

p. 6-34

- The N(0, 1) distribution is very important since properties of any other normal distributions can be found from those $\oint \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t/2} dt$ of the standard normal.
 - ullet The \underline{cdf} of $\underline{N(0,1)}$ is usually denoted by $\underline{\Phi}$. The close form
 - □ Theorem. Suppose that $X \sim N(\mu, \sigma^2)$. The cdf of X is

$$P(\mathbf{X} \leq \mathbf{X}) = P(\underbrace{\mathbf{X} - \mathbf{M}}_{\mathbf{S}} \leq \underbrace{\mathbf{X} - \mathbf{M}}_{\mathbf{S}}) \underbrace{F_X(x)} = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

$$\underline{Proof.} \ F_X(x) = F_Z\left(\frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

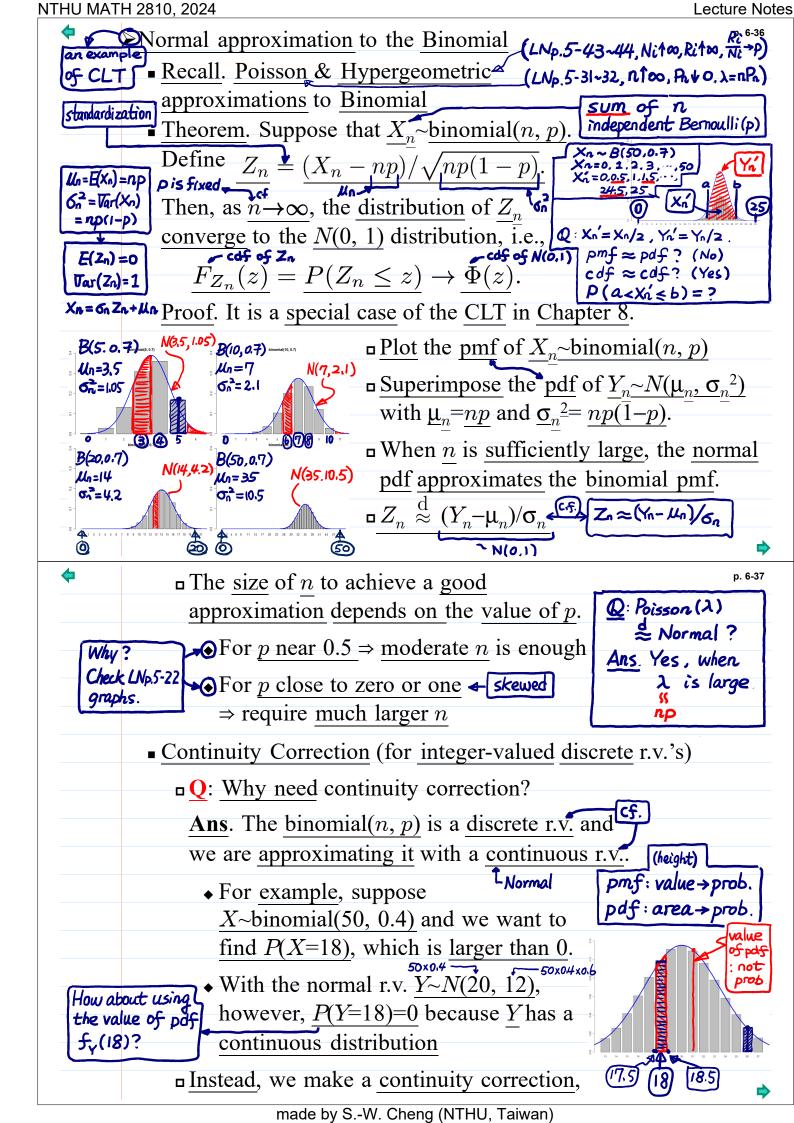
■ Example. Suppose that $X \sim N(\mu, \sigma^2)$. For $-\infty < a < b < \infty$,

$$\begin{split} & \frac{P(a < X < b)}{=} P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) \\ & = P\left(\frac{a - \mu}{\sigma} < \underbrace{Z}_{\bullet} < \frac{b - \mu}{\sigma}\right) \\ & = P\left(Z < \frac{b - \mu}{\sigma}\right) - P\left(Z < \frac{a - \mu}{\sigma}\right) \\ & = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right). \end{split}$$

□ Table 5.1 in textbook gives values of Φ .

