Continuous Random Variables

 Recall: For discrete random variables, only a finite or countably
infinite number of possible values with positive probability (>0).

» Often, there is interest in random variables that can take (at
least theoretically) on an uncountable number of possible values,

e.g.,
the weight of a randomly selected person in a population,

the length of time that a randomly selected light bulb works,

the error in experimentally measuring the speed of light.
» Example (Uniform Spinner, LNp.3-6, 3-18): ,“
0=(Cnm .
= For (a, b]CQ, H(a, b]) = (b—a)/(2m)
= Consider the random variables:
X:Q—=R, and X(w)=wforweQ,

Range of X: (-1, 1]
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Y Q> R, and Y(w)=tan(w) for weQ.
Range of Y: (—00, o0)

Then, X and Y are random variables that takes on an
uncountable number of possible values.

= Some properties about the distribution of X (or Y)
u_g({X =z})=H{z}) =0, for any z€R.

= Probability for X to take any single value is zero

oBut, for -1t <a<b<TT
Px({X € (a, 0] })=H(a, b]) = (b=a)/(2T) > 0.
= Positive probability (>0) is assigned to any (a, b]

= Q: Can we still define a probability mass function for X?

Q: If not, what can play a similar role like pmf for X?

Recall. Find area under a curve /
by integration =

(uncountable sum).




* Probability Density Function and Continuous Random Variable  »3

» Definition. A function f: R—R is called a probability density
function (pdf) if

1. f(x) > 0, for all x&(—o0, 00), and
2. 7 f(x)dz = 1.

» Definition: A random variable X is called
continuous 1f there exists a pdf f such that
for any set B of real numbers

Py({X € B}) = [p f(z) dx.
= For example, Px(a < X <b) :f_;f(x)dx.

»Theorem. If fis a pdf, then there must exist a
continuous random variable with pdf f.

Sketch of proof.

— —
s . > s .
- - - 2

»Some properties
« Px({X =2}) = [ f(y)dy =0 for any z€R

= [t does not matter whether the intervals are open or close, i.e.,
P(X € [a,b]) = P(X € (a,b]) = P(X € [a,b)) = P(X € (a,b)).

= [t 1S important to remember that the value
of a pdf f(x) is NOT a probability itself

= [t is quite possible for a pdf to have value greater than 1

= Q: How to interpret the value of a pdf f(x)? For small dz,
T x x‘i'dTw
P(a:— dT <X< :13+d7) :fa:—dTw fy)dy = f(z) - dx.

> f(z)dz is a measure of how likely it is that X will be near x

» We can characterize the distribution of a
continuous random variable in terms of its

1.Probability Density Function (pdf)
2.(Cumulative) Distribution Function (cdf)

3.Moment Generating Function (mgf, Chapter 7)




* Relation between the pdf and the cdf

» Theorem. If F'y and f are the cdf and the pdf of a continuous
random variable X, respectively, then

« Fx(z)=P(X <2)=["__ fx(y)dy for all —co<z<oo

« fx(z) = Fi(z) = £ Fx(z) at continuity points of fy

» Some Notes

>
>
s For —00<a<b< oo

Pa < X <b) = Fx(b) — Fx(a) = [ fx(z)dz.

= The cdf for continuous random variables has
the same interpretation and properties as )
discussed in the discrete case

= The only difference is in plotting F'y. In discrete case, there are
Jumps (step function). In continuous case, F'y is a (absolutely)
continuous non-decreasing function.
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» Example (Uniform Distributions) @ o
n [f —oo<0<f3<o0, then ’ ‘ /
1 : .
—, fa<z<p
=94 P - — =
/(@) { 0, otherwise,

1s a pdf since
1. f(x) > O for all x€R, and
2. (% f@)yde = [ ioda

= A (-a)=1




= [ts corresponding cdf'is

ﬁ, ifa<z<p,

L 1, if x > (.

= (exercise) Conversely, it can be easily checked that F'is a cdf
and f(x)=F" (x) except at x=0 and x=[3 (Derivative does not

exist when z=0 and x=[3, but it does not matter.)

x O, lf xr S a,
F)= [ sy = {

» An example of Uniform distribution is the r.v. X in the
Uniform Spinner example (LNp.6-1) where a=—Ttand B=TL
* Transformation

»Q: Y=¢(X), how to find the distribution of ¥?

