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Random Variables

 Ω = {all combinations} = {{i1, …, ik}: 1�i1<L<ik�n}

A probability measure P can be defined on Ω, e.g., when there 

is an equally likely chance of being chosen for each students, 

For an outcome ω∈Ω, the experimenter may be more 

interested in some quantitative attributes of ω, rather than the 

ω itself, e.g., 

 The average weight of the k sampled students

 The maximum of their midterm scores

 The number of male students in the sample

• A Motivating Example

Experiment: Sample k (<n) students without 

replacement from the population of all n students

(labeled as 1, 2, …, n, respectively) in our class.
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Q: What mathematical structure would be useful to 

characterize the random quantitative attributes of ω’s? 

• Definition: A random variable X is a (measurable) function which 

maps the sample space Ω to the real numbers ℝ, i.e.,

The P defined on Ω would be transformed into a new
probability measure defined on ℝ through the mapping X 

 the outcome of X is random, 

 but the map X is deterministic

ℝ

L
L

ℝ

ℝ
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Example (Coin Tossing): Toss a fair coin 3 times, and let

 X1 = the total number of heads

X2 = the number of heads on the first toss

X3 = the number of heads minus the number of tails

 Ω ={hhh, hht, hth, thh, htt, tht, tth, ttt}

Q: Why particularly interested in functions that map to “ℝ”?

X1 :    3,     2,     2,     2,     1,     1,   1,    0. 

X2 :    1,     1,     1,     0,     1,     0,   0,    0. 

X3 :    3,     1,     1,     1, −1, −1, −1, −3. 

Q: How to define the probability measure of X (i.e., PX) from P?

Ans: For a (measurable) set (i.e., an event) A⊂ℝ, 

The PX is often called the distribution of X.

PX (X ∈ A) ≡ P ({ω : X(ω) ∈ A}).
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Discrete Random Variables
• Definition: For a random variable (r.v.) X, let

be the range of X. Then, X is called discrete if is a finite or 

countably infinite set, i.e.,

X = {X(ω) : ω ∈ Ω},

X

X = {x1, . . . , xn} or X = {x1, x2, . . .}.

• The sample space of a r.v. is the real line ℝ. Q: For ℝ, are there 

some particular ways to define a probability measure (p.m.) on it? 

[cf., for general sample space Ω, a p.m. is defined on all (or any 

measurable) subsets of Ω]

ℝ
PX

X

A

PX(A) =??
EA

A occurs ⇔
EA occurs

PX(A) = P (EA)

Example. The X1, X2, X3 in the Coin Tossing example.

Example. The number of coin tosses (X) until 1st head appears.
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Ans: 3 commonly used tools to define the p.m.’s of discrete r.v.’s:

1. Probability mass function (pmf)

2. Cumulative distribution function (cdf)

3. Moment generating function (mgf, Chapter 7)

• Definition: If X is a discrete r.v., then the probability mass 

function of X is defined by 

for x∈ℝ. (cf., the p: Ω→[0, 1] in LNp.3-7)

Example. For the X1 in the Coin Tossing example,





and 

 Graphical display

X = {0, 1, 2, 3}

fX1(0) = 1/8, fX1(1) = 3/8,
fX1(2) = 3/8, fX1(3) = 1/8.

fX1(x) = 0, for x /∈ X .
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fX(x) ≡ PX({X = x}) = P ({ω ∈ Ω : X(ω) = x})
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Example (Committees). A committee of size n=4 is selected from 

5 men and 5 women. Then,

 Ω={combination of 4},                                , P(A)=#A/#Ω#Ω = 10
4 = 210

 Let X be the number of women on the committee, then





fX (x) = PX(X = x) = 5
x

5
4−x /

10
4

Q: What should a pmf look like?

 Theorem. If fX is the pmf of r.v. X with range , then

(i) fX(x) ≥ 0, for all x∈ℝ,

(ii) fX(x) = 0, for 

(iii) 

(iv) moreover, for A⊂ℝ, 

X

x /∈ X ,
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PX(X ∈ A) = x∈A∩X fX (x).

x∈X fX(x) = 1.
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 Theorem. Any function f that satisfies (i), (ii), and (iii) for 

some finite or countably infinite set is the pmf of some 
discrete random variable X. 

X
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 Henceforth, we can define “pmf” as any function that 

satisfies (i), (ii), and (iii).