To read the table:

- 1. Find the <u>first value</u> of \underline{x} up to the <u>first place</u> of decimal \underline{x} $\Phi(x)$: cdf of in the left hand column.
 - 2. Find the second place of decimal across the top row.
 - 3 The value of $\Phi(x)$ is where the row from the first step


-1 0 1 1 ×	3. The value of $\Phi(x)$ is where the row from the first step											
and the column from the second step intersect.												
.395		TABLE						AL CURV				
	\A_{\begin{subarray}{c} \cdot		.01	(.02)	.03	.04	.05	(.06)	.07	.08	.09	
ž @-ž	0.	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
$\phi(x)$: pdf of	1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
N(0,1)	(.2)	4.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
$(\bar{\Phi}(z) + \bar{\Phi}(-z))/2 = 0.5$	•			•	• •							
	-3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995 —	
$\Phi(0) = \frac{1}{2}$.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	
Ф(0.≥2)=0.5871	3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	
$\Phi(3.36)=0.9996$ For the values greater than $z=3.49$, $\Phi(z)\approx 1$.												
• For negative values of z, use $\Phi(z)=1-\Phi(-z)$											ential	
Z=X1+X2++Xn, n is large (e.g., binomial -> Bernoulli, negative binomial -> geometric,												

made by S.-W. Cheng (NTHU, Taiwan)

Normal distribution plays a central role in the limit theorems

of probability (e.g., Central Limit Theorem, CLT, chapter 8)

中央杨服定理

p. 6-38

p. 6-39

$$P(X = 18) = P(\underline{17.5 < X < 18.5}$$

$$= P\left(\frac{17.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}} < \underline{Z_n} < \frac{18.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}}\right)$$

$$\begin{array}{c|c} \text{by CLT} & \approx & P\left(\frac{17.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}} < \underbrace{Z} < \frac{18.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}}\right) \end{array}$$

$$\begin{array}{ll} & \mathcal{E} \quad P\left(\frac{17.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}} < \underbrace{Z} < \frac{18.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}}\right) \\ & = \quad P\left(-\frac{2.5}{\sqrt{12}} < Z < -\frac{1.5}{\sqrt{12}}\right) = P\left(Z < -\frac{1.5}{\sqrt{12}}\right) - P\left(Z < -\frac{2.5}{\sqrt{12}}\right) \\ & = \quad \Phi\left(-\frac{1.5}{\sqrt{12}}\right) - \Phi\left(-\frac{2.5}{\sqrt{12}}\right) = \left(1 - \Phi\left(\frac{1.5}{\sqrt{12}}\right)\right) - \left(1 - \Phi\left(\frac{2.5}{\sqrt{12}}\right)\right) \end{array}$$

$$= \Phi\left(2.5/\sqrt{12}\right) - \Phi\left(1.5/\sqrt{12}\right)$$

and can obtain the approximate value from Table 5.1.

□ Similary,

$$P(X \ge 30) = P(X > 29.5) = P\left(Z_n > \frac{29.5 - (50.0.4)}{\sqrt{12}}\right)$$

by CLT
$$\approx P(Z > 9.5/\sqrt{12}) = 1 - \Phi(9.5/\sqrt{12}).$$

$$P(\underline{10 \le X \le 30}) = P(\underline{9.5 < X < 30.5})$$

$$P(\underline{10 \le X \le 30}) = P(\underline{9.5 < X < 30.5})$$

$$= P\left(\frac{9.5 - (50 \cdot 0.4)}{\sqrt{12}} < \underline{Z_n} < \frac{30.5 - (50 \cdot 0.4)}{\sqrt{12}}\right)$$

$$\approx P\left(-10.5/\sqrt{12} < \underline{Z} < 10.5/\sqrt{12}\right)$$
29.5

$$\frac{\approx}{30} = \Phi(10.5/\sqrt{12}) - \Phi(-10.5/\sqrt{12}) = I - \Phi(\frac{10.5}{\sqrt{12}})$$
by CLT = $2 \cdot \Phi(10.5/\sqrt{12}) - 1$

by CLT
$$= 2 \cdot \Phi \left(10.5/\sqrt{12}\right) - 1$$

- Cdf: no close form, but usually denoted by $\Phi((x-\mu)/\sigma)$.
- Parameters: $\mu \in \mathbb{R}$ and $\sigma > 0$.
- Mean: $E(X) = \mu$.
- Variance: $Var(X) = \sigma^2$.

$$y = \left(\frac{x - \nu}{\alpha}\right)^{\beta} \Rightarrow x = \alpha y^{\frac{1}{\beta}} + \nu$$

$$\frac{dx}{dy} = \frac{\alpha}{\beta} y^{\frac{1}{\beta} - 1} \Rightarrow dx = \frac{\alpha}{\beta} y^{\frac{1}{\beta} - 1} dy$$

