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Random Variables

* A Motivating Example

» Experiment: Sample k£ (<n) students without
replacement from the population of all n students
(labeled as 1, 2, ..., n, respectively) in our class.

> Q= {all comblnatlons} ={{0, .00 zki 1<4,<---<;, <n}

> A probability measure P can be defined on Q, e.g., when there
is an equally likely chance of being chosen for each students,

P({i1,...,ie})=1/( 7).

» For an outcome WeQ), the experimenter may be more
interested in some quantitative attributes of w, rather than the
w itself, e.g.,

» The average weight of the k£ sampled students

s The maximum of their midterm scores

» The number of male students in the sample
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» (Q: What mathematical structure would be useful to
characterize the random quantitative attributes of w’s?

(Q,F,P)

* Definition: A random variable X is a (measurable) function which
maps the sample space Q to the real numbers R, i.e.,

X :0—>R.

» The P defined on Q would be transformed into a new
probablhty measure defined on R through the mapping X

= the outcome of X is random,

= but the map K 1s deterministic




» Example (Coin Tossing): Toss a fair coin 3 times, and let
= X, = the total number of heads

X, = the number of heads on the first toss

X, = the number of heads minus the number of tails

« Q ={hhh, hht, hth, thh, htt, tht, tth, ttt)

SRS

X, : 03 2 2 2 1, 1,1, o
X,: 1, 1, 1, 0, 1, 0,0, 0.
X003 1, 1, 1, -1, -1,-1, -3.

» (): Why particularly interested in functions that map to “R”?
» Q: How to define the probability measure of X (i.e., Py) from P?
Ans: For a (measurable) set (i.e., an event) ACR,

Px(X € A) = P({w: X(w) € A}).

The Py is often called the distribution of X.

A occurs = (2, 7, P) A R "
E , occurs , Px
Px(A) = P(E4) & X Px(A) =77

Discrete Random Variables
* Definition: For a random variable (r.v.) X, let

X ={X(w):weq}

be the range of X. Then, X is called discrete if X is a finite or
countably infinite set, 1.e.,

X ={zxy,...,zn}t or X ={x1,22,...}.
» Example. The X}, X,, X; in the Coin Tossing example.
» Example. The number of coin tosses (X) until 1% head appears.

» The sample space of a r.v. is the real line R. Q: For R, are there
some particular ways to define a probability measure (p.m.) on it?

[cf., for general sample space Q, a p.m. 1s defined on all (or any
measurable) subsets of Q]
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Ans: 3 commonly used tools to define the p.m.’s of discrete r.v.’s:

1. Probability mass function (pmf)

2. Cumulative distribution function (cdf)

3. Moment generating function (mgf, Chapter 7)

* Definition: If X is a discrete r.v., then the probability mass
function of X is defined by

fx(z)=Px({X =2}) = P(lw € Q: X(w) = z})
for x€R. (cf., the p: Q—[0, 1] in LNp.3-7)

» Example. For the X, in the Coin Tossing example,

» X =40,1,2,3}

" fx,(0)=1/8, fx,(1)=3/8,
fx,(2)=3/8, fx,(3)=1/8.
and fx,(x)=0, forax¢ X. N |

= Graphical display

» Example (Committees). A committee of size n=4 is selected from
5 men and 5 women. Then,

= Q={combination of 4}, #Q = (') = 210, A)=HAHQ

» Let X be the number of women on the committee, then
o fx(@) = Px(X =) = () (,2,)/ (%)
o fx(0) = fx(4) = 535, fx(1) = fx(3) = 3,

fx(2) = 315-
» (): What should a pmf look like?

= Theorem. If fy is the pmf of r.v. X with range X, then
(i) fx(z) > 0, for all z€R, °
(i) f1() =0, for z & X,
(iil) D er Sx(2) =1. e

(iv) moreover, for ACR,

Px(X € A) =2 veanx [x(@).
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» Theorem. Any function f that satisfies (1), (i1), and (ii1) for
some finite or countably infinite set X’ is the pmf of some
discrete random variable X.
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» Henceforth, we can define “pmf” as any function that
satisfies (1), (11), and (i11).

= We can specify a distribution by giving X'and f, subject to
the three conditions (1), (i1), (iii).

