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Random Variables

 Ω = {all combinations} = {{i1, …, ik}: 1�i1<L<ik�n}

A probability measure P can be defined on Ω, e.g., when there 

is an equally likely chance of being chosen for each students, 

For an outcome ω∈Ω, the experimenter may be more 

interested in some quantitative attributes of ω, rather than the 

ω itself, e.g., 

 The average weight of the k sampled students

 The maximum of their midterm scores

 The number of male students in the sample

• A Motivating Example

Experiment: Sample k (<n) students without 

replacement from the population of all n students

(labeled as 1, 2, …, n, respectively) in our class.
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Q: What mathematical structure would be useful to 

characterize the random quantitative attributes of ω’s? 

• Definition: A random variable X is a (measurable) function which 

maps the sample space Ω to the real numbers ℝ, i.e.,

The P defined on Ω would be transformed into a new
probability measure defined on ℝ through the mapping X 

 the outcome of X is random, 

 but the map X is deterministic

ℝ

L
L

ℝ

ℝ
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Example (Coin Tossing): Toss a fair coin 3 times, and let

 X1 = the total number of heads

X2 = the number of heads on the first toss

X3 = the number of heads minus the number of tails

 Ω ={hhh, hht, hth, thh, htt, tht, tth, ttt}

Q: Why particularly interested in functions that map to “ℝ”?

X1 :    3,     2,     2,     2,     1,     1,   1,    0. 

X2 :    1,     1,     1,     0,     1,     0,   0,    0. 

X3 :    3,     1,     1,     1, −1, −1, −1, −3. 

Q: How to define the probability measure of X (i.e., PX) from P?

Ans: For a (measurable) set (i.e., an event) A⊂ℝ, 

The PX is often called the distribution of X.

PX (X ∈ A) ≡ P ({ω : X(ω) ∈ A}).
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Discrete Random Variables
• Definition: For a random variable (r.v.) X, let

be the range of X. Then, X is called discrete if is a finite or 

countably infinite set, i.e.,

X = {X(ω) : ω ∈ Ω},

X

X = {x1, . . . , xn} or X = {x1, x2, . . .}.

• The sample space of a r.v. is the real line ℝ. Q: For ℝ, are there 

some particular ways to define a probability measure (p.m.) on it? 

[cf., for general sample space Ω, a p.m. is defined on all (or any 

measurable) subsets of Ω]

ℝ
PX

X

A

PX(A) =??
EA

A occurs ⇔
EA occurs

PX(A) = P (EA)

Example. The X1, X2, X3 in the Coin Tossing example.

Example. The number of coin tosses (X) until 1st head appears.
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Ans: 3 commonly used tools to define the p.m.’s of discrete r.v.’s:

1. Probability mass function (pmf)

2. Cumulative distribution function (cdf)

3. Moment generating function (mgf, Chapter 7)

• Definition: If X is a discrete r.v., then the probability mass 

function of X is defined by 

for x∈ℝ. (cf., the p: Ω→[0, 1] in LNp.3-7)

Example. For the X1 in the Coin Tossing example,





and 

 Graphical display

X = {0, 1, 2, 3}

fX1(0) = 1/8, fX1(1) = 3/8,
fX1(2) = 3/8, fX1(3) = 1/8.

fX1(x) = 0, for x /∈ X .
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pmf

fX(x) ≡ PX({X = x}) = P ({ω ∈ Ω : X(ω) = x})
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Example (Committees). A committee of size n=4 is selected from 

5 men and 5 women. Then,

 Ω={combination of 4},                                , P(A)=#A/#Ω#Ω = 10
4 = 210

 Let X be the number of women on the committee, then





fX (x) = PX(X = x) = 5
x

5
4−x /

10
4

Q: What should a pmf look like?

 Theorem. If fX is the pmf of r.v. X with range , then

(i) fX(x) ≥ 0, for all x∈ℝ,

(ii) fX(x) = 0, for 

(iii) 

(iv) moreover, for A⊂ℝ, 

X

x /∈ X ,

0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PX(X ∈ A) = x∈A∩X fX (x).

x∈X fX(x) = 1.
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 Theorem. Any function f that satisfies (i), (ii), and (iii) for 

some finite or countably infinite set is the pmf of some 
discrete random variable X. 

X
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 Henceforth, we can define “pmf” as any function that 

satisfies (i), (ii), and (iii).

