

p. 6-34

- The N(0, 1) distribution is very important since properties of any other normal distributions can be found from those $\oint \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t/2} dt$ of the standard normal.
 - \Box The \underline{cdf} of $\underline{N(0,1)}$ is usually denoted by $\underline{\Phi}$. —no close form
 - □ Theorem. Suppose that $X \sim N(\mu, \sigma^2)$. The cdf of X is

$$P(\mathbf{x} < \mathbf{x}) = P(\underbrace{\mathbf{x} - \mathbf{\mu}}_{\mathbf{x}} < \underbrace{\mathbf{x} - \mathbf{\mu}}_{\mathbf{x}}) - \underbrace{F_X(x)}_{\mathbf{F}_X(x)} = \underbrace{\Phi\left(\frac{x - \mu}{\sigma}\right)}_{\mathbf{N}(\mathbf{o}, \mathbf{i})}.$$

$$\underline{Proof.} \ F_X(x) = F_Z\left(\frac{x - \mu}{\sigma}\right) = \underbrace{\Phi\left(\frac{x - \mu}{\sigma}\right)}_{\mathbf{N}(\mathbf{o}, \mathbf{i})}.$$

■ Example. Suppose that $X \sim N(\mu, \sigma^2)$. For $-\infty < a < b < \infty$,

$$\begin{split} & \frac{P(a < X < b)}{=} = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) \\ & = P\left(\frac{a - \mu}{\sigma} < \underbrace{Z}_{\text{N(o,1)}} < \underbrace{\frac{b - \mu}{\sigma}}_{\text{O}}\right) \\ & = P\left(Z < \frac{b - \mu}{\sigma}\right) - P\left(Z < \frac{a - \mu}{\sigma}\right) \\ & = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right). \end{split}$$

□ Table 5.1 in textbook gives values of Φ .

To read the table:

- $\Phi(x)$: cdf of 1. Find the <u>first value</u> of <u>x</u> up to the <u>first place</u> of decimal $\frac{1}{2}$ in the left hand column.
 - 2. Find the second place of decimal across the top row.

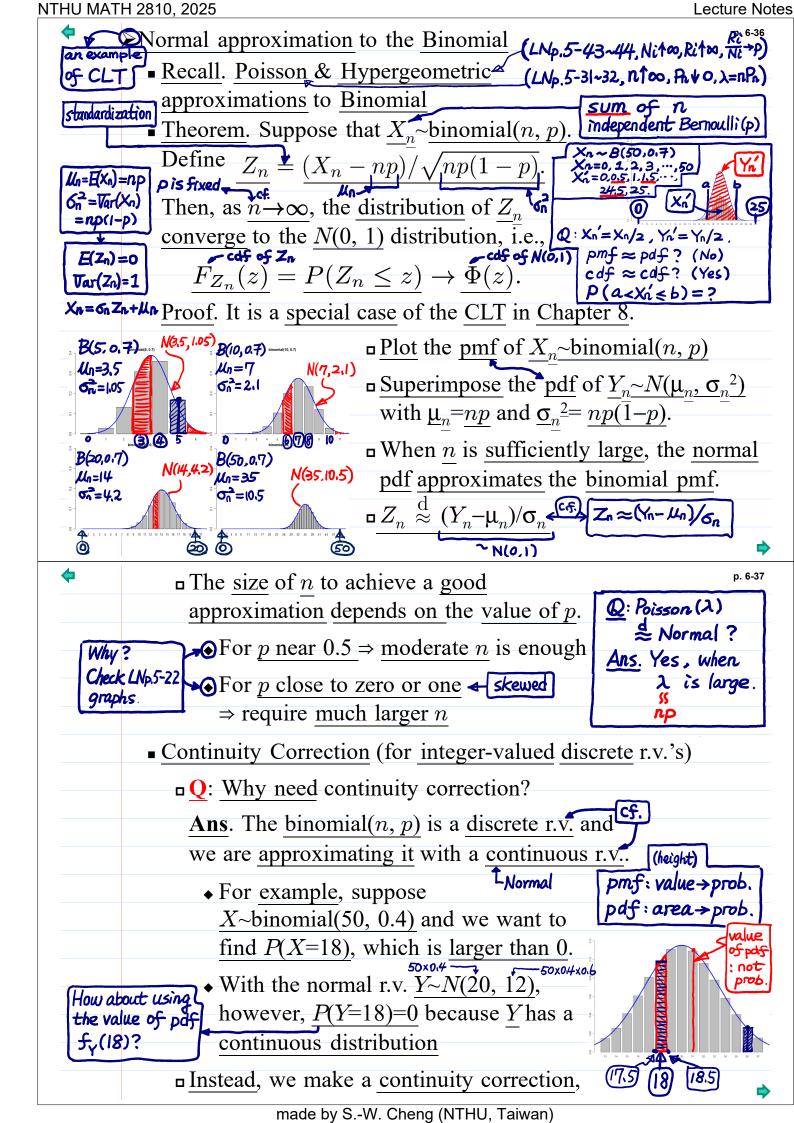
3. The value of $\Phi(x)$ is where the row from the first step										
and the <u>column</u> from the <u>second step intersect</u> .										
1.399	TABLE	5.1 : AREA	$\Phi(x)$ UN	DER THE	STANDA	RD NORN	MAL CURV	E TO THE	LEFT OF	x
	.00	.01	(.02)	.03	.04	.05	.06	.07	.08	.09
z 0- z	.0 .5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
$\phi(x)$: pdf of	.1 .5398	.5438	.5478	.5517	.5557	.5596	.56 <mark>36</mark>	.5675	.5714	.5753
N(0,1)	.2,5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
$(\bar{\Phi}(z) + \bar{\Phi}(-z))/2 = 0.5$			•	•						
300	$-3.2 \mid .9993$.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995 —
(の)=之	3.3 .9995	.9995	.9995	.9996	.9996	.9996	(.9996)	.9996	.9996	.9997
Ф(0.22)=0.587/	3.4 .9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
$\Phi(3.36)=0.9996$ For the values greater than $z=3.49$, $\Phi(z)\approx 1$.										
For negative values of z, use $\Phi(z)=1-\Phi(-z)$										
Z=X1+X2+···+ Xn, n is large (e.g., binomial -> Bernoulli, negative binomial -> geometric,										

