 space $\underline{\Omega}_{0}$（and p．m．\underline{P}_{0} ）is repeated infinite times．（countable）

C．f Binomial（LNP．5－20）
－Assume that events depending on different trials are independent $\sigma^{\text {ithtrial }} \sigma^{i_{2} \text { th trial }} \sigma^{i 3 \text { th }} \cdots \sigma^{\text {inch }}$ e．g．$A^{\prime}=\Omega_{0} \times \ldots \times \Omega_{0} \times A_{i} \times \Omega_{0} \times \ldots \times \Omega_{0} \times A_{i 2} \times \Omega_{0} \times \ldots$

－For a given event $A_{0} \subset \underline{\Omega}_{0}$ ，we continue performing the trials until \underline{A}_{0} occurs exactly r times a basic event
－Q：What is the probability that we need to perform k trials？

- Then, for $k=r, r+1, r+2, \ldots$,

binomial $-(\underline{\underline{r}})$ cf. $\underline{\underline{r}}-\underline{\underline{1}}) \quad$ p.m.on $\Omega \quad$ i.e. $\mathbb{1}_{A_{\mathbf{k}}}=1$ proof. If $\overline{\bar{r}}=1, P\left(Y_{1}=k\right)=P\left(\left\{X_{k-1}=0\right\} \cap A_{k}\right)$
Biromial $(k-1, \mathrm{P}) \quad \because$ indep. $\overline{\mathcal{T}} P\left(\left\{X_{k-1}=0\right\}\right) \cdot P\left(A_{k}\right)=(1-p)^{k-1} p$
In general, $P\left(Y_{r}=k\right)=P\left(\left\{X_{k-1}=r-1\right\} \cap A_{k}\right)$ \&pmf of
\because indep. $\overline{\text { g }} P\left(\left\{X_{k-1}=r-1\right\}\right) \cdot P\left(A_{k}\right) \quad$ geometric
pmf of negative binomial $工=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} p$

made by S.-W. Cheng (NTHU, Taiwan)

