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Continuous Random Variables

• Recall: For discrete random variables, only a finite or countably 

infinite number of possible values with positive probability (>0). 

Often, there is interest in random variables that can take (at 

least theoretically) on an uncountable number of possible values, 

e.g., 

the weight of a randomly selected person in a population,

the length of time that a randomly selected light bulb works,

the error in experimentally measuring the speed of light.

Example (Uniform Spinner, LNp.3-6, 3-18):

 Ω = (−π, π]

 For (a, b]⊂Ω, P((a, b]) = (b−a)/(2π)

 Consider the random variables:

X: Ω → ℝ,    and X(ω) = ω for ω∈Ω,
Range of X: (−π, π]

p. 6-2

Y: Ω → ℝ,    and Y(ω) = tan(ω) for ω∈Ω.
Range of Y: (−∞, ∞)

Then, X and Y are random variables that takes on an 

uncountable number of possible values.

 Some properties about the distribution of X (or Y)

PX({X = x}) = P({x}) =0, for any x∈ℝ.

⇒ Probability for X to take any single value is zero

But, for −π �a<b�π, 

PX({X ∈ (a, b] })=P((a, b]) = (b−a)/(2π) > 0.

⇒ Positive probability (>0) is assigned to any (a, b]

 Q: Can we still define a probability mass function for X? 

Q: If not, what can play a similar role like pmf for X? 

Recall. Find area under a curve

by integration

(uncountable sum).



p. 6-3• Probability Density Function and Continuous Random Variable

∞
−∞ f(x)dx = 1.

Definition: A random variable X is called 

continuous if there exists a pdf f such that 

for any set B of real numbers

PX({X ∈ B}) = ∫B f(x) dx.

 For example, PX(a � X � b) =
b

a
f(x)dx.

Theorem. If f is a pdf, then there must exist a 
continuous random variable with pdf f.

Sketch of proof.

Definition. A function f: ℝ→ℝ is called a probability density 

function (pdf) if

1. f(x) ≥ 0, for all x∈(−∞, ∞), and

2.
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Some properties

 for any x∈ℝ
 It does not matter whether the intervals are open or close, i.e.,

P (X ∈ [a, b]) = P (X ∈ (a, b]) = P (X ∈ [a, b)) = P (X ∈ (a, b)).

P x − dx
2
� X � x+ dx

2
=

x+ dx
2

x− dx
2

f(y)dy ≈ f(x) · dx.

We can characterize the distribution of a 

continuous random variable in terms of its

1.Probability Density Function (pdf)

2.(Cumulative) Distribution Function (cdf)

3.Moment Generating Function (mgf, Chapter 7)

PX({X = x}) =
x

x
f(y)dy = 0

 It is important to remember that the value

of a pdf f(x) is NOT a probability itself

 It is quite possible for a pdf to have value greater than 1

 Q: How to interpret the value of a pdf f(x)? For small dx, 

⇒ f(x)dx is a measure of how likely it is that X will be near x
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• Relation between the pdf and the cdf

Theorem. If FX and fX are the cdf and the pdf of a continuous

random variable X, respectively, then

 for all −∞<x<∞

 at continuity points of fX

P (a < X � b) = FX(b)− FX(a) =
b

a
fX(x)dx.

Some Notes

 For −∞�a<b� ∞

 The cdf for continuous random variables has 

the same interpretation and properties as 

discussed in the discrete case

fX(x) = F ′X(x) =
d
dx
FX(x)

FX(x) = P (X � x) =
x

−∞ fX(y)dy
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 The only difference is in plotting FX. In discrete case, there are 

jumps (step function). In continuous case, FX is a (absolutely) 

continuous non-decreasing function.

Example (Uniform Distributions)

 If −∞<α<β<∞, then

is a pdf since

1. f(x) ≥ 0 for all x∈ℝ, and

2.

f(x) =
1

β−α , if α < x � β,

0, otherwise,
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 Its corresponding cdf is

F (x) =

� x

−∞
f(y)dy =






0, if x � α,
x−α
β−α , if α < x � β,

1, if x > β.

 (exercise) Conversely, it can be easily checked that F is a cdf

and f(x)=F’(x) except at x=α and x=β (Derivative does not 

exist when x=α and x=β, but it does not matter.)

 An example of Uniform distribution is the r.v. X in the 

Uniform Spinner example (LNp.6-1) where α=−π and β=π.

• Transformation

Q: Y=g(X), how to find the distribution of Y?