 We can specify a distribution by giving and f, subject to

the three conditions (i), (ii), (iii). 

X

• Definition: A function FX:ℝ→ℝ is called the 

cumulative distribution function of a random 

variable X if FX(x) = PX(X � x), x ∈ ℝ.
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FX1(x) =






0, x < 0,
1/8, 0 � x < 1,
4/8, 1 � x < 2,
7/8, 2 � x < 3,
1, 3 � x.

 Q: Suppose that X and Y are two r.v.’s

defined on Ω with the same pmf. Is it

always true that X(ω) = Y(ω) for ω∈Ω?

X

(Note. The definition of cdf can be applied

to arbitrary r.v.’s)

Example. For the X1 in the Coin Tossing

example,
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Q: What should a cdf look like?

 Theorem. If FX is the cdf of a r.v. X, then it must satisfy

the following properties:

(1) 0 � FX(x) � 1.

(2) FX(x) is nondecreasing, i.e., FX(a)�FX(b) for a<b.

(3) For any x∈ℝ, FX(x) is continuous from the right, i.e.,0 1 2 3
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proof. For a<b, 
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FX(x) = FX(x+) ≡ limt↓x FX(t),
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(4) lim
x→∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0,

(5) PX(X>x)=1−FX(x) and PX(a<X�b)=FX(b)−FX(a).

proof. 

proof. 
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(6) Moreover, if X is discrete with pmf fX, then for x∈ℝ,

fX (x) = FX(x)− FX(x−).

(7) FX has at most countably many discontinuity points.

 Theorem. If a function F satisfies (2), (3), and (4), then F is a 

cumulative distribution function of some random variable.

proof. Skip. Out of the scope of the course.

proof. 
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• Transformation

 Example. If Y=X2, then

 Reading: textbook, Sec 4.1, 4.2, 4.10

X

ℝ
PXX

g
ℝ

Y
PY =??

Theorem. Let X be a discrete r.v. with range and pmf fX; let 

Y = g(X)

then, the range of Y is

i.e., Y is a discrete r.v., and the pmf of Y is 

fY (y) =
�

x∈X

g(x)=y
fX (x).

Y = {g(x) : x ∈ X },

proof. 
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• Q: We often characterize a person by his/her height, weight, hair 

color, …. How can we “roughly” characterize a distribution?

• Definition: If X is a discrete r.v. with pmf fX and range , then the 

expectation (or called expected value) of X is

provided that the sum converges absolutely.

Expectation (Mean) and Variance

Example. If all value in are equally likely, then E(X)

is simply the average of the possible values of X.

Example (Committees, LNp.5-6). In the committees 

example,

Example (Indicator Function).

 For an event A⊂Ω, the indicator function of A is the 

r.v.:

E(X) = 0 ·
5

210
+ 1 ·

50

210
+ 2 ·

100

210
+ 3 ·

50

210
+ 4 ·

5

210
= 2.

X

1A(ω) =
1, if ω ∈ A,
0, if ω /∈ A.

X

E(X) = x∈X xfX(x),
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Intuitive Interpretation of Expectation

 Expectation of a r.v. parallels the notion of a weighted 

average, where more likely values are weighted higher than 

less likely values.



 center of gravity: If we have a rod with weights fX(xi)
at each possible points xi’s then the point at which the 

rod is balanced is called the center of gravity.

 Its range      is {0, 1} and its pmf is 

f(0)=P(Ac)=1−P(A) and f(1)=P(A),

for a p.m. P defined on Ω.

 So, E(1A) = 0 · [1− P (A)] + 1 · P (A) = P (A).

X

 It is helpful to think of the expectation

as the “center” of mass of the pmf. 
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 Expectation can be interpreted 

as a long-run average (∵ Law 

of Large Number, Chapter 8)

• Expectation of Transformation

Theorem. If X is a discrete r.v. with range     and pmf fX; let 

Y = g(X),

and be the range of Y, fY be the pmf of Y, then

provided that the sum converges absolutely.

X

Y

E(Y ) ≡ y∈Y yfY (y) = x∈X g(x)fX(x),

proof. 

 Example. Y = X2,
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X 3X 3X+3
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proof. 

Theorem. For a, b ∈ ℝ, E(aX+b) = a·E(X)+b.

• Mean and Variance. 

