

made by S.-W. Cheng (NTHU, Taiwan)

Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Lecture Notes

• (exercise)
$$E(X^k) = \frac{\Gamma(\alpha+k)}{\lambda^k \Gamma(\alpha)}$$
, for $0 < k$, and
 $E(\frac{1}{X^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k$, and
 $E(\frac{1}{X^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
Some properties
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k$, and
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Lambda^k}$, if $x \ge 0$,
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Lambda^k}$, if $x < 0$,
 $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k}{\Lambda^k}$, $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k}{\Lambda^k}$, $(\frac{1}{M^k}, \frac{1}{M^k}) = \frac{\lambda^k}{\Lambda^k}$, $(\frac{1}{M^k}) = \frac{\lambda^$

made by S.-W. Cheng (NTHU, Taiwan)