 Suppose that X is a continuous random 

variable with cdf FX and pdf fX. 

 Consider Y=g(X), where g is a strictly 

monotone (increasing or decreasing) 

function. Let RY be the range of g.
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 Note. Any strictly monotone function has an inverse function, 

i.e., g−1 exists on RY.

The cdf of Y, denoted by FY

1.Suppose that g is a strictly increasing function. For y∈RY,

2.Suppose that g is a strictly decreasing function. For y∈RY,

FY (y) = P (Y � y)

= P (g(X) � y) = P (X � g−1(y))

= FX(g
−1(y)).

 Theorem. Let X be a continuous random variable 

whose cdf FX possesses a unique inverse FX
−1. Let 

Z=FX(X), then Z has a uniform distribution on [0, 1].

Proof. For 0�z�1, FZ(z) = FX(F
−1
X (z)) = z.
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 Theorem. Let U be a uniform random variable on [0, 1] and 

F is a cdf which possesses a unique inverse F−1. Let 

X=F−1(U), then the cdf of X is F. 

Proof.

 The 2 theorems are useful for pseudo-random number

generation in computer simulation.

⇒ The key is to generate U(0, 1) random numbers.

X is r.v. ⇒ F(X) is r.v.

X1, …, Xn: r.v.’s with cdf F

⇒ F(X1), …, F(Xn): r.v.’s with 

distribution Uniform(0, 1)

U1, …, Un: r.v.’s with distribution 

Uniform(0, 1)

⇒ F−1(U1), …, F−1(Un): r.v.’s

with cdf F

FX(x) = FU (F (x)) = P (U � F (x)) = F (x).
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The pdf of Y, denoted by fY

1.Suppose that g is a differentiable strictly increasing function. 

For y∈RY, 

 Theorem. Let X be a continuous random variable with pdf 

fX. Let Y=g(X), where g is differentiable and strictly 

monotone. Then, the pdf of Y, denoted by fY, is

for y such that y=g(x) for some x, and fY(y)=0 otherwise.

fY (y) = fX(g
−1(y)) dg−1(y)

dy
,

2.Suppose that g is a differentiable strictly decreasing function. 

For y∈RY,
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 Q: What is the role of |dg−1(y)/dy|? How to interpret it?

Some Examples. Given the pdf fX of random variable X, 

 Find the pdf fY of Y=aX+b, where a≠0.

 Find the pdf fY of Y=1/X.
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 Find the cdf FY and pdf fY of Y=X2. 





 Q: How to find the cdf FY and pdf fY for general piecewise 

strictly monotone transformation?
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• Expectation, Mean, and Variance

Definition. If X has a pdf fX, then the expectation of X is 

defined by

provided that the integral converges absolutely.

E(X) =
∞
−∞ x · fX(x) dx,

 Example (Uniform Distributions). If 

then

fX (x) =

�
1

β−α , if α < x � β,

0, otherwise,

Some properties of expectation

 Expectation of Transformation. If Y=g(X), then 

provided that the integral converges absolutely.

Proof. The proof is given in LNp.6-16

E(Y ) =
∞
−∞ y · fY (y) dy =

∞
−∞ g(x) · fX(x) dx,
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 Expectation of Linear Function. For a, b∈ℝ, 

E(aX+b)=a·E(X)+b, 

since

Definition. If X has a pdf fX, then the expectation of X is also 

called the mean of X or fX and denoted by µX, so that

The variance of X (or fX) is defined as

and denoted by .  The σX is called the standard deviation.

µX = E(X) =
∞
−∞ x · fX(x) dx.

σ2X

Some properties of mean and variance

 The mean and variance for continuous

random variables have the same intuitive 

interpretation as in the discrete case.

 Var(X) = E(X2) – [E(X)]2
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0

E(X) =
∞
0

x · fX (x) dx

=
∞
0

x

0
1 dt fX(x) dx

=
∞
0

x

0
fX(x) dt dx

=
∞
0

∞
t

fX(x)dx dt =
∞
0 1− FX(t)dt.

 Variance of Linear Function.  For a, b∈ℝ, 

Var(aX+b)=a2·Var(X)

 Theorem. For a nonnegative continuous random variable X, 

Proof.

E(X) =
∞
0 1− FX(x)dx =

∞
0 P (X > x)dx.

Recall. CH4, Theoretical Exercise #5 (textbook), Let 

N be a nonnegative integer-valued r.v.,
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 Reading: textbook, Sec 5.1, 5.2, 5.3, 5.7

Example (Uniform Distributions)

 Proof for the expectation of transformation (LNp.6-13). 