章 • Weibull Distribution

For
$$\alpha$$
, $\beta > 0$ and $\nu \in \mathbb{R}$, the function possible values of λ and $\beta = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}}, & \text{if } x \geq \nu, \\ 0, & \text{if } x < \nu, \end{cases}$

is a pdf since (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$, and (2)

$$\frac{\int_{-\infty}^{\infty} f(x) \, dx}{= \int_{\nu}^{\infty} \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}} \, dx}$$

$$= \int_{0}^{\infty} \frac{e^{-y}}{\alpha} \, dy = -e^{-y} \Big|_{0}^{\infty} = \underline{1}.$$
The distribution of a random variable X with this not

ullet The distribution of a random variable X with this pdf is called the *Weibull* distribution with parameters α , β , and ν .

p. 6-40

p. 6-41

U=0

 $\Rightarrow a \times \sim Gamma(\alpha, \frac{\lambda}{a}), a > 0$

 $\theta \sim \text{Uniform}(-\frac{\pi}{2},\frac{\pi}{2})$

Let X = tan(0), then

X~(auchy(0,1)

(exercise)

Hint: X~Gamma(a, 2)

(exercise) The cdf of Weibull distribution is

by (
$$\Delta$$
) in LNp.6-39
$$F(x) = \begin{cases} 1 - e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}}, & \text{if } x \geq \nu, \\ 0, & \text{if } x < \nu. \end{cases}$$

Theorem. The mean and variance of a Weibull distribution with parameters α , β , and ν are

$$\mu = \alpha \Gamma \left(1 + \frac{1}{\beta} \right) + \nu \quad \text{and} \quad 5$$

$$\mathbf{E(x^2)-[E(x)]}^{\mathbf{Z}} = \sigma^2 \left\{ \Gamma\left(1+\frac{2}{\beta}\right) - \left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^2 \right\}.$$

Proof.
$$E(X) = \int_{v}^{\infty} x \cdot \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}} dx$$

$$= \int_{0}^{\infty} (\alpha y^{1/\beta} + \nu) e^{-y} dy$$

$$= \alpha \int_0^\infty \sqrt{1/\beta} e^{-\frac{1}{y}} dy + \nu \int_0^\infty e^{-\frac{y}{y}} dy = \alpha \Gamma \left(\frac{1}{\beta} + 1 \right) + \nu$$

$$= \alpha \int_0^\infty \sqrt[4]{\beta} e^{-y} dy + \nu \int_0^\infty e^{-y} dy = \alpha \Gamma \left(\frac{1}{\beta} + 1\right) + \nu$$

$$E(X^2) = \int_v^\infty x^2 \cdot \frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{x - \nu}{\alpha}\right)^{\beta}} dx \quad \text{pdf of exponential(1)}$$

$$\stackrel{\blacktriangledown}{=} \int_0^\infty (\alpha y^{1/\beta} + \nu)^2 e^{-y} \, dy$$

$$= \alpha^{2} \int_{0}^{\infty} y^{2/\beta} e^{-y} dy + 2\alpha\nu \int_{0}^{\infty} y^{1/\beta} e^{-y} dy + \nu^{2} \int_{0}^{\infty} e^{-y} dy$$

$$= \alpha^2 \Gamma\left(\frac{2}{\beta} + 1\right) + 2\alpha\nu\Gamma\left(\frac{1}{\beta} + 1\right) + \nu^2$$

Some properties

- Weibull distribution is widely used to model lifetime (cf., exponential)
- α : scale parameter; β : shape parameter; v: location parameter
- Theorem. If X~exponential(λ), then

I neorem. If
$$X \sim \text{exponential}(\lambda)$$
, then

 $Y = \alpha (\lambda X)^{1/\beta} + \nu$ Note: $\lambda \times \sim$ exponential(1)

_Thm(UVp.6-10) is distributed as Weibull with parameters α , β , and ν (exercise).


何• Cauchy Distribution

For $\mu \in \mathbb{R}$ and $\sigma > 0$, the function possible values of \times constants

$$f(x) = \frac{\sigma}{\pi} \cdot \frac{1}{\sigma^2 + (x - \mu)^2}, \quad -\infty < x < \infty,$$

 $\underbrace{y=2-\mu}_{s}$ is a pdf since (1) $\underline{f}(x) \geq 0$ for all $x \in \mathbb{R}$, and (2)

made by S.-W. Cheng (NTHU, Taiwan)

