$= \frac{1}{\beta - \alpha} (\beta - \alpha) = 1.$

interval.

■ Its corresponding cdf is

$$F(x) = \int_{-\infty}^{x} f(y)dy = \begin{cases} 0, & \text{if } x \leq \alpha, \\ \frac{x-\alpha}{\beta-\alpha}, & \text{if } \alpha < x \leq \beta, \\ 1, & \text{if } x > \beta. \end{cases}$$

 \bullet (exercise) Conversely, it can be easily checked that F is a cdfand f(x)=F'(x) except at $x=\alpha$ and $x=\beta$ (Derivative does not exist when $x=\alpha$ and $x=\beta$, but it does not matter.) check LNp.5-94 (2)(3)(4)

": We can assign f(x)=0, f(B)=0 or any nonegative values. It has no impact on the calculation of prob.

• An example of Uniform distribution is the r.v. X in the Uniform Spinner example (LNp.6-1) where $\alpha = -\pi$ and $\beta = \pi$. pdf $f_{x}(x) = \frac{1}{2\pi}$, for $-\pi < x < \pi$

• Transformation

 \mathbb{Q} : Y=g(X), how to find the <u>distribution</u> of Y?

discrete ■ Suppose that X is a continuous random case, variable with $\underline{\operatorname{cdf} F_X}$ and $\underline{\operatorname{pdf} f_X}$. Np 5-12

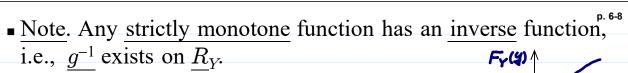
i.e., g(a)<g(b), ifaxb or g(a)>g(b), if a < b

g7(y)

Q: what if

cdf of uniform

• Consider Y=g(X), where g is a strictly monotone (increasing or decreasing) function. Let R_V be the range of g.



The <u>cdf</u> of Y, denoted by \underline{F}_{Y}

•• Suppose that \underline{g} is a strictly increasing function. For $y \in R_V$,

 $F_Y(y) = P(Y \le y)$ same event $= P(g(X) \le y) = P(X \le g^{-1}(y))$ True for any r.v.'s.

X<discrete = $F_X(\underline{g}^{-1}(y)).$

Ostrictly increasing

Suppose that \underline{g} is a strictly decreasing function. For $\underline{y} \in R_Y$,

continuous
$$F_Y(y) = P(Y \le y)$$

$$P(X \in (-\infty, g^{-1}(y))) = F_{\mathbf{x}}(g^{-1}(y))$$

$$= P(g(X) \le y) = P(X \ge g^{-1}(y))$$

 $= 1 - P(X \leq g^{-1}(y)) = I - F_{X}(g'(y) - y)$ $\downarrow 1 - F_{X}(g^{-1}(y)).$ in general :Xisa $-1 - F_X(g^{-1}(y)).$ continuous r.v.

 \blacksquare Theorem. Let X be a continuous random variable nondecreasing whose cdf F_X possesses a unique inverse F_X^{-1} . Let • one-to-one

distribution $\underline{Z=F_X(X)}, \text{ then } \underline{Z} \text{ has a uniform distribution on } [0, 1]. \text{ with } \alpha = 0$ $\underline{Proof}. \text{ For } 0 \leq z \leq 1, \ F_Z(z) = F_X(F_X^{-1}(z)) = \{z\}. \text{ if } z > 1.$

·no jump ocontinuous

made by S.-W. Cheng (NTHU, Taiwan)