= Suppose that X is a continuous random
variable with cdf F'y and pdf f.

» Consider Y=¢g(X), where g is a strictly
monotone (increasing or decreasing)
function. Let R, be the range of g.
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= Note. Any strictly monotone function has an inverse function,
i.e., g~! exists on Ry.

»The cdf of Y, denoted by F

1.Suppose that g is a strictly increasing function. For yE Ry,

Fy(y) = PY <y
= P(g(X)<y)=P(X <g '(y)
= Fx(g~'(y)
2.Suppose that g 1s a strictly decreasing function. For ye Ry,
Fy(y) = P <y)
= P(g(X)<y)=P(X >g(v)) —+—
1-P(X <g ()
= 1-Fx(g~'(y). i B

= Theorem. Let X be a continuous random variable
whose cdf F'y possesses a unique inverse F'y~1. Let

Z=Fy(X), then Z has a uniform distribution on [0, 1].

Proof. For 0<2<1, Fz(2) = Fx(Fx'(2)) = 2.
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= Theorem. Let U be a uniform random variable on [0, 1] and

Fis a cdf which possesses a unique inverse F!. Let
X= FI(U) then the cdf of X is F.

Proof. Fx(z) = Fy(F(x)) = P(U < F(x)) = F(z).

= The 2 theorems are useful for pseudo-random number
generation in computer simulation.

= The key is to generate U(0, 1) random numbers.
opXisrv.=> F(X)isr.v.

n&l, ., X, Vs with edf F

> (X)), ..., F(X,): r.v.’s with
distri_bution Uni_form(O, 1)
ngl, ..., U,: r.v.’s with distribution
Uniform(0, 1)
>y =>F'U), .., F'(U n): LV.’S
with cdf F’
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»The pdf of Y, denoted by f;

1.Suppose that g 1s a differentiable strictly increasing function.

For @X’ p y
‘ o) = 2 Fr() = d—ny(g‘l(y))
d —1 d —1
- el = e 0| 22|
2.Suppose that g is a differentiable strictly decreasing function.
For ye R, ; ;
fry) = @FY( y) = @(1 — Fx(97(v)))
_ dg—*(y) _ dg—(y)
- a2

= Theorem. Let X be a continuous random variable with pdf
fx- Let Y=¢(X), where g is differentiable and strictly
monotone. Then, the pdf of Y, denoted by fy, is

fr ) = fx(g~ ) |d9;—y(y)| :

for y such that y=g(z) for some x, and f,(y)=0 otherwise.
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Q: What is the role of |dg~!(y)/dy|? How to interpret it?

ot ) ”
4 (x)
W /;;Ij l
> > Ve

32113 low
|52 lange

dga_

»Some Examples. Given the pdf f of random variable X,
= Find the pdf f, of Y=a X+b, where a#0.

y=g(@)=ax+b = af:g_l(y):y;b = ‘@g_l(y)‘zm
b\ 1
i =tx (20 o
» Find the pdf f, of Y=1/X.
ymale) =1 = o= =1 > [ L) -
L z y dy JC
1\ 1
I =15 (5) 5
« Find the cdf Fy and pdf f; of Y=X>. P
" Fy(y) = PY<y=P-/y<X<Vy
= P(X € (-00,/y]) = P(X € (—00,—/Y))
_ {FXW)—Fx(—«@), ify >0,
0, if y <0.
o For y > 0,
Fo6) = 3o () = - [Fx(V3) = Fx (=)
B 1 -1 fx(VY) + fx (=)
—fx(f)ﬁ—fx(f) N NG

For y <0, fy(y) =0.
= Q: How to find the cdf Fy and pdf f, for general piecewise

strictly monotone transformation?
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» Expectation, Mean, and Variance
» Definition. If X has a pdf fy, then the expectation of X is

defined by o
E(X)=["z- fx(z)dz,

provided that the integral converges absolutely.
» Example (Uniform Distributions). If

—, ifa<z<p
— B—a — f@)
€T =
fx () {O, otherwise,
then 8 1 1 22 |P N
E(X) = /ax.ﬁ—ozdxzi.ﬁ—oza
_ 1. p-a’_atp "
2 B—a 2

»Some properties of expectation
» Expectation of Transformation. If Y=g(X), then

EY)= [Ty - fry) dy= [ 9(2) - fx(z) dz

provided that the integral converges absolutely.