made by S.-W. Cheng (NTHU, Taiwan)

Normal distribution plays a central role in the limit theorems

of probability (e.g., Central Limit Theorem, CLT, chapter 8)

中央極限定理



p. 6-38

p. 6-39

$$P(X = 18) = P(17.5 < X < 18.5)$$

$$= P\left(\frac{17.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}} < \underline{Z_n} < \frac{18.5 - (50 \cdot 0.4)}{\sqrt{50 \cdot 0.4 \cdot 0.6}}\right)$$

$$= \Phi\left(-\frac{1.5}{\sqrt{12}}\right) - \Phi\left(-\frac{2.5}{\sqrt{12}}\right) = \left(1 - \Phi\left(\frac{1.5}{\sqrt{12}}\right)\right) - \left(1 - \Phi\left(\frac{2.5}{\sqrt{12}}\right)\right)$$

$$= \Phi\left(2.5/\sqrt{12}\right) - \Phi\left(1.5/\sqrt{12}\right)$$

and can obtain the approximate value from Table 5.1.

□ Similary,

$$P(X \ge 30) = P(X > 29.5) = P\left(Z_n > \frac{29.5 - (50.0.4)}{\sqrt{12}}\right)$$

by CLT
$$\approx P(Z > 9.5/\sqrt{12}) = 1 - \Phi(9.5/\sqrt{12}).$$

$$P(\underbrace{10 \le X \le 30}) = P(\underbrace{9.5 < X < 30.5})$$

$$P\left(\frac{9.5 - (50.0.4)}{\sqrt{12}} < \frac{Z_n}{\sqrt{10}} < \frac{30.5 - (50.0.4)}{\sqrt{10}}\right)$$

$$P(\underbrace{10 \leq X \leq 30}) = P(\underbrace{9.5 < X < 30.5})$$

$$= P\left(\frac{9.5 - (50 \cdot 0.4)}{\sqrt{12}} < \underbrace{Z_n} < \frac{30.5 - (50 \cdot 0.4)}{\sqrt{12}}\right)$$

$$\approx P\left(-10.5/\sqrt{12} < \underbrace{Z} < 10.5/\sqrt{12}\right)$$

$$\Rightarrow \Phi\left(10.5/\sqrt{12}\right) - \Phi\left(-10.5/\sqrt{12}\right) = -\Phi\left(\frac{10.5}{\sqrt{12}}\right)$$
by CLT
$$= 2 \cdot \Phi\left(10.5/\sqrt{12}\right) - 1$$

by CLT
$$= 2 \cdot \Phi \left(10.5/\sqrt{12}\right) - 1$$

- Cdf: no close form, but usually denoted by $\Phi((x-\mu)/\sigma)$.
- Parameters: $\mu \in \mathbb{R}$ and $\sigma > 0$.
- Mean: $E(X) = \mu$.
- Variance: $Var(X) = \sigma^2$.

$$y = \left(\frac{x - \nu}{\alpha}\right)^{\beta} \Rightarrow x = \alpha y^{\frac{1}{\beta}} + \nu$$

$$\frac{dx}{dy} = \frac{\alpha}{\beta} y^{\frac{1}{\beta} - 1} \Rightarrow dx = \frac{\alpha}{\beta} y^{\frac{1}{\beta} - 1} dy$$