= Q: Suppose that X and Y are two r.v.’s

defined on Q with the same pmf. Is it
always true that X(w) = Y(w) for weQ?

* Definition: A function F'y:R—R is called the

cumulative distribution function of a random
variable X if Fy(z) = Py(X < x), z € R.

(Note. The definition of cdf can be applied

to arbitrary r.v.’s)

» Example. For the X, in the Coin Tossing .
example, (0,  2<0,

1/8, 0<z<1, i o
Fx,(z)=1 4/8, 1<z<2, |

7/8, 2<z<3, | |
1, 3< x.
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» (Q: What should a cdf look like?

» Theorem. If F'y is the cdf of a r.v. X, then it must satisfy
~ the following properties:

o (D0 Fy(x) S 1
L= proof. o< Fy(z) = P({w € Q: X(w) € (—o0,2]}) < 1.
_ (2) Fx(=x) 1s nondecreasing, i.e., Fiy(a)<Fx(b) for a<b.
proof. For a<b, (—o0,a] C (—o0, ],
Fx(a) = Px((—00,a]) < Px((—00,b]) = Fx(b).
(3) For any x€R, F'y(x) is continuous from the right, i.e.,
- Fx(z) = Fx(z+) = limy ., Fx (%),
\, m Let xz, be a sequence s.t. z,, | x.
o Let £, = (—o0,x,]. Then, E, | (—o0, z].

Fx(z) = Px((—o0,2]) = Px <nh_>n;oE >
_ nh_{gopx( = hm Px ((—00, xn])

(4) lim Fx(z) =1 and lim Fx(z) =0, "o

Tr—r00 T—r—00

— Qroof. Let x, | —0o. Then, E,, = (—o0, z,] | 0.

B lim Fx(zn) = lim Px((—o00,zn))
= — Py ( lim En) = Px(0) = 0.
n— oo
Similarly, if x,, T oo, then E,, = (—o0,x,] T R, and
lim Fx(z,) = lim Px((=00,2,])
~ Py ( lim En> — Px(R) = 1.
n—oo

(5) Py(X>1)=1-Fy(z) and Py(a<X <b)=Fy(b)=Fx(a).

proof. Px(X >z) = 1-Px({X >z}
T = 1—PX(X§$):1—FX($)

;;; —— For a < b, (—00,a] C (—o0,b], and

Px(a < X <b) = Px((—00,b] \ (—o0,al)
= Px((=00,0]) = Px((—00,d]) = Fx(b) = Fx(a).
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(6) Moreover, if X is discrete with pmf f, then for z€R,
Fx(a) = 3 wicx [x(@i), and fx(2) = Fx(z) — Fx(2—).

proof. Fx(z) = Px (X € (—o0,z]) = Z fx ().

z; €E(—o0,z]NX
G For z,, Tz, (—o0, x,] T (—00, x), and

P (=)= nh_)n;)lo Fx(z,) = Px((—o00,x)).
So, fx(x) = Px({x}) = Px((—o00,z]\ (—00, z))
11 = Px((~o00,a]) — Px((~00,2)) = Fx(z) - Fx(z—).
(D) F'y has at most countably many discontinuity points.
proof. Let D be the collection of discontinuity points.
For z € D, let T, = (Fx(z—), Fx(x)).

T Because Fx(x—) # Fx(x),
- d a rational number, denoted by r,, in 7.

1 — Because the set of rational numbers is a countable set,
B DD is either finite or countably infinite.

» Theorem. If a function F'satisfies (2), (3), and (4), then F'is a
cumulative distribution function of some random variable.

proof. Skip. Out of the scope of the course.
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e Transformation

(Q,f,P) /’g—\q R

» Theorem. Let X be a discrete r.v. with range X and pmf f; let
=g9(X)
then, the range of Yis

Y ={g(z):z € X},
l.e., Yis a discrete r.v., and the pmf of Yis

Jr(y) = Z REAELS fx ().
proof. Since {w € Q: Y( =y} = U {we: X(w) =z},

reX

g(z)=y
fri)= Y Plwe:X(w) =z} = ) fx(
gff)):(y gzcwe)iy

= Example. If Y=X2, then fv(y) = fx(v¥) + fx (=)

+ Reading: textbook, Sec 4.1, 4.2, 4.10
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Expectation (Mean) and Variance

* (Q: We often characterize a person by his/her height, weight, hair
color, .... How can we “roughly” characterize a distribution?