Proof. The proof is given in LNp.6-16
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= Expectation of Linear Function. For a, bER,
E(aX+by-a-E(X)*,
since E(aX +b) = [°__(azx +b)fx(z) dv
= af" x-fx@)dz+b["_fx(z)dz=a-E(X)+b.

» Definition. If X has a pdf f, then the expectation of X is also
called the mean of X or f& and denoted by Uy so that
px = B(X) =[Oz fx(z) d.
The variance of X (or f x) 1s defined as
Var(X) = B{(X - px)?] = [Co(le — px)? - fx(2) do
and denoted by 0% . The 0y is called the standard deviation.

»Some properties of mean and variance

= The mean and variance for continuous
random variables have the same intuitive
interpretation as in the discrete case.

« Var(X) = BE(X?) - [E(X))?
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= Variance of Linear Function. For a, beR,
Var(aX+b)=a*-Var(X)

= Theorem. For a nonnegative continuous random variable X,

E(X)=[,"1-Fx(z)dz = [, P(X > z)dx.

Proof. E(X) = fooog; fx(z) dx ‘
P — fo (fo 1dt>

fO fO fX )dtdw
x fO ft fX:L’dxdt fO 1—FX d

IS I E =l

Recall. CH4, Theoretical Exercise #5 (textbook), Let
E(X) = [ P(X>az)dx N be a nonnegative integer-valued r.v.,

— )2 P(X < 2)dx E(N):iP{NZi}:iP{N>i}
=1 1=0

= Proof for the expectation of transformation (LNp.6-13).
Let Y=¢(X). It holds because
fooo P(Y >y) dy

- fOOO P(g(X) >y) dy = fooo U{w:g(a:)>y} Ix(x) dw] dy

= f{xg (z)>0} [ o(e) fx(z) dy] dr = f{m:g(m)>O}MfX(x) dx

and
— [P P(Y <y)dy

= [P PuX) <y dy=—["_ [f{x:g(xky} fx(x) dz| dy
= ~Jgw<o [fg0<_m Ix (@) dy| do = = [0 cop ~9(@) fx (2) da

» Example (Uniform Distributions)

B 42 3 |B 3_,3 2 L B4
:fa d$_§ﬁ a:‘aﬁ(ﬁ—a):BJrsﬁJr
2 2 2
Var(X) = B(X?) - [B(X)]? = £tafte® (a;ﬂ)
_ A(B*tapta®)-3(8°+2aB+a > _ (B-a)?
12 12 ’

* Reading: textbook, Sec 5.1, 5.2, 5.3, 5.7
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Some Commonly Used Continuous Distributions

» Uniform Distribution
» Summary for X ~ Uniform(a, f)
= Pdf: f(z) = { 1/(f—a), fa<z<p,

, otherwise,
= Cdf: 0, if z < o,
F(CIJ)_{ (x—a)/(B—a), fa<z<p,
L 1 if x > (.

= Parameters: —oco< a<3<oo
= Mean: E(X)=(a+p)/2
= Variance: Var(X)= (-a)*/12
» Exponential Distribution ol h=
ik A=

»For A>0, the function
e M if x>0,
f(‘”)_{o, if x <0,
is a pdf'since (1) f(z) > 0 for all x € R, and (2)

I f@) de= ["Xe™ do = —e | "

.5 (solid)
1 (dotted).
2 (dashed).
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= The distribution of a random variable X with this pdfis
called the exponential distribution with parameter A.

»The cdf of an exponential r.v. is F{x)=0 for x <0, and for >0,

F(z)=P(X <z)= [, de ™ dy = —e_>‘y|§ =1—e ",

» Theorem. The mean and variance of an exponential distribution

with parameter A are
p=1/X and o*=1/)\%

Proof.
BIX) = [ da = [ 40e)dy
= + [ ye¥dy = F(2) 5.
E(X?) = [Zz?re > dr = fo (£)* (Ae¥)Ldy
= & [TyPevdy = HT(3) = 2.

»Some properties
= The exponential distribution 1s often used to model the length

of waiting time until an event occurs or the lifetime




o The parameter A is called the rate and is the average
number of events that occur in unit time. (This gives an
intuitive interpretation of E(X)=1/A.)