Let Y=g(X). It holds because

and
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• Uniform Distribution

Some Commonly Used Continuous Distributions

Summary for X ~  Uniform(α, β)

 Pdf:

 Cdf:

 Parameters: −∞<α<β<∞
 Mean: E(X)=(α+β)/2

 Variance: Var(X)= (β−α)2/12

F (x) =






0, if x � α,
(x− α)/(β − α), if α < x � β,
1, if x > β.

f(x) =

�
1/(β − α), if α < x � β,
0, otherwise,

• Exponential Distribution

For λ>0, the function

is a pdf since (1) f(x) ≥ 0 for all x ∈ R, and (2)

f(x) =
λe−λx, if x ≥ 0,
0, if x < 0,

∞
−∞ f(x) dx =

∞
0 λe−λx dx = −e−λx

∞
0
= 1.

p. 6-18

 The distribution of a random variable X with this pdf is 

called the exponential distribution with parameter λ.

The cdf of an exponential r.v. is F(x)=0 for x < 0, and for x≥0,

F (x) = P (X � x) =
x

0 λe−λy dy = −e−λy
x

0
= 1− e−λx.

Theorem. The mean and variance of an exponential distribution 

with parameter λ are 

µ = 1/λ and σ2 = 1/λ2.

E(X) =
∞
0

xλe−λxdx =
∞
0

y

λ
(λe−y) 1

λ
dy

= 1
λ

∞
0

ye−ydy = 1
λ
Γ(2) = 1

λ
.

E(X2) =
∞
0

x2λe−λxdx =
∞
0

y

λ

2
(λe−y) 1

λ
dy

= 1
λ2

∞
0

y2e−ydy = 1
λ2
Γ(3) = 2

λ2
.

Proof.

 The exponential distribution is often used to model the length 

of waiting time until an event occurs or the lifetime

Some properties
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• • • • • •

 The parameter λ is called the rate and is the average 

number of events that occur in unit time. (This gives an 

intuitive interpretation of E(X)=1/λ.)
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 The rate parameter λ is the same for the Poisson, 

exponential, and gamma random variables.

 The exponential distribution can be thought of as the 

continuous analogue of the geometric distribution.

 Theorem (relationship between exponential, gamma, and 

Poisson distributions, Sec. 9.1, textbook). Let

1. T1, T2, T3, …, be independent and ~ exponential(λ), 

2. Sr=T1+L+Tr, r=1, 2, 3, …,

3. Zi be the number of Sr’s that falls in the time interval 

(ti−1, ti], i=1, …, m, where 0= t0 < t1 < ··· < tm < ∞.

Then, 

(i) Sr ~ gamma(r, λ). 

(ii)Z1, …, Zm are independent, 

(iii)Zi ~ Poisson(λ(ti– ti−1)),

(iv) The reverse statement is also true.



p. 6-21

 Theorem. The exponential distribution 

(like the geometric distribution) is 

memoryless, i.e., for s, t ≥ 0,

where X ~ exponential(λ). 

Proof.

 This means that the distribution of the 

waiting time to the next event remains the 

same regardless of how long we have 

already been waiting.

 This only happens when events occur (or 

not) totally at random, i.e., independent of 

past history.
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Summary for X ~  Exponential(λ)

 Pdf:

 Cdf:

 Parameters: λ > 0.
 Mean: E(X)= 1/λ.
 Variance: Var(X)= 1/λ2.

F (x) =

�
1− e−λx, if x ≥ 0,
0, if x < 0.

f(x) =

�
λe−λx, if x ≥ 0,
0, if x < 0.

 Notice that it does not mean the two events 

{X > s+t} and {X > s} are independent.

• Gamma Distribution

Gamma Function

 Definition. For α > 0, the gamma function is defined as

 Γ(1) = 1 and Γ(1/2) =        (exercise)

 Γ(α+1) = αΓ(α)

Γ(α) =
∞
0 xα−1e−x dx.
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Γ(α/2) =
√
π(α−1)!

2α−1(α−12 )!

 Γ(α)=(α−1)! if α is an integer

 if α is an odd integer

 Gamma function is a generalization of the factorial functions

For α, λ>0, the function

f(x) =

�
λα

Γ(α)x
α−1e−λx, if x ≥ 0,

0, if x < 0,
is a pdf since (1) f(x) ≥ 0 for all x∈ℝ, and (2)

Proof. By integration by parts,

Proof.