Definition. The expectation of X is also called the mean of X
and/or fX . The variance of X (and/or fX) is defined by

provided that the sum converges. 

V ar(X) ≡ E[(X − µX)
2] = x∈X (x− µX)

2fX(x).

 The E(X) is often denoted by µX and Var(X) by . Also, 

is called the standard deviation of X.σX =
�
σ2X

σ2X
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So, µ = 2, σ2 = 2/3, and σ = 

 Example (Committees, LNp.5-6)

 Note.

 µX and only depends on fX. They are 

fixed constants, not random numbers.

 If X has units, then µX and σX have the same 

unit as X, and variance has unit squared. 

σ2X

Intuitive Interpretation of Variance

 Variance is the weighted average value of the 

squared deviation of X from µX.

 Variance is related to how the pmf is spread out
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Some properties of variance. 

 The variance of a r.v. is always non-negative

 The only r.v. with variance equal to zero is a 

r.v. which can only take on a single value (µX).

Theorem. For a, b ∈ ℝ, Var(aX+b) = a2 Var(X)

proof. 
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Theorem. If X is a (discrete) r.v. with mean µX, then for any c∈ℝ, 

E[(X − c)2] = σ2X + (c− µX)
2.

proof. 

 Corollary. E[(X−c)2] is minimized by letting c=µX; and the 

minimum value is .

 Corollary. = E(X2) − (E(X))2. 

(Recall:                                                )

 Example (Committees, LNp.5-17). Var(X)=14/3−22=2/3.

E(X2) = x∈X x
2fX(x).

 Reading: textbook, Sec 4.3, 4.4, 4.5

σ2X
σ2X

 E(Xn) is often called the nth moment of X
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Some Commonly Used Discrete Distributions

• Bernoulli and binomial Distributions

Experiment: A basic experiment with sample space Ω0 (and 

p.m. P0) is repeated n times.

 Example. (a) Sampling with replacement

(b) Coin Tossing

(c) Roulette

 The sample space for the n trials is

Ω = Ω0 × L × Ω0 = Ω0
n

 Assume that events depending on different trials are 

independent
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 Q: Given an event A0⊂Ω0, what is the probability that A0

occurs k times in the n trials?

 Problem Formulation: Let Ai⊂Ω be

Ai = {A0 occurs on the ith trial}, and

Q: What is P(X=k)?

(Note. A1, …, An are assumed to be independent events.)

X = 1A1 + · · ·+ 1An ,

 Example (Roulette, n=4, k=2, LNp.3-4).

 Let Wi= {Win on ith Game}

Li = Wi
c = {Lose on ith Game}.

Then, P(Wi)=9/19 ≡ p and P(Li)=10/19=1−p ≡ q

 Let                                                              thenX = 1W1 + 1W2 + 1W3 + 1W4 ,

{X = 2} = (W1 ∩ W2 ∩ L3 ∩ L4) ∪ (W1 ∩ L2 ∩ W3 ∩ L4)
∪(W1 ∩ L2 ∩ L3 ∩W4) ∪ (L1 ∩W2 ∩ W3 ∩ L4)
∪(L1 ∩W2 ∩ L3 ∩W4) ∪ (L1 ∩ L2 ∩ W3 ∩ W4)
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 So, 

Probability Mass Function

 Let A1, …, An be independent events and P(Ai)=p, i=1, …, n. 

 Let 

 Then, for k = 0, 1, …, n,

P (X = k) =
n

k
pk(1− p)n−k.

X = 1A1 + · · ·+ 1An .

proof. 

• • •
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 The distribution of the r.v. X is called the binomial

distribution with parameters n and p. In particular, when 

n=1, it is called the Bernoulli distribution with parameter p. 

 (exercise) Show that the following function is a pmf.

 Notice that a binomial r.v. can be regarded as the sum

of n independent Bernoulli r.v.’s.

 The binomial distribution is called after the Binomial 

Theorem:
(a+ b)n =

n

k=0
n

k
akbn−k.

 Example (Bridge). Q: What is the probability that South 

gets no Aces on at least k=5 of n=9 hands?

 Let Ai={no Aces on the ith hand}, i=1, 2, …, 9, and

P (Ai) =
48
13 /

52
13 ≈ 0.3038 ≡ p. Then,
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P (X = k) =

�
9

k

�
pk(1− p)n−k.