* Definition: If X is a discrete r.v. with pmf fy and range X, then the
expectation (or called expected value) of X is

E(X) — ZxéXﬁMa

provided that the sum converges absolutely.

» Example. If all value in X are equally likely, then E(X)
is simply the average of the possible values of X.

» Example (Committees, LNp.5-6). In the committees

example, 5 50 100 50 5
B(X)=0.— 1+1.— 19.22 2y 2
=050 210 T2 210 "% 210 T 200

» Example (Indicator Function).

= For an event ALIQ, the indicator function of A is the
I.V.: { 1, ifweA,

0, ifwé¢g A

1A(w) =
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» Itsrange X is {0, 1} and its pmfis
f(0)=P(A9)=1-P(A) and f(1)=P(A),
for a p.m. P defined on Q.
= So, F(14)=0-[1-P(A)]+1-P(A) =P(A).

» Intuitive Interpretation of Expectation

» Expectation of a r.v. parallels the notion of a weighted
average, where more likely values are weighted higher than
less likely values.

n It 1s helpful to think of the expectation
as the “center” of mass of the pmf.

o center of gravity: If we have a rod with weights f(x;)
at each possible points z;’s then the point at which the
rod is balanced is called the center of gravity.

Py p(-1)=.10, p(0)=25, p(1)=30, p(2)=.35

P
-»
°

~l 2 A = center of gravity = .9
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= Expectation can be interpreted

as a long-run average (. Law
of Large Number, Chapter 8)

« Expectation of Transformation

» Theorem. If X is a discrete r.v. with range X and pmf f; let
Y= g(X),
and Y be the range of Y, f -be the pmf of Y, then

EY) =) yeyufy () =2 pcx 9(x) fx (2),

provided that the sum converges absolutely.

proof. > g(@)fx(x) = > { > g(@)fx(x)}

zeX yey wex
g(z)=y
= D>y > fx@=)> yfr(y)
yey  zex yey
g(z)=y

« Example. Y=X2, E(Y) =3, 2°fx(z) = E(X?).
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» Theorem. For a, b € R, E(aX+b) = a-E(X)+b.

proof.
E(aX +b) =) (az+b)fx(z)=al)_ xfx(@)]+b)  fx(x)]
B - T

e Mean and Variance.

» Definition. The expectation of X is also called the mean of X
and/or fy . The variance of X (and/or fy) is defined by

Var(X) = B[(X — px)*] = Y ex(® — px)* fx(2).
provided that the sum converges.

» The E(X) is often denoted by  and Var(X) by o % . Also,
ox = /0% is called the standard deviation of X.
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» Example (Committees, LNp.5-6)

T f(z) f(x)  (z—p)?flx) 2°f(z)
0 5/210 0/210 20/210 0/210
1 50/210  50/210 50/210 50/210
2 100/210  200/210 0/210 400/210
3 50/210  150/210 50/210 450/210
4 5/210  20/210 20/210 80/210
Totals 1 2 2/3 14/3
So, y=2, 7 =2/3,and 0=,/2/3
= Note.

o Uy and o5 only depends on fx- They are
fixed constants, not random numbers.

o If X has units, then fy and gy have the same
unit as X, and variance has unit squared.

» Intuitive Interpretation of Variance ‘
I ‘ ‘ I

» Variance is the weighted average value of the
squared deviation of X from Uy.

» Variance is related to how the pmf is spread out
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» Some properties of variance.

» The variance of a r.v. is always non-negative

= The only r.v. with variance equal to zero is a
r.v. which can only take on a single value (Uy).

» Theorem. For a, b € R, Var(aX+b) = a* Var(X)

proof. Let Y = aX + b, then E(Y)=a-pux +b = uy.
Var(Y) = E(Y —py)* = E[(aX +b) — (aux + b)]?
==l =B =~ VY
3X+3




» Theorem. If X is a (discrete) r.v. with mean (/y, then for any géf@g,

E[(X —¢)"] = ox + (¢ — px)".

proof.
E[(X —¢)’) = E[(X — px + px — 0)*] = ) _[(& — px + px — )’ fx(2)
reX
= Y (o - pux)? + 2(z — px)(ux — ) + (ux — )} fx (@)
reX
= > (@ —nx)*fx(@) +2(ux —¢) Y (2 — px)fx(@) + (ux — ¢)* Y fx(@)
zEX zeEX xeX

» Corollary. E[(X—c)?] is minimized by letting c={/; and the

minimum value is 0% .