Proof.

p. 6-24
 The distribution of a random variable X with this pdf is 

called the gamma distribution with parameters α and λ.

The cdf of gamma distribution can be expressed in terms of the 

incomplete gamma function, i.e., F(x)=0 for x<0, and for x ≥ 0,

µ = α/λ and σ2 = α/λ2.

Proof.

Theorem. The mean and variance of a gamma

distribution with parameter α and λ are 
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Some properties

 The gamma distribution can be used to model the waiting 

time until a number of random events occurs

 When α=1, it is exponential(λ)

 T1, …, Tn: n independent exponential(λ) r.v.’s 

⇒ T1+L+ Tn ~ Gamma(n, λ)

 Gamma distribution can be thought of as a continuous 

analogue of the negative binomial distribution 

 A summary

 (exercise) 

Discrete Time
Version

Continuous Time
Version

number of events binomial Poisson

waiting time until 1st event occurs geometric exponential

waiting time until rth events occur negative binomial gamma
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 α is called shape parameter and λ scale parameter 

(Q: how to interpret α and λ in terms of waiting time?)

 A special case of the gamma distribution occurs 

when α=n/2 and λ=1/2 for some positive integer 

n. This is known as the Chi-squared distribution 

with n degrees of freedom (Chapter 6)

Summary for X ~ Gamma(α, λ)

 Pdf:

 Cdf:

 Parameters: α, λ > 0.
 Mean: E(X) = α/λ.
 Variance: Var(X) = α/λ2.

F (x) = γ(α, λx)/Γ(α).

f(x) =
λα

Γ(α)x
α−1e−λx, if x ≥ 0,

0, if x < 0.
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• Beta Distribution

Beta Function: 

For α, β > 0, the function

f(x) =
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1, if 0 � x � 1,

0, otherwise,

is a pdf (exercise).

 The distribution of a random variable X with this pdf is 

called the beta distribution with parameters α and β.

The cdf of beta distribution can be expressed in terms of the 

incomplete beta function, i.e., F(x)=0 for x<0, F(x)=1 for x>1, 

and for 0 � x � 1,

p. 6-28

Theorem. The mean and variance of a beta distribution with 

parameters α and β are 

µ = α
α+β and σ2 = αβ

(α+β)2(α+β+1) .

Proof.
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Some properties

 When α=β=1, the beta distribution is 

the same as the uniform(0, 1).

 Whenever α=β, the beta distribution is 

symmetric about x=0.5, i.e., 

f(0.5−∆)=f(0.5+∆).

 As the common value of α and β
increases, the distribution becomes 

more peaked at x=0.5 and there is 

less probability outside of the 

central portion.
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 When β>α, values close to 0 become more likely than those 

close to 1; when β<α, values close to 1 are more likely than 

those close to 0

(Q: How to connect it with E(X)?)

Summary for X ~ Beta(α, β)

 Pdf:

 Cdf:

 Parameters: α, β > 0.
 Mean: E(X) = α/(α + β).
 Variance: Var(X) = (αβ)/[(α + β)2(α + β +1)].

F (x) = B(x;α, β)/B(α, β).

f(x) =

�
Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1, if 0 � x � 1,

0, otherwise,

• Normal (Gaussian) Distribution

For µ∈ℝ and σ>0, the function

is a pdf since (1) f(x) ≥ 0 for all x∈ℝ, and (2)
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and

�∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1√
2π

�∞
−∞ e−

y2

2 dy ≡ I√
2π
,

 The distribution of a random variable X

with this pdf is called the normal

(Gaussian) distribution with parameters µ
and σ, denoted by N(µ, σ2).

 The normal pdf is a bell-shaped curve. 

 It is symmetric about the point µ, i.e., 

f(µ+∆)=f(µ−∆) 

and falls off in the rate determined by σ. 

 The pdf has a maximum at µ (can be shown by 

differentiation) and the maximum height is .
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Theorem. The mean and variance of a N(µ, σ2) distribution are 

µ and σ2, respectively.

The cdf of normal distribution does not have a close form. 

Proof. 

 µ: location parameter; σ (or σ2): scale (or dispersion) parameter
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Some properties

 Normal distribution is one of the most widely used

distribution. It can be used to model the distribution of many

natural phenomena. 

fY (y) = fX
y−b
a

1
|a| =

1√
2π|a|σe

− [y−(aµ+b)]2

2σ2a2 .

 Theorem. Suppose that X~N(µ, σ2). The 

random variable

Y=aX+b, 

where a≠0, is also normally distributed

with parameters aµ+b and a2σ2, i.e., 

Y~N(aµ+b, a2σ2).