CitTme
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» Theorem (relationship between exponential, gamma, and
Poisson distributions, Sec. 9.1, textbook). Let

1.T,, T, T5, ..., be independent and ~ exponential(A),
2. 8,=T\+ 4T, r=1, 2,3,

3. Z; be the number of S,’s that falls in the time interval
(t;-y, t » 4], =1, ..., m, where 0= ty<t < <t,<o0.

Then,
(i) 5, ~ gamma(r, A).

(z,.... 2 Z are independent,
(ii)Z, ~ P01sson()\(t7-— ti-1))s

(iv) The reverse statement 1s also true.

o The rate parameter A is the same for the Poisson,
exponential, and gamma random variables.

o The exponential distribution can be thought of as the
continuous analogue of the geometric distribution.
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» Theorem. The exponential distribution X2 &

(like the geometric distribution) is ‘);1 Z"d{; = 7
memoryless, i.e., for s, t > 0, D A

0
P(X >s+tX >s)=P(X >1). | P(Xy>s+tX1 > s)
P(X: >1)=P(Xy >1)

where X ~ exponential(A).
Proof.

PUX >s+8}n{X >s}) P{X>s+t})
P({X > s}) P({X > s})
= Fx(s+t) e-Ms+t

—At
= = =P(X >t
1 — Fx(s) e~As ¢ ( )

o This means that the distribution of the
waiting time to the next event remains the

same regardless of how long we have
already been waiting.

P(X>s+tX >s)=

o This only happens when events occur (or
not) totally at random, 1.e., independent of
past history.
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o Notice that it does not mean the two events
{X > s+t} and {X > s} are independent.

»Summary for X ~ Exponential(A)

=« Pdf: f(z) = e M if ¢ >0,
=9 o, if £ < 0.
= Cdf: 1—e ™, ifz >0,

Fz) = 0, if £ < 0.
= Parameters: A > 0.
» Mean: E(X)= 1/A.
= Variance: Var(X)= 1/

 Gamma Distribution

» Gamma Function

= Definition. For o > 0, the gamma function 1s defined as

()= [z te ™ * dx.

«[()=1and(1/2)= /7 (exercise)
« [(a+1) =al (a)




Proof. By integration by parts, P 6:23
D(a+1)= [z * da
= —z% g + [, az® e dz = al(a).
o [(0)=(a-1)! if a is an integer
Proof. I'(a) = (a — DI (a—1)=(a - 1)(a—2)[(a —2) = - --
= (a—1)(a=2)---T(1) =(a—1)!

«T(a/2) = 2{_?1(?;;13’), if o is an odd integer
=y

Proof. T(5) = (“32)T(5 = 1) = -+ = (*32)(°5%) - 3T'(3)

2 2 2
» Gamma function is a generalization of the factorial functions
»For a, A>0, the function
A~ e 2 if x >0,

f(a:)z{ (1;(a) if z <0,

is a pdfsince (1) f(x) > 0 for all z€R, and (2)
f_oofm dr. = foolfgz) —le=A% (g
m Jo v eV dy =1.
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= The distribution of a random variable X with this pdfis
called the gamma distribution with parameters a and A.

»The cdf of gamma distribution can be expressed in terms of the
incomplete gamma function, i.e., F{x)=0 for <0, and for = > 0,

F(z) = fx F)ezé)y e Mdy

— F(a) fox e de = g )y(a A1)

» Theorem. The mean and variance of a gamma
distribution with parameter O and A are

pw=a/X and o?=a/).
Proof.
E(X) = foooxr)‘—a a—1,—A% J.

)\a Flatl) poo X"‘H (at+1)—1lo—Az —
a) o f I'a+1) < dx =

2 oo AY a—1_—Ax
E(X?) = | w2r(a)ac AL

>’|Q

A* T(a+2) poo 2 a+2)—l -z _ a(atl)
T(a) Aotz f € dx = g

T(at2) L 22




= (exercise) E(Xk) = igﬂ‘?{jg} for 0 < k, and p. 6-25

E(%)z%, for 0 < k < a.