 We can specify a distribution by giving and f, subject to

the three conditions (i), (ii), (iii). 

X

• Definition: A function FX:ℝ→ℝ is called the 

cumulative distribution function of a random 

variable X if FX(x) = PX(X � x), x ∈ ℝ.
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FX1(x) =






0, x < 0,
1/8, 0 � x < 1,
4/8, 1 � x < 2,
7/8, 2 � x < 3,
1, 3 � x.

 Q: Suppose that X and Y are two r.v.’s

defined on Ω with the same pmf. Is it

always true that X(ω) = Y(ω) for ω∈Ω?

X

(Note. The definition of cdf can be applied

to arbitrary r.v.’s)

Example. For the X1 in the Coin Tossing

example,
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Q: What should a cdf look like?

 Theorem. If FX is the cdf of a r.v. X, then it must satisfy

the following properties:

(1) 0 � FX(x) � 1.

(2) FX(x) is nondecreasing, i.e., FX(a)�FX(b) for a<b.

(3) For any x∈ℝ, FX(x) is continuous from the right, i.e.,0 1 2 3
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proof. For a<b, 

proof. 

proof. 
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FX(x) = FX(x+) ≡ limt↓x FX(t),
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(4) lim
x→∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0,

(5) PX(X>x)=1−FX(x) and PX(a<X�b)=FX(b)−FX(a).

proof. 

proof. 
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(6) Moreover, if X is discrete with pmf fX, then for x∈ℝ,

fX (x) = FX(x)− FX(x−).

(7) FX has at most countably many discontinuity points.

 Theorem. If a function F satisfies (2), (3), and (4), then F is a 

cumulative distribution function of some random variable.

proof. Skip. Out of the scope of the course.

proof. 
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• Transformation

 Example. If Y=X2, then

 Reading: textbook, Sec 4.1, 4.2, 4.10

X

ℝ
PXX

g
ℝ

Y
PY =??

Theorem. Let X be a discrete r.v. with range and pmf fX; let 

Y = g(X)

then, the range of Y is

i.e., Y is a discrete r.v., and the pmf of Y is 

fY (y) =
�

x∈X

g(x)=y
fX (x).

Y = {g(x) : x ∈ X },

proof. 
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• Q: We often characterize a person by his/her height, weight, hair 

color, …. How can we “roughly” characterize a distribution?

• Definition: If X is a discrete r.v. with pmf fX and range , then the 

expectation (or called expected value) of X is

provided that the sum converges absolutely.

Expectation (Mean) and Variance

Example. If all value in are equally likely, then E(X)

is simply the average of the possible values of X.

Example (Committees, LNp.5-6). In the committees 

example,

Example (Indicator Function).

 For an event A⊂Ω, the indicator function of A is the 

r.v.:

E(X) = 0 ·
5

210
+ 1 ·

50

210
+ 2 ·

100

210
+ 3 ·

50

210
+ 4 ·

5

210
= 2.

X

1A(ω) =
1, if ω ∈ A,
0, if ω /∈ A.

X

E(X) = x∈X xfX(x),
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Intuitive Interpretation of Expectation

 Expectation of a r.v. parallels the notion of a weighted 

average, where more likely values are weighted higher than 

less likely values.



 center of gravity: If we have a rod with weights fX(xi)
at each possible points xi’s then the point at which the 

rod is balanced is called the center of gravity.

 Its range      is {0, 1} and its pmf is 

f(0)=P(Ac)=1−P(A) and f(1)=P(A),

for a p.m. P defined on Ω.

 So, E(1A) = 0 · [1− P (A)] + 1 · P (A) = P (A).

X

 It is helpful to think of the expectation

as the “center” of mass of the pmf. 
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 Expectation can be interpreted 

as a long-run average (∵ Law 

of Large Number, Chapter 8)

• Expectation of Transformation

Theorem. If X is a discrete r.v. with range     and pmf fX; let 

Y = g(X),

and be the range of Y, fY be the pmf of Y, then

provided that the sum converges absolutely.

X

Y

E(Y ) ≡ y∈Y yfY (y) = x∈X g(x)fX(x),

proof. 

 Example. Y = X2,
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X 3X 3X+3
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Theorem. For a, b ∈ ℝ, E(aX+b) = a·E(X)+b.

