$>$ For an outcome $\underline{\omega} \in \Omega$, the experimenter may be more interested in some quantitative attributes of $\underline{\omega}$, rather than the ω itself, e.g.,

- The average weight of the k sampled students
- The maximum of their midterm scores
- The number of male students in the sample

$>$ Q: What mathematical structure would be useful to \because the outiome characterize the random quantitative attributes of ω 's? ω is random

defnaition btw
2 outcomes $\omega \omega_{1}, \omega_{2}$ can do numerical calculations on its outcomes $\left(\mathbb{R}, \mathcal{I}_{x}, P_{x}\right)$]
- Definition: A random variable \underline{X} is a (measurable) function which maps the sample space Ω to the real numbers \mathbb{R}, i.e.,

$>$ The \underline{P} defined on $\underline{\Omega}$ would be transformed into a new P_{x} probability measure defined on $\underline{\mathbb{R}}$ through the mapping \underline{X}
- the outcome of X is random,
- but the map \underline{X} is deterministic

Example (Coin Tossing): Toss a fair coin 3 times, and let
operations on the outcomes of Ω def.
can do numerical calculations, eeg. $x_{1}=x_{3}=x_{1}(\underline{\omega})-x_{3}\left(\underline{\omega_{2}}\right)$ "+"."-".' $x^{\prime \prime \prime \prime}$ " \div ", "exp", "log",".."
"<",">"," $=$ ",...

- $\underline{X}_{1}=$ the total number of heads $\underline{X}_{2}=$ the number of heads on the first toss

2 main aspects of X :

- the (random) value of X - distribution of X $\left.\begin{array}{l}X_{3}=\text { the number of heads minus the number of tails } \\ \Omega=\{h h h, h h t, h t h, t h h, h t t, t h t, t t h, t t t\}\end{array} \begin{array}{l}\text { value. random } \\ \text { distribution: } \\ \text { fixed }\end{array}\right]$