Proof.

 Corollary. If X~N(µ, σ2), then 

is a normal random variable with parameters 0 and 1, i.e., 

N(0, 1), which is called standard normal distribution.
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 The N(0, 1) distribution is very important since properties

of any other normal distributions can be found from those

of the standard normal. 

 Theorem. Suppose that X~N(µ, σ2). The cdf of X is

Proof. FX(x) = FZ
x−µ
σ

= Φ x−µ
σ

.

FX(x) = Φ
x−µ
σ

.

 Example. Suppose that X~N(µ, σ2). For −∞<a<b<∞, 

 The cdf of N(0, 1) is usually denoted by Φ.

 Table 5.1 in textbook gives values of Φ. 

To read the table:



p. 6-35

• • •

1.Find the first value of x up to the first place of decimal

in the left hand column.

2.Find the second place of decimal across the top row.

3.The value of Φ(x) is where the row from the first step

and the column from the second step intersect.

 For the values greater than z=3.49, Φ(z) ≈ 1.

 For negative values of z, use Φ(z)=1−Φ(−z)

 Normal distribution plays a central role in the limit theorems

of probability (e.g., Central Limit Theorem, CLT, chapter 8)

p. 6-36

Normal approximation to the Binomial

 Recall. Poisson & Hypergeometric

approximations to Binomial

 Theorem. Suppose that Xn~binomial(n, p). 

Define

Then, as n→∞, the distribution of Zn

converge to the N(0, 1) distribution, i.e.,

FZn(z) = P (Zn � z)→ Φ(z).

 Plot the pmf of Xn~binomial(n, p)

 Superimpose the pdf of Yn~N(µn, σn
2)

with µn=np and σn
2= np(1−p).

 When n is sufficiently large, the normal 

pdf approximates the binomial pmf. 

Zn (Yn−µn)/σn 

Proof. It is a special case of the CLT in Chapter 8.
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 The size of n to achieve a good

approximation depends on the value of p.

 For p near 0.5 ⇒ moderate n is enough

 For p close to zero or one

⇒ require much larger n

 Continuity Correction (for integer-valued discrete r.v.’s)

 For example, suppose 

X~binomial(50, 0.4) and we want to 

find P(X=18), which is larger than 0. 

 With the normal r.v. Y~N(20, 12), 

however, P(Y=18)=0 because Y has a 

continuous distribution

 Instead, we make a continuity correction,

 Q: Why need continuity correction? 

Ans. The binomial(n, p) is a discrete r.v. and 

we are approximating it with a continuous r.v..
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and can obtain the approximate value from Table 5.1.

 Similary, 

and 
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Summary for X ~ Normal(µ, σ2)

 Pdf:

 Cdf: no close form, but usually denoted by Φ((x−µ)/σ).

 Parameters: µ∈ℝ and σ>0.
 Mean: E(X) = µ.
 Variance: Var(X) = σ2.

• Weibull Distribution

For α, β>0 and ν∈ℝ, the function

is a pdf since (1) f(x) ≥ 0 for all x∈ℝ, and (2)

 The distribution of a random variable X with this pdf is 

called the Weibull distribution with parameters α, β, and ν.

p. 6-40(exercise) The cdf of Weibull distribution is

Theorem. The mean and variance of a Weibull distribution with 

parameters α, β, and ν are 

Proof.
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Some properties

 Weibull distribution is widely used to 

model lifetime (cf., exponential)

 α: scale parameter; β: shape parameter; 

ν: location parameter

 Theorem. If X~exponential(λ), then 

is distributed as Weibull with parameters α, β, and ν (exercise).

• Cauchy Distribution

For µ∈ℝ and σ>0, the function

is a pdf since (1) f(x) ≥ 0 for all x∈ℝ, and (2)
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 The distribution of a random variable X with this pdf is 

called the Cauchy distribution with parameters µ and σ, 

denoted by Cauchy(µ, σ).

The mean and variance of Cauchy distribution do not 

exist because the integral does not converge absolutely

Some properties

 Cauchy is a heavy tail distribution

 µ: location parameter; σ: scale parameter

 Theorem. If X~Cauchy(µ, σ), then 

aX+b~Cauchy(aµ+b, |a|σ). 

Proof. (exercise)

The cdf of Cauchy distribution is

for −∞<x<∞. (exercise)

 Reading: textbook, Sec 5.4, 5.5, 5.6