« Corollary. 0% = E(X?) - (E(X))>
(Recall: E(X?) =3 vz’ fx(x).)
o Example (Committees, LNp.5-17). Var(X)=14/3-22=2/3.
> E(X") is often called the n moment of X

+ Reading: textbook, Sec 4.3, 4.4, 4.5
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Some Commonly Used Discrete Distributions

* Bernoulli and binomial Distributions

» Experiment: A basic experiment with sample space Q, (and
p.m. P) is repeated n times. B

« Example. (a) Sampling with replacement
(b) Coin Tossing
(c) Roulette

» The sample space for the n trials 1s
9:99)(... XQQZQQ@

= Assume that events depending on different trials are
independent




p. 521

= Q: Given an event A,C€,, what is the probability that A,
occurs k times in the n trials?

= Problem Formulation: Let A,CQ be

A, = {A, occurs on the it trial}, and
X=1gq4,+---4+14,
Q: What is P(X=k)?
(Note. 4, ..., A, are assumed to be independent events.)
- Example_(Roulet_te, n=4, k=2, LNp.3-4).
o Let W,= {Win on i"" Game}
L, = ﬂfﬁ = {Lose on i" Game}.
Then, (W;)=9/19 = p and P(L,)=10/19=1-p = ¢
o Let X = 1w, + 1w, + 1w, + 1w, then

(X =2} =WiNWanNLsNLy)U(W;NLyNWszNLy)
UW1N Ly N Ly NWy) U (L N Wo N W3 N Ly)
ULy N Wy N LsNWy)U(Ly N Ly N W3 N Wy)
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Px(X:2) = P(WlﬁW2ﬂL3mL4)—|—'“
+P(Li N Ly W3 N Wy)

= P(W,)P(W2)P(L3)P(Ly) + - - - + P(Ly) P(Ly) P(Ws) P(Wy)
= ppqq + pqpq + pqqp + qppq + qpqp + qqpp :Ep2q2
» Probability Mass Function
= Let él’ ..., A, be independent events and PA(A,)=p, i=1, ..., n.

4

n Let X: 1A1 _l__l—lAn A n=10adp=1
= Then, fork=0,1, ..., n, < Hn

P(X = k) = (Z pk(l _p)n—k: ' n=110andp=.5
/

- 2

: .

proof. We may choose k trials in (k) ways. i
Say, {1,2,3,...,k} is chosen. olea L
PAIN-- NA,NA  N---NAS) ’

DD..OD — P(Al)XXP(Ak:)XP(AZ—i—l)XXP(A;)
= p"1-p""
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» (exercise) Show that the following function is a pmf.
f(k') — { (Z)pk(l_p)n_k7 kzoalv"'7n7

0, otherwise.
= The distribution of the r.v. X is called the binomial
distribution with parameters n and p. In particular, when
n=1, it is called the Bernoulli distribution with parameter p.

o Notice that a binomial r.v. can be regarded as the sum
of n independent Bernoulli r.v.’s.

o The binomial distribution 1s called after the Binomial
Theorem: n n n "
= (a+b)" =3 1_(Pa"b"F.

» Example (Bridge). Q: What is the probability that South
gets no Aces on at least k=5 of n=9 hands?

o Let A;={no Aces on the i" hand}, i=1, 2, ..., 9, and
X =14, +-+1g4,,

o Then, P(4) = (£)/(3) ~ 0.3038 = .

13
e Pec =)= (( )it
|:|A1’1d, 0
P(X >5)= Z (Z)pk(l —p)" % ~0.1035.

k=5
» Theorem. The mean and variance of the

Binomial(n, p) distribution are

2

= np(1l —p).

up=np and o
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T @2y TP
= n(n-—1) 22<$_2) p)(”—2)—($—2)
= n(n—1)p?