»Some properties
» The gamma distribution can be used to model the waiting
time until a number of random events occurs

o When 0=1, it is exponential(A)

o 1}, ..., I,: n independent exponential(A) r.v.’s

= Iﬁ"';TnN Gamma(n, A)

o Gamma distribution can be thought of as a continuous
analogue of the negative binomial distribution

= A summary _ _ _ _
Discrete Time | Continuous Time
Version Version
number of events binomial Poisson
waiting time until 1st event occurs geometric exponential
waiting time until rth events occur | negative binomial gamma
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= 0 is called shape parameter and A scale parameter
(Q: how to interpret 0 and A in terms of waiting time?)

Jiil

o=2,A={
=A==l

= A special case of the gamma distribution occurs
when 0=n/2 and A=1/2 for some positive integer
n. This is known as the Chi-squared distribution
with n degrees of freedom (Chapter 6)

»Summary for X ~ Gamma(a, A)

= Pdf: f(a) = { %xa_le_)‘x, if >0,

0, if x < 0.
e Cdf: F(z) = (a0, o) /T(@).
= Parameters: a, A > 0.

= Mean: E(X) = a/A.
= Variance: Var(X) = a/A°.
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» Beta Distribution

» Beta Function:

B(a, B)
= fol N1 —2)P~ 1 dx
T'(a)L(B)
T'(at+p) °

»For a, B> 0, the function
M(a+B) a—1 8—1 .
——— 1—=x , if0<z <1,
f(x) = { ( )

I'(o)T(B)
0, otherwise,

is a pdf (exercise).

= The distribution of a random variable X with this pdf is
called the beta distribution with parameters o and .

» The cdf of beta distribution can be expressed in terms of the
incomplete beta function, 1.e., F(x)=0 for <0, F(x)=1 for x>1,
and for 0 < x <1,

F(a —l_ 5) . . » B p. 6-28
Flo) = r<a>r<5>/o vt y) T dy = S

(@B -
= (exercise) Z R - i)':ﬁ"(l )
— 1 !

for integer values of a and (8

a+8—1

— Z <Oé+,i8— 1>xz‘(1_$)(a—|—ﬁ—l)—i

1=«

» Theorem. The mean and variance of a beta distribution with
parameters d and [3 are

_ o 2 __ ap
=g and 00 = o araiD

Proof.

1 « G —
E(X)= |, x%x 11 —2)~tdo

F(atB) T(a+DHT(B) 1l T(atp+1) (at+1)—1(1 _ —1
ST Tlarsti) Jo Tiarbr 2t (1~ 2)P~  dx

e -
a+p°
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E(X?) = [, z? FF(( )}L(BB)) 11 -2)tdx

I'(a+pB) T'(a+2)T(B) rl IY( cH—B—i—Q) o _
F((oz)l“(ﬁ) I'(a+B+2) f T(a+2)T(B 5'7( +2)- "1 =)~ da

a(a+1)
(a+p)(at+p+1) "

»Some properties o

» When a=B=1, the beta distribution is
the same as the uniform(0, 1).
» Whenever 0=[3, the beta distribution is M :

symmetric about z=0.5, i.e.,
f(0.5-A)=f(0.5+A).

o As the common value of o and [3
increases, the distribution becomes
more peaked at z=0.5 and there is
less probability outside of the
central portion.

p. 6-30

=« When [3>q, values close to 0 become more likely than those
close to 1; when B<a, values close to 1 are more likely than
those close to 0
(Q: How to connect it with E(X)?)
»Summary for X ~ Beta(a, )
= Pdf: Ladh) pa-11 _ )81 ifo<z<1

T(a)T(B)
0, otherwise,
. Cdf: F(x) = B(x; o, 8)/B(a, ).
= Parameters: a, 3 > 0.
= Mean: E(X) =a/(a + ).
= Variance: Var(X) = (ap)/[(a + B)%(a + B +1)].

* Normal (Gaussian) Distribution

»For peR and >0, the function

1 _ (z—p)?
f(x) = e 22 |, —oo<x< 00,
2mo

is a pdf since (1) f(x) > 0 for all z€R, and (2)




o B ;a:fu)Q 0o _ﬁ . p. 6-31
| oo\/;—mfe 202 d:c:\/%—wf_ooe 2 dy:#,
2
and ﬁ: (ffoooe_% d:c) (fooooe_yT dy>
x2 T r2
= [Z [T e e =[5 02 e~ = r didr
o 7“2 T2 oC
= 2r [, re” T dr= 2me~ 7| =2m.
0

= The distribution of a random variable X =

with this pdfis called the normal
(Gaussian) distribution with parameters |A

and g, denoted by N(l, 0?).
» The normal pdf is a bell-shaped curve.

oIt is symmetric about the point |, i.e.,
Fp+B)=f(H=D) B
and falls off in the rate determined by O.

o The pdf has a maximum at J (can be shown by
differentiation) and the maximum height is 1/(ov27).
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» The cdf of normal distribution does not have a close form.

