing function. 

For y∈RY, 

 Theorem. Let X be a continuous random variable with pdf 

fX. Let Y=g(X), where g is differentiable and strictly 

monotone. Then, the pdf of Y, denoted by fY, is

for y such that y=g(x) for some x, and fY(y)=0 otherwise.

fY (y) = fX(g
−1(y)) dg−1(y)

dy
,

2.Suppose that g is a differentiable strictly decreasing function. 

For y∈RY,
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 Q: What is the role of |dg−1(y)/dy|? How to interpret it?

Some Examples. Given the pdf fX of random variable X, 

 Find the pdf fY of Y=aX+b, where a≠0.

 Find the pdf fY of Y=1/X.
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 Find the cdf FY and pdf fY of Y=X2. 





 Q: How to find the cdf FY and pdf fY for general piecewise 

strictly monotone transformation?

p. 6-13

• Expectation, Mean, and Variance

Definition. If X has a pdf fX, then the expectation of X is 

defined by

provided that the integral converges absolutely.

E(X) =
∞

−∞
x · fX(x) dx,

 Example (Uniform Distributions). If 

then

fX (x) =

�
1

β−α
, if α < x � β,

0, otherwise,

Some properties of expectation

 Expectation of Transformation. If Y=g(X), then 

provided that the integral converges absolutely.

Proof. The proof is given in LNp.6-16

E(Y ) =
∞

−∞
y · fY (y) dy =

∞

−∞
g(x) · fX(x) dx,
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 Expectation of Linear Function. For a, b∈ℝ, 

E(aX+b)=a·E(X)+b, 

since

Definition. If X has a pdf fX, then the expectation of X is also 

called the mean of X or fX and denoted by µX, so that

The variance of X (or fX) is defined as

and denoted by .  The σX is called the standard deviation.

µX = E(X) =
∞

−∞
x · fX(x) dx.

σ2X

Some properties of mean and variance

 The mean and variance for continuous

random variables have the same intuitive 

interpretation as in the discrete case.

 Var(X) = E(X2) – [E(X)]2
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