Var(X) = E(X®) - [E(X)]* = [B(X?) — E(X)] + E(X) — [E(X)]*
= n(n— 1);02 +np —n’p’ = np(1 - p)

» Summary for X ~ Binomial(n, p)

» Range: ¥ ={0,1,2,...,n}
« Pmf: fx(z) = (0)p*(1 —p)" 7, forz € X

» Parameters: n€{l, 2, 3, ...} and 0<p< 1
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» Mean: E(X)=np
= Variance: Var(X)=np(1-p)

* Geometric and Negative Binomial Distributions

» Experiment: A basic experiment with sample
space Q, (and p.m. F) is repeated infinite times.

» The sample space is
QZQ()XQ()XQ()X"’

« Assume that events depending on different trials
are independent

= For a given event A,CQ,, we continue performing

the trials until A, occurs exactly r times

= Q: What is the probability that we need to perform £ trials?
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« Example.
o A company must hire 3 engineers.

o Each interview results in a hire with

probability 1/3 (][] ese [1[]
o Q: What 1s the probability that 10
interviews are required?

o We need: (i) Success on the 10t
interview (i1) 2 hires on the first
9 interviews

| @ So, the probability is
LG G)6)-06 6 oooooog---
= Problem Formulation:
o Let élégu C Q be
A; = {A, occurs on the i trial},

and
Xn=14,+ ---+14 ,forn=1,23, ...
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o Let Y, =smallest n with X, > 1,
Y, = smallest n with X, > 2,

oo OOy e e
Y, = smallest n with X, > r,

a Q: What is P(Y,=k)?
» Probability Mass Func{ion
= Let éléz’“' be independent and A(4,)=p, =1, 2, 3, ....
» Then, fork=r,r+1,74+2,...,

P, =k)= (k } 1)197"(1 —p)*.

r—1
proof. Ifr =1, P(Y1 =k) = P({X)—1 =0} N Ay)
= P{Xp-1=0}) - P(A) = (1—p)'p
In general, P(Y, =k)=P{Xp_1=7r—1}NA)
= P({Xp—1=r—1}) - P(Ax)

= (k_l)ﬂ‘Wl—pﬁﬂb

r—1
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= (exercise) Show that the following function is a pmf.

f(k) — { (i:})pr(l _p)k_ra k= T+ ]-7 % 4 &y

0, otherwise.

= The distribution of the r.v. Y, is called the negative binomial
distribution with parameters r and p. In particular, when r=1,
it is called the geometric distribution with parameter p.

o A negative binomial r.v. can be regarded as the sum of
independent geometric r.v.’s.

O e OO0 OO

o The negative binomial distribution is called after the
Negative Binomial Theorem:

1 =~ (r+k—1\
(1_t)r:Z< L )t, for |t| < 1.

k=0
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» Theorem. The mean and variance of negative binomial(r, p) is
p=r/p and o’ =r(l—p)/p*.

proof.
=3 z—1 (z—1)! 11 _
= r . — T 1 — r—r
E(X) ;w(r_Jp (1 Z 7‘—1 e A=)
_ '\ /(x +1) - 1\pr+1<1 _p)(x—i-l)—(r-i—l)
p= \(r+1)-1)
r . ( y—1 >r+1 —(r+1)
= — P (1 —p)Y =r/p
p S \(r+1)—1

EX(X +1)]=E(X*+X)=E(X? + E(X)
= et (I ra-p
_ r(r+1)§:( (z+ 1z (xz—1)! +2(q

“(r+1r-(r—1l(z - T)!p

_ p)(w+2)—(r+2)

_ r(r+1) i ((CU +2) — 1)p7“+2(1 _ p)@D=(+2)

(r+2)—1

T=r

rr+1) — —1 9 (rt9
D F (I e

y=r+2
= r(r+1)/p°
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r(r+1) r ﬁ _ r(1—p)

P p P P’

» Summary for X ~ Negative Binomial(r, p)
» Range: X ={r,r+1,r+2,...}
» Pmf: fx(z) = (f:i)pr(l —p)* " forxe X
» Parameters: re{l, 2, 3, ...} and 0<p< 1
= Mean: E(X)=r/p
= Variance: Var(X)=r(1-p)/p>

* Poisson Distribution

»Recall: Expression for e, e=2.7183---

« 1st Expression: €% = lim, 4o (1+ Z)".
k
B,

= 2nd Expression: e* = 7
» The Derivation
= Consider a sequence of binomial(n, p,,) distributions satisfying
(a) p, = 0 when n — oo :

1
k!