» Theorem. The mean and variance of a N(U, 02) distribution are
U and @2, respectively.

= U: location parameter; 0 (or 0?): scale (or dispersion) parameter

<w u) oo y?
Proof. EX)= [~ T 217we de = [T _(oy+p)—=e = dy

5

= [TyeT T dy+p [T, e T dy

(z—n)? 2

S e T PR
2
ey e [
u2
+M2f oo\/% _JT dy
= o2 1+ .04+p2 1=0%+ 2
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»Some properties

= Normal distribution is one of the most widely used
distribution. It can be used to model the distribution of many
natural phenomena. »

= Theorem. Suppose that X~N(, 02). The /\

random variable AN
Y=a X+), "

where a#0, is also normally distributed /\

with parameters ap+b and a?0?, i.e., A-JLON

Y~N(ap+b, a*a?).
_ ly—(aptb)]?

b
Proof. fY(y) — fX (yT> ﬁ — me 20202

o Corollary. If X~N(U, 0?), then g
g=2_F /ﬂ\

O‘ =20 u wt 20
is a normal random variable with parameters 0 and 1, 1.e.,
N(0, 1), which is called standard normal distribution.

p. 6-34

= The N(0, 1) distribution 1s very important since properties
of any other normal distributions can be found from those
of the standard normal.

o The cdf of N(0, 1) is usually denoted by ®.
o Theorem. Suppose that X~N(|4, 02). The cdf of X is

Fx(z) =@ (=4).

g

Proof. Fx(z)=Fz (=) =@ (=)

o Example. Suppose that X~N(|, 0%). For —oo<a<b<oo,
Pla< X <b)=P (a;” < X;“ < b‘“)

g

= P(“‘“ <§<b%‘>

(o2

= P(z<bt) - pP(z< 2

= @ (k) ().

o Table 5.1 in textbook gives values of ®.

To read the table:




6-35

1.Find the first value of & up to the first place of decimal
in the left hand column.

2.Find the second place of decimal across the top row.

3.The value of ®(z) is where the row from the first step
and the column from the second step intersect.

TABLE 5.1: AREA ©(x) UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF x
M X 00 .01 02 .03 04 .05 06 07 08 .09
.0].5000 .5040 .5080 .5120 .5160 .5199 5239 .5279 .5319 .5359
.1].5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 5753
21.5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

3.21.9993 .9993 9994 .9994 9994 9994 9994 9995 .9995 .9995
3.31.9995 .9995 9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 1.9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

+ For the values greater than 2=3.49, ®(2) =~ 1.

« For negative values of z, use P(2)=1-P(-2)

= Normal distribution plays a central role in the limit theorems
of probability (e.g., Central Limit Theorem, CLT, chapter 8)
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»Normal approximation to the Binomial

= Recall. Poisson & Hypergeometric
approximations to Binomial
» Theorem. Suppose that X, ~binomial(n, p).

Define Zn = (Xn - np)_/\/np(l _p)‘

Then, as n— o0, the distribution of Z, il
converge to the N(0, 1) distribution, i.e.,

Fz (z) = P(Z, < z) = ®(2).

Proof. It is a special case of the CLT in Chapter 8.

nnnnnnnnnn o Plot the pmf of X ~binomial(n, p)

o Superimpose the pdf of Y, ~N(J,,, 0,.2)
Jﬁﬂﬂ%& with Jl,=np and 0,2= np(1-p).

o When n is sufficiently large, the normal

0 1 2 3 4 5 6

pdf approximates the binomial pmf.

n/ ~ (Y — /O
n n n n
° 001 23 4 5 6 7 8 9 1011121314151 17 18 19 20 21 ° 02468 11 14 17 20 2 26 20 2 3% 3B 41 4 4 50
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o The size of n to achieve a good
approximation depends on the value of p.