• Mean and Variance. 

Definition. The expectation of X is also called the mean of X
and/or fX . The variance of X (and/or fX) is defined by

provided that the sum converges. 

V ar(X) ≡ E[(X − µX)
2] = x∈X (x− µX)

2fX(x).

 The E(X) is often denoted by µX and Var(X) by . Also, 

is called the standard deviation of X.σX =
�
σ2X

σ2X
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So, µ = 2, σ2 = 2/3, and σ = 

 Example (Committees, LNp.5-6)

 Note.

 µX and only depends on fX. They are 

fixed constants, not random numbers.

 If X has units, then µX and σX have the same 

unit as X, and variance has unit squared. 

σ2X

Intuitive Interpretation of Variance

 Variance is the weighted average value of the 

squared deviation of X from µX.

 Variance is related to how the pmf is spread out
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Some properties of variance. 

 The variance of a r.v. is always non-negative

 The only r.v. with variance equal to zero is a 

r.v. which can only take on a single value (µX).

Theorem. For a, b ∈ ℝ, Var(aX+b) = a2 Var(X)

proof. 
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Theorem. If X is a (discrete) r.v. with mean µX, then for any c∈ℝ, 

E[(X − c)2] = σ2X + (c− µX)
2.

proof. 

 Corollary. E[(X−c)2] is minimized by letting c=µX; and the 

minimum value is .

 Corollary. = E(X2) − (E(X))2. 

(Recall:                                                )

 Example (Committees, LNp.5-17). Var(X)=14/3−22=2/3.

E(X2) = x∈X x
2fX(x).

 Reading: textbook, Sec 4.3, 4.4, 4.5

σ2X
σ2X

 E(Xn) is often called the nth moment of X
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Some Commonly Used Discrete Distributions

• Bernoulli and binomial Distributions

Experiment: A basic experiment with sample space Ω0 (and 

p.m. P0) is repeated n times.

 Example. (a) Sampling with replacement

(b) Coin Tossing

(c) Roulette

 The sample space for the n trials is

Ω = Ω0 × L × Ω0 = Ω0
n

 Assume that events depending on different trials are 

independent
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 Q: Given an event A0⊂Ω0, what is the probability that A0

occurs k times in the n trials?

 Problem Formulation: Let Ai⊂Ω be

Ai = {A0 occurs on the ith trial}, and

Q: What is P(X=k)?

(Note. A1, …, An are assumed to be independent events.)

X = 1A1 + · · ·+ 1An ,

 Example (Roulette, n=4, k=2, LNp.3-4).

 Let Wi= {Win on ith Game}

Li = Wi
c = {Lose on ith Game}.

Then, P(Wi)=9/19 ≡ p and P(Li)=10/19=1−p ≡ q

 Let                                                              thenX = 1W1 + 1W2 + 1W3 + 1W4 ,

{X = 2} = (W1 ∩ W2 ∩ L3 ∩ L4) ∪ (W1 ∩ L2 ∩ W3 ∩ L4)
∪(W1 ∩ L2 ∩ L3 ∩W4) ∪ (L1 ∩W2 ∩ W3 ∩ L4)
∪(L1 ∩W2 ∩ L3 ∩W4) ∪ (L1 ∩ L2 ∩ W3 ∩ W4)
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 So, 

Probability Mass Function

 Let A1, …, An be independent events and P(Ai)=p, i=1, …, n. 

 Let 

 Then, for k = 0, 1, …, n,

P (X = k) =
n

k
pk(1− p)n−k.

X = 1A1 + · · ·+ 1An .

proof. 

• • •
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 The distribution of the r.v. X is called the binomial

distribution with parameters n and p. In particular, when 

n=1, it is called the Bernoulli distribution with parameter p. 

 (exercise) Show that the following function is a pmf.

 Notice that a binomial r.v. can be regarded as the sum

of n independent Bernoulli r.v.’s.

 The binomial distribution is called after the Binomial 

Theorem:
(a+ b)n =

n

k=0
n

k
akbn−k.

 Example (Bridge). Q: What is the probability that South 

gets no Aces on at least k=5 of n=9 hands?

 Let Ai={no Aces on the ith hand}, i=1, 2, …, 9, and

P (Ai) =
48
13 /

52
13 ≈ 0.3038 ≡ p. Then,
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P (X = k) =

�
9

k

�
pk(1− p)n−k.