Weibull Distribution

For
$$\alpha$$
, $\beta > 0$ and $y \in \mathbb{R}$, the function possible values of x
$$f(x) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha} \right)^{\beta - 1} e^{-\left(\frac{x - \nu}{\alpha} \right)^{\beta}}, & \text{if } x \ge \nu, \\ 0, & \text{if } x < \nu, \end{cases}$$

is a pdf since (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$, and (2)

$$\frac{\int_{-\infty}^{\infty} f(x) \, dx}{= \int_{\nu}^{\infty} \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}} \, dx}$$

$$= \int_{0}^{\infty} \frac{e^{-y}}{\alpha} \, dy = -e^{-y} \Big|_{0}^{\infty} = \underline{1}.$$
The distribution of a random variable X with this not

■ The distribution of a random variable X with this pdf is called the *Weibull* distribution with parameters α , β , and ν .

p. 6-40

p. 6-41

 $X = tan(\theta)$

日~ Thifom (-王、王) Let X=tan(0), then

X~Cauchy(0.1)

(exercise)

U=0

Hint: X~Gamma(a, 2)

(exercise) The cdf of Weibull distribution is

by (A) in LNp.6-39
$$F(x) = \begin{cases} 1 - e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}}, & \text{if } x \geq \nu, \\ 0, & \text{if } x < \nu. \end{cases}$$

Theorem. The mean and variance of a Weibull distribution with parameters α , β , and ν are

$$\frac{\mu = \alpha \Gamma \left(1 + \frac{1}{\beta} \right) + \nu}{2} \quad \text{and} \quad \Gamma \left(1 + \frac{1}{\beta} \right) = \frac{1}{\beta} \left(1 + \frac{1}{\beta} \right)$$

$$\mathbf{E(x^2)}\text{-}\mathbf{[E(x)]}^2 = \sigma^2 = \alpha^2 \left\{ \Gamma \left(1 + \frac{2}{\beta} \right) - \left[\Gamma \left(1 + \frac{1}{\beta} \right) \right]^2 \right\}.$$

Proof.
$$E(X) = \int_{v}^{\infty} x \cdot \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}} dx$$

$$= \int_{0}^{\infty} (\alpha y^{1/\beta} + \nu) e^{-y} dy$$

$$= \alpha \int_0^\infty y^{1/\beta} e^{-y} dy + \nu \int_0^\infty e^{-y} dy = \alpha \Gamma\left(\frac{1}{\beta} + 1\right) + \nu$$

$$= \alpha \int_0^\infty \sqrt[4]{\beta} e^{-y} dy + \nu \int_0^\infty e^{-y} dy = \alpha \Gamma \left(\frac{1}{\beta} + 1\right) + \nu$$

$$E(X^2) = \int_v^\infty x^2 \cdot \frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{x - \nu}{\alpha}\right)^{\beta}} dx \quad \text{pdf of exponential(1)}$$

$$\stackrel{\Psi}{=} \int_0^\infty (\alpha y^{1/\beta} + \nu)^2 e^{-y} \, dy$$

$$= \alpha^{2} \int_{0}^{\infty} \sqrt[4]{\frac{1}{2}} dy + 2\alpha\nu \int_{0}^{\infty} \sqrt[4]{\frac{1}{\beta}} e^{-y} dy + \nu^{2} \int_{0}^{\infty} e^{-y} dy$$

$$= \alpha^2 \Gamma\left(\frac{2}{\beta} + 1\right) + 2\alpha \nu \Gamma\left(\frac{1}{\beta} + 1\right) + \nu^2$$

Some properties

- Weibull distribution is widely used to model lifetime (cf., exponential)
- α : scale parameter; β : shape parameter; v: location parameter
- Theorem. If X~exponential(λ), then

eorem. If
$$X\sim \text{exponential}(\lambda)$$
, then $\Rightarrow a \times \sim Gamma(\alpha, \frac{\lambda}{a})$, and $Y = \alpha (\lambda X)^{1/\beta} + \nu$ Note: $\lambda \times \sim \text{exponential}(1)$

~Thm(LNp.6-10) is distributed as Weibull with parameters α , β , and ν (exercise).

For $\mu \in \mathbb{R}$ and $\sigma > 0$, the function possible values of \times constants

$$f(x) = \frac{\sigma}{\pi} \cdot \frac{1}{\sigma^2 + (x - \mu)^2}, \quad -\infty < x < \infty,$$

 $\underline{y} = \underline{x} - \underline{u}$ is a pdf since (1) $\underline{f}(x) \ge 0$ for all $x \in \mathbb{R}$, and (2)

$$\Rightarrow dx = \text{ody} \quad \text{pdf of Caudy(0.1)} \stackrel{=}{=} \quad \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{1+y^2} \, dy = \frac{1}{\pi} \frac{\tan^{-1}(y)\big|_{-\infty}^{\infty} = \underline{1}.$$

made by S.-W. Cheng (NTHU, Taiwan)