¢ For p near 0.5 = moderate n is enough

+ For p close to zero or one
= require much larger n

» Continuity Correction (for integer-valued discrete r.v.’s)

o Q: Why need continuity correction?

Ans. The binomial(n, p) is a discrete r.v. and
we are approximating it with a continuous r.v..

+ For example, suppose
X~binomial(50, 0.4) and we want to

find PA(X=18), which is larger than 0.

+ With the normal r.v. Y~N(20, 12), |
however, A(Y=18)=0 because Yhas a
continuous distribution g1

o Instead, we make a continuity correction,

P(X =18) = P(17.5 < X < 18.5) p. 638

17.5—(50-0.4) 18.5—(50-0.4)
( v/50-0.4-0.6 <Zn < \/500406)

17.5—(50-0.4) <Z< 18.5— (5004))
v/50-0.4-0.6 v/50-0.4-0

| 2
S VIR B v

(Ve
(-2
() (- 252>=<1—¢<%)—(1—@<%>
= ©(25/V12) - @ (1L5/V12)

and can obtain the approximate value from Table 5.1.

o Similary,

_ _ 29.5—(50-0.4)
P(X > 30) = P(X > 29.5) = P (ﬁ > T)

~ P(Z>95/V12) =1-®(9.5/V12).

and
P(1

/'\

< X <30) = P(9.5 < X < 30.5)
9.5—

5004) 30.5—(50-0.4)

p
P (- 105/\/_<Z<10.5/\/_)
®
2

10.5/v12) — @ (—10.5/v/12)
® (10.5/v12) — 1




p. 6-39

» Summary for X ~ Normal(l, 02)

. _ (z—w)?
= Pdf: f(x) = ——e 22, —00<x < 00,

2o

» Cdf: no close form, but usually denoted by ®((z—)/0).
» Parameters: H€R and 0>0.

= Mean: E(X) = U

= Variance: Var(X) = 02

» Weibull Distribution
»For a, >0 and VeR, the function

xr—UV

f(a:):{ N G o S A

0, if x <v,

is a pdfsince (1) f(z) > 0 for all z€R, and (2)
[ f@ds = 22 (=) e

— fooo e Ydy= _e—y‘go —1

= The distribution of a random variable X with this pdfis
called the Weibull distribution with parameters , 3, and v.

» (exercise) The cdf of Weibull distribution is P 6-40
F(az):{ 1—6_(96;”)5, %f:czw
0, if x <.

» Theorem. The mean and variance of a Weibull distribution with
parameters O, (3, and v are

uzaf(l+%)+u and

a2=a2{r(1+%) - [F(1+%>r}.
Proof. F(X) = = )5_16_(95;,/)5 dx
e e a
= af yPevdy+v e ydy-af(% 1) + v
B(X?) = [Fa? £ (222)" e (5 o
= [ (ay' /P +v)2e Y dy
= o [[TyHPe v dy+ 20w [Ty PemV dy +1v? [T eV dy

T (% + 1) + 2avT’ (% + 1) + 12
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>Some properties
= Weibull distribution 1s widely used to HBE=
model lifetime (cf., exponential) : _

= 0: scale parameter; [3: shape parameter; K TN
V: location parameter T

» Theorem. If X~exponential(A), then
Y:oz()\X)l/ﬁ—H/

is distributed as Weibull with parameters o, 3, and V (exercise).

 Cauchy Distribution

»For peR and >0, the function

f@) =% Grpgmr —o0 <z <o,

is a pdfsince (1) f(z) > 0 for all x€R, and (2)

o @) de = |7 2 da
= [ s dy= tan”l(y)| T =1
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= The distribution of a random variable X with this pdfis
called the Cauchy distribution with parameters U and O,
denoted by Cauchy(l, 0).

» The cdf of Cauchy distribution is

F(x):fxooimdy—2+ltan (:c;M)

for —oo<r<oo. (exercise)

»The mean and variance of Cauchy distribution do not
exist because the integral does not converge absolutely

»Some properties
= Cauchy is a heavy tail distribution

= l: location parameter; 0: scale parameter

xn Theorem. If X~Cauchy(l, ), then
aX+b~Cauchy(ap+b, |a|o).

Proof. (exercise)

% Reading: textbook, Sec 5.4, 5.5, 5.6




