

 $-\mathbf{G}\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$

Theoretical exercise, 5.21

p. 6-23

Proof. By integration by parts,

$$\Gamma(\alpha+1) = \int_0^\infty x^{\alpha} e^{-x} dx$$

$$= -x^{\alpha} e^{-x} \Big|_0^\infty + \int_0^\infty \alpha x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha).$$

- $\Gamma(\alpha) = (\alpha 1)!$ if α is an integer Proof. $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1) = (\alpha - 1)(\alpha - 2)\Gamma(\alpha - 2) = \cdots$
 - $= (\alpha-1)(\alpha-2)\cdots\Gamma(1) = (\alpha-1)!$
- $\Gamma(\alpha/2) = \frac{\sqrt{\pi}(\alpha-1)!}{2^{\alpha-1}(\frac{\alpha-1}{2})!}$ if $\underline{\alpha}$ is an odd integer $\frac{2}{\text{Proof.}} \Gamma(\frac{\alpha}{2}) = (\frac{\alpha-2}{2})\Gamma(\frac{\alpha}{2}-1) = \cdots = (\frac{\alpha-2}{2})(\frac{\alpha-4}{2})\cdots \frac{1}{2}\Gamma(\frac{1}{2})$
- Gamma function is a generalization of the factorial functions

For
$$\alpha$$
, $\lambda > 0$, the function from Gamma function of waiting time if $x \ge 0$, possible values of λ (Wp.6-19) if $x < 0$, if $x < 0$, $y = \lambda x \Rightarrow x = -4$

- The distribution of a random variable X with this pdf is not positive. called the gamma distribution with parameters α and λ .
- The cdf of gamma distribution can be expressed in terms of the <u>incomplete gamma function</u>, i.e., $\underline{F(x)=0}$ for $\underline{x<0}$, and for $x \ge 0$,

$$F(x) = \int_0^x \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\lambda y} dy$$

$$Z = \lambda y \Rightarrow y = \frac{1}{\lambda} \Rightarrow dy = \frac{1}{\lambda} dz$$

$$= \frac{1}{\Gamma(\alpha)} \int_0^{\lambda x} z^{\alpha-1} e^{-z} dz = \frac{1}{\Gamma(\alpha)} \cdot \frac{\gamma(\alpha, \lambda x)}{\gamma(\alpha, \lambda x)}$$

$$\Rightarrow \text{Theorem. The mean and variance of a gamma}$$

$$\Rightarrow \frac{1}{\lambda} = \frac{1}{\lambda} \Rightarrow \frac{1}{\lambda} = \frac{1}{\lambda} \Rightarrow \frac{1}{\lambda} \Rightarrow$$

$$F(x) \xrightarrow{(exercise)}_{\alpha-1} e^{-\lambda x} (\lambda x)^{k}$$

$$= 1 - \sum_{k=0}^{\infty} e^{-\lambda x} (\lambda x)^{k}$$

Theorem. The mean and variance of a gamma distribution with parameter
$$\alpha$$
 and λ are proof.

Proof. $\alpha \cdot (\frac{1}{\lambda})$ and $\alpha \cdot \frac{1}{\lambda} \cdot$

$$E(X) = \int_0^\infty x \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} dx$$

$$= \int_{\Gamma(\alpha)}^{\infty} \frac{1}{\lambda^{\alpha+1}} \int_{0}^{\infty} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha+1)} x^{\alpha} e^{-1} dx = 0$$

$$(X^{2}) = \int_{0}^{\infty} \frac{1}{\lambda^{\alpha+1}} \int_{0}^{\alpha} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha+1)} x^{\alpha} e^{-1} dx = 0$$

$$(X^{2}) = \int_{0}^{\infty} \frac{1}{\lambda^{\alpha+1}} \int_{0}^{\alpha} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha+1)} x^{\alpha} e^{-1} dx = 0$$

$$E(X) \equiv \int_0^\infty x^{-1} \frac{\Gamma(\alpha)}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda \alpha}$$

$$= \frac{\chi^{\alpha}}{\Gamma(\alpha+2)} \int_0^\infty \frac{\lambda^{\alpha+2}}{\Gamma(\alpha+2)} x^{\alpha} e^{-\lambda \alpha}$$

$$-1e^{-\lambda x}dx = \frac{\alpha(\alpha+1)}{\lambda^2}$$

$$P(X>R) = P(Y

$$(LN_{p.5-28})$$
1) and a final content of the c$$

prove in

LNp.7-33 or using mgf

(chapter 7

p. 6-25

• (exercise)
$$E(X^k) = \frac{\Gamma(\alpha+k)}{\lambda^k \Gamma(\alpha)}$$
, for $0 < k$, and

$$E(\frac{1}{X^k}) = \frac{\overline{\lambda^k \Gamma(\alpha - k)}}{\Gamma(\alpha)}, \text{ for } 0 < k < \alpha.$$

Some properties

check [the graph The gamma distribution can be used to model the waiting in LNp.6-19 time until a number of random events occurs

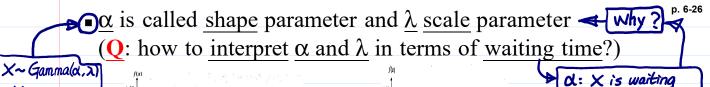
■ When $\alpha=1$, it is exponential(λ)

-the number $= \infty$ (integer) $D T_1, ..., T_n$: \underline{n} independent exponential(λ) r.v.'s

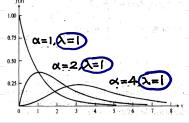
$$\Rightarrow \underline{T_1} + \dots + \underline{T_n} \sim \underline{\operatorname{Gamma}(n, \lambda)}$$

□ Gamma distribution can be thought of as a continuous analogue of the negative binomial distribution

A summary Discrete Time Continuous Time (check LNp.6-19) Version Version number of events binomial Poisson memory less waiting time until 1st event occurs geometric exponential waiting time until rth events occur negative binomial gamma



ax ~ $Gamma(\alpha, \frac{2}{\alpha})$ for a>0. (exercise, can use the Thm in LNp.6-10)



(J) (d=2)入=2 (d=2) \= 1 **风=2**)入=0.5

time until ath occurance 入: 沙單位時间 eg. XI+XI:次天

FYI ①A special case of the gamma distribution occurs ** ** /11.8等 when $\alpha = n/2$ and $\lambda = 1/2$ for some positive integer $\lambda_3 + \lambda_3 = \pi/3$ n. This is known as the Chi-squared distribution with n degrees of freedom (Chapter 6)

 $\lambda_1 = 24\lambda_2 = 1440\lambda_3$ $X_1 = \frac{X_2}{24} = \frac{X_3}{1440}$

Summary for $\underline{X} \sim \underline{\text{Gamma}}(\underline{\alpha}, \underline{\lambda})$

 $f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$ ■ Pdf:

definition: where X1,...,Xn are independent and ~ Normal(0,1)

- Cdf: $F(x) = \gamma(\alpha, \lambda x)/\Gamma(\alpha)$.
- Parameters: α , $\lambda > 0$.
- Mean: $E(X) = \alpha/\lambda$.
- Variance: $Var(X) = \alpha/\lambda^2$.