 And, 

P (X ≥ 5) =

9	

k=5

�
9

k

�
pk(1− p)n−k ≈ 0.1035.

Theorem. The mean and variance of the 

Binomial(n, p) distribution are

µ = np and σ2 = np(1− p).
0.0 0.2 0.4 0.6 0.8 1.0

 So,

proof. 
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Summary for X ~ Binomial(n, p)

 Range: 

 Pmf:

 Parameters: n∈{1, 2, 3, …} and 0�p� 1

X = {0, 1, 2, ..., n}

fX (x) =


n

x

�
px(1− p)n−x, for x ∈ X
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 Mean: E(X)=np
 Variance: Var(X)=np(1−p) 

 The sample space is 

Ω = Ω0 × Ω0 × Ω0 × L

 Assume that events depending on different trials

are independent

• Geometric and Negative Binomial Distributions

Experiment: A basic experiment with sample 

space Ω0 (and p.m. P0) is repeated infinite times.

 Q: What is the probability that we need to perform k trials?

 For a given event A0⊂Ω0, we continue performing

the trials until A0 occurs exactly r times
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 Example. 

 A company must hire 3 engineers.

 Each interview results in a hire with 

probability 1/3

 Q: What is the probability that 10 

interviews are required?

 Problem Formulation: 

 Let A1,A2,… ⊂ Ω be

Ai = {A0 occurs on the ith trial}, 

and

Xn = 1A1 + · · ·+ 1An , for n = 1, 2, 3, ....

• • •

• • •

 We need: (i) Success on the 10th

interview (ii) 2 hires on the first 

9 interviews

 So, the probability is
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 Let Y1 = smallest n with Xn ≥ 1,

Y2 = smallest n with Xn ≥ 2,

…,

Yr = smallest n with Xn ≥ r,

 Q: What is P(Yr=k)?

• • •

Probability Mass Function

 Let A1,A2,… be independent and P(Ai)=p, i=1, 2, 3, …. 

 Then, for

proof. 
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 (exercise) Show that the following function is a pmf.

 The distribution of the r.v. Yr is called the negative binomial

distribution with parameters r and p. In particular, when r=1, 

it is called the geometric distribution with parameter p.

 A negative binomial r.v. can be regarded as the sum of r

independent geometric r.v.’s.

 The negative binomial distribution is called after the 

Negative Binomial Theorem:

• • • • • • • • •• • •
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Theorem. The mean and variance of negative binomial(r, p) is

µ = r/p and σ2 = r(1− p)/p2.
proof. 
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Summary for X ~  Negative Binomial(r, p)

 Range: 

 Pmf:

 Parameters: r∈{1, 2, 3, …} and 0�p� 1

 Mean: E(X)=r/p
 Variance: Var(X)=r(1−p)/p2

X = {r, r+ 1, r + 2, ...}
fX(x) =



x−1
r−1

�
pr(1− p)x−r, for x ∈ X

• Poisson Distribution

Recall: Expression for ex, e=2.7183L

 1st Expression:

 2nd Expression:

The Derivation

 Consider a sequence of binomial(n, pn) distributions satisfying

(a) pn → 0 when n → ∞

(b) n·pn → λ when n → ∞, where 0 < λ < ∞
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 Then, pn ≈ λ/n when n is large enough.

 Here, for each fixed k,

 So, when n large and n ≫ k,

 In other words, when n large, n ≫ k, and pn ≈ 0,

 And,
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• • •

Example. 

 A professor hits the wrong key with probability p=0.001

each time he types a letter. Assume independence for the 

occurrence of errors between different letter typings.

 Q: P(5 or more errors in n=2500 letters)=??

 Ans. 

 Let X be the number of errors, then 

X~binomial(2500, 0.001) and 
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 The probability can be approximated by λke−λ /k! with 

λ = 2500 × 0.001 = 2.5 times of errors,

where 2.5 is the expected number of the errors that 

would occur in the 2500 typings. 

(Q: What should the λ’s be for 5000 typings, 7500

typings, and 10000 typings?)

Probability Mass Function

 Theorem. Let

then, f(k) is a pmf.

 So, P(X = k) ≈ (2.5)ke−2.5/k!, for k=0,1,2,3,4, and 
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proof. LNp.5-6, (i) & (ii) are straightforward. For (iii),

 The pmf is called the Poisson pmf with parameter λ. The 

distribution is named after Simeon Poisson, who derived

the approximation of Poisson pmf to binomial pmf. 