(b) n-p,, = A when n = oo, where 0 <A < o0
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Then, p,,~ A/n when n is large enough.
[ AIld,

(Z)pﬁ(l —pa)" "

1 IR B L v i S
~ = A) (122 — k== (12}
k'%<n> < n) k!A 72 < n>

Here, for each fixed &,

(1)

A n—k
lim = 1 and lim (1— —) =e .
n—oo M n—00 n
So, when n large and n > k,

n—=k
%%1 and (1—é> ~e .

nk n

In other words, when n large, n > k, and p, = 0,
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oo oo e e e L

» Example.
= A professor hits the wrong key with probability p=0.001
cach time he types a letter. Assume independence for the
occurrence of errors between different letter typings.

» Q: (5 or more errors in n=2500 letters)="7?

= Ans.

o Let X be the number of errors, then
X~binomial(2500, 0.001) and

P(5 or more errors) =1 — P(X < 4)

4
2500 -
= 1—2( . )(0.001)k(0.999)2500 k

k=0

5-34

o The probability can be approximated by Afe™ /k! with "
A = 2500 x 0.001 = 2.5 times of errors,

where 2.5 1s the expected number of the errors that
would occur in the 2500 typings.

(Q: What should the A’s be for 5000 typings, 7500
typings, and 10000 typings?)

a So, P(X = k) ~ (2.5)ke 25/k!, for k=0,1,2,3,4, and
. (2.5)ke25

1-P(X<4)~1-) -
k=0

= 0.1088.

» Probability Mass Function

s Theorem. Let

{ el k=0,1,2,...,

0, otherwise.
then, f(k) is a pmf.




@

p. 535

proof. LNp.5-6, (1) & (11) are straightforward. For (ii1),
Zf(k): ]:! =e (ZE)ZG/\'G/\:L

o The pmfis called the Poisson pmf with parameter A. The
distribution is named after Simeon Poisson, who derived
the approximation of Poisson pmf to binomial pmf.

o The A (=np,) can be interpreted as the average
occurrence frequency.

0 n

=1, ”H A=5 L=10
0 OHHHH HHHHHH__ i

0 ;
0123 43 0113 495 012345678900 RBUISIEITIBIN 0123456789001 1BMHISI6ITIEIGN

X
o ! 0 ! <d) !

» Theorem. The mean and variance of Poisson(A) is

p=XA and o° =M\

proof.
o0 6_/\)\1: o0 6_)\)\33_1 o0 €_>\>\y p. 5-36
EX)=) = " :A-Z(x_l)':)\z " =\
=0 z=1 y=0
EX(X-1)]=E(X?-X)=E(X? - E(X)
s e\ =L e AT 2 = e AN
= — . — )\2 . — )\2 . — >\2

Var(X) = E(X?) - [B(X)]?
= [E(X?)—EX)]+EX)-[EX)2=X24+X1=-X2=)
=« Note: For X~binomial(n, p), where (1) n large; (i1) p small,

o distribution of X = Poisson(A=np)

o F(X) =np = mean of the Poisson = A

o Var(X) =np(1-p) = variance of the Poisson = A

» Poisson Process (stochastic process)
« Example:

(1) # of earthquakes occurring during some fixed time span

(2) # of people entering a bank during a time period
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To model them, we can

o Divide the time period, say [0, ?], into n small intervals

o Make the intervals so small (then, n large) that at most
one event can occur in each interval

= Let X, ; be the number of events occurs in ith
interval, then assume

P(X,;,=0)=1—-X-(t/n)+o(1/n)
P(Xni=1)=X-(t/n)+0o(1/n)
P(X,;>2)=o0(1/n)

= We can treat the number of events in a single
interval as a Bernoulli r.v. with a small p, (RAt/n) >
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o Assume that the number of events to occur in
non-overlapping intervals are independent

= Now, the number of events in the whole period of
time [0, ¢] is binomial(n, p,,), where n 1s a quite
large number and p,, is a small probability and
np, = n(At/n) = At

o The distribution for the number of events occurring in

[0, t] can be approximated by Poisson(n-p,~ At)
= Definition. A Poisson process with rate A is a
family of r.v.’s IV,, 0<t<oo , for which