 And, 

P (X ≥ 5) =

9	

k=5

�
9

k

�
pk(1− p)n−k ≈ 0.1035.

Theorem. The mean and variance of the 

Binomial(n, p) distribution are

µ = np and σ2 = np(1− p).
0.0 0.2 0.4 0.6 0.8 1.0

 So,

proof. 
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Summary for X ~ Binomial(n, p)

 Range: 

 Pmf:

 Parameters: n∈{1, 2, 3, …} and 0�p� 1

X = {0, 1, 2, ..., n}

fX (x) =


n

x

�
px(1− p)n−x, for x ∈ X

p. 5-26

 Mean: E(X)=np
 Variance: Var(X)=np(1−p) 

 The sample space is 

Ω = Ω0 × Ω0 × Ω0 × L

 Assume that events depending on different trials

are independent

• Geometric and Negative Binomial Distributions

Experiment: A basic experiment with sample 

space Ω0 (and p.m. P0) is repeated infinite times.

 Q: What is the probability that we need to perform k trials?

 For a given event A0⊂Ω0, we continue performing

the trials until A0 occurs exactly r times
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 Example. 

 A company must hire 3 engineers.

 Each interview results in a hire with 

probability 1/3

 Q: What is the probability that 10 

interviews are required?

 Problem Formulation: 

 Let A1,A2,… ⊂ Ω be

Ai = {A0 occurs on the ith trial}, 

and

Xn = 1A1 + · · ·+ 1An , for n = 1, 2, 3, ....

• • •

• • •

 We need: (i) Success on the 10th

interview (ii) 2 hires on the first 

9 interviews

 So, the probability is
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 Let Y1 = smallest n with Xn ≥ 1,

Y2 = smallest n with Xn ≥ 2,

…,

Yr = smallest n with Xn ≥ r,

 Q: What is P(Yr=k)?

• • •

Probability Mass Function

 Let A1,A2,… be independent and P(Ai)=p, i=1, 2, 3, …. 

 Then, for

proof. 
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 (exercise) Show that the following function is a pmf.

 The distribution of the r.v. Yr is called the negative binomial

distribution with parameters r and p. In particular, when r=1, 

it is called the geometric distribution with parameter p.

 A negative binomial r.v. can be regarded as the sum of r

independent geometric r.v.’s.

 The negative binomial distribution is called after the 

Negative Binomial Theorem:

• • • • • • • • •• • •

p. 5-30

Theorem. The mean and variance of negative binomial(r, p) is

µ = r/p and σ2 = r(1− p)/p2.
proof. 
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Summary for X ~  Negative Binomial(r, p)

 Range: 

 Pmf:

 Parameters: r∈{1, 2, 3, …} and 0�p� 1

 Mean: E(X)=r/p
 Variance: Var(X)=r(1−p)/p2

X = {r, r+ 1, r + 2, ...}
fX(x) =



x−1
r−1

�
pr(1− p)x−r, for x ∈ X

• Poisson Distribution

Recall: Expression for ex, e=2.7183L

 1st Expression:

 2nd Expression:

The Derivation

 Consider a sequence of binomial(n, pn) distributions satisfying

(a) pn → 0 when n → ∞

(b) n·pn → λ when n → ∞, where 0 < λ < ∞
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 Then, pn ≈ λ/n when n is large enough.

 Here, for each fixed k,

 So, when n large and n ≫ k,

 In other words, when n large, n ≫ k, and pn ≈ 0,

 And,



p. 5-33

• • •

Example. 

 A professor hits the wrong key with probability p=0.001

each time he types a letter. Assume independence for the 

occurrence of errors between different letter typings.

 Q: P(5 or more errors in n=2500 letters)=??

 Ans. 

 Let X be the number of errors, then 

X~binomial(2500, 0.001) and 
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 The probability can be approximated by λke−λ /k! with 

λ = 2500 × 0.001 = 2.5 times of errors,

where 2.5 is the expected number of the errors that 

would occur in the 2500 typings. 

(Q: What should the λ’s be for 5000 typings, 7500

typings, and 10000 typings?)

Probability Mass Function

 Theorem. Let

then, f(k) is a pmf.

 So, P(X = k) ≈ (2.5)ke−2.5/k!, for k=0,1,2,3,4, and 
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proof. LNp.5-6, (i) & (ii) are