 The λ (≈npn) can be interpreted as the average 

occurrence frequency.

Theorem. The mean and variance of Poisson(λ) is

µ = λ and σ2 = λ.
proof. 
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 Note: For X~binomial(n, p), where (i) n large; (ii) p small, 

 distribution of X ≈ Poisson(λ=np)

 E(X) = np = mean of the Poisson = λ
 Var(X) = np(1−p) ≈ variance of the Poisson = λ

Poisson Process (stochastic process)

 Example: 

(1) # of earthquakes occurring during some fixed time span

(2) # of people entering a bank during a time period
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To model them, we can 

 Divide the time period, say [0, t], into n small intervals

 Make the intervals so small (then, n large) that at most 

one event can occur in each interval

⇒ Let Xn,i be the number of events occurs in ith 

interval, then assume

⇒ We can treat the number of events in a single 

interval as a Bernoulli r.v. with a small pn (≈λt/n)
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⇒ Now, the number of events in the whole period of 

time [0, t] is binomial(n, pn), where n is a quite 

large number and pn is a small probability and

npn ≈ n(λt /n) = λt

 Assume that the number of events to occur in 

non-overlapping intervals are independent 

 Definition. A Poisson process with rate λ is a 

family of r.v.’s Nt, 0�t<∞ , for which

N0 = 0 and Nt – Ns ~ Poisson(λ·(t−s)),
for 0�s<t<∞, and 

are independent whenever

0 � s1 < t1 � s2 < t2 � L � sm < tm.

Nti −Nsi , i = 1, 2, ...,m

 The distribution for the number of events occurring in 

[0, t] can be approximated by Poisson(n·pn ≈ λt)
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 Example. 

 Traffic accident occurs (光復路&建功路口) according 

to a Poisson process at a rate of λ=5.5 per month

 Q: What is the probability of 3 or more accidents occur 

in a 2 month periods?

 Here, λt = 5.5×2 = 11. (Q: What should λt be for one 

and half months? for a year?)

 Here, Nt denotes the # of events that occurs by time t

 λ: the average # of events occurring per unit time
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 So, N2 ~ Poisson(11), P(N2 = k) = 11k·e−11/k! and

Summary for X ~  Poisson(λ)

 Range: 

 Pmf:

 Parameter: 0<λ< ∞
 Mean: E(X)=λ
 Variance: Var(X)=λ

X = {0, 1, 2, ...}
fX(x) = λxe−λ/x!, for x ∈ X

• Hypergeometric Distribution

Experiment: Draw a sample of n (�N) balls without replacement

from a box containing R red balls and N−R white balls

 Let X be the number of red balls in the sample

 Q: What is P(X=k)? 

 Example. The Committee Example (LNp.5-6).

 (cf.) If drawn with replacement, what is the distribution of X?
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(Notice that             when either t<0 or r<t.) 


r

t

�
≡ 0

• • •
Probability Mass Function

 Theorem. For k = 0, 1, 2, …, n, 

proof. 

 (exercise) Show that the following function is a pmf.
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Theorem. The mean and variance of hypergeometric(n, N, R)

are

µ = nR
N

and σ2 = nR(N−R)(N−n)
N2(N−1) .

 The distribution of the r.v. X is called the hypergeometric

distribution with parameters n, N, and R. 

 The hypergeometric distribution is called after the 

hypergeometric identity:

proof. 
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Theorem. Let Ni→∞ and Ri→∞ in such a way that

where 0 < p < 1, then

pi ≡ Ri/Ni → p,

Ri
k

Ni−Ri
n−k

Ni

n

→
n

k
pk(1− p)n−k.
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 Reading: textbook, Sec 4.6, 4.7, 4.8.1~4.8.3

Summary for X ~  Hypergeometric(n, N, R)

 Range: 

 Pmf:

 Parameters: n, N, R∈ {1, 2, 3, …} and n�N, R�N

 Mean: E(X)=nR/N

 Variance: Var(X)=nR(N−R)(N−n)/(N2(N−1))

X = {0, 1, 2, ..., n}
fX (x) =



R

x

�

N−R

n−x

�
/


N

n

�
, for x ∈ X