Ny=0 and N,— N, ~ Poisson(A-(t=s)),

for 0<s<t<oo, and
Ny, — Ng,,1=1,2,...0om

are independent whenever
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o Here, IV, denotes the # of events that occurs by time ¢

o A: the average # of events occurring per unit time

time

« Example.

o Traffic accident occurs (% 4R §2 &2 74 & v ) according
to a Poisson process at a rate of A=5.5 per month

o Q: What is the probability of 3 or more accidents occur
in a 2 month periods?

o Here, At =5.5%2 = 11. (Q: What should At be for one
and half months? for a year?)

o So, Ng"’ POiSSOl’l(ll), P(N2 = k) = 11%.e /L) and p. 5-40

2 6_11-11k
P(NQZS)zl—P(NQSQ)zl—ZT

k=0

» Summary for X ~ Poisson(\)
= Range: X ={0,1,2,...}
Pmf: fx(z) = \®e */z!,forz € X
Parameter: 0<A< oo
Mean: E(X)=A
Variance: Var(X)=A

* Hypergeometric Distribution

»Experiment: Draw a sample of n (<.N) balls without replacement
from a box containing R red balls and N—R white balls

» Let X be the number of red balls in the sample

» Q: What is A(X=k)?

» Example. The Committee Example (LNp.5-6).

» (ct.) If drawn with replacement, what is the distribution of X?
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» Probability Mass Function
» Theorem. Fork=0,1,2, ..., n,

[T e OO0

P(X =k) = (5)((%):5)

(Notice that (%) = 0 when either ¢<0 or r<t.)

proof. Label the N balls as r1,...,7r, W1, ..., WN_R.
{2 combinations of size n from N different balls. = #) = (]Z )
fO<k<Rand 0<n—-k< N —R,

'k red balls may be chosen in (g) ways.

N—-R

ks ) ways.

n — k white balls may be chosen in (
= #HX =k =) (D)
» (exercise) Show that the following function is a pmf.

f(k) = { EE=E/M), k=01,....n,

0, otherwise.
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» The distribution of the r.v. X is called the hypergeometric
distribution with parameters n, N, and R.

o The hypergeometric distribution is called after the
hypergeometric identity:

() -2 M)

» Theorem. The mean and variance of hypergeometric(n, N, R)
are

R R(IN—R)(N —
IUJ: nT and 0'2 = n (NQ(N)—(l) n)
proof.
& DG & R! (5=
PO =2 0 =G = L ()
R DG ar= (UOHIEE) g
- N Gy N & N N
r= n— y=0 n—1
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EX(X-1)]=EX*-X)= E(Xz) E(X)

GG R (GD)
— Zxaz—l ( Zxaz—l !(R—zc)!' (]X)
_ n(n—-1)R(R-1) ~ (5—22) (((]Z—gg—gf—;)))
B N(N —1) ; (=
- DRER-1) 2P atm—1)R®R-1)
= N(N —1) y;) (V=2 ~ N(N-1
Var(X) = BE(X*) - [E ( = [B(X?) - B(X)] + E(X) - [BE(X)]”
n(n — 1)R(R ( ) _ nR(N —R)(N —n)
N(N — - N2(N —1)
» Theorem. Let N —o0 and —>oo in such a way that
= R; /N — P,

where O <p <1, then

() Cad) (n

&Of. p. 5-44
(W) (WZd) R (Ni = Ri) n!(N; = n)!
(V%) k(R k) (n—E)[(N; — R;) — (n— k)] N;!

n! R, R,—1 Ri—k+1
= Rk [E TN, N, ]
Ni-Ri (Ni=R)-1_ (N; — R;) — ( k)+1]
i i N; N;
"N, N, N,
N, N, 1 Ni—n—l—ll

» Summary for X ~ Hypergeometric(n, N, R)

» Range: X ={0,1,2,...,n}
e Pmf: fr(a) = (N )/(). fora e X

» Parameters: n, N, Re {1, 2,3, ...} and n<N, R<N

» Mean: E(X)=nR/N
» Variance: Var(X)=nR(N-R)(N-n)/(N*(N-1))

% Reading: textbook, Sec 4.6, 4.7, 4.8.1~4.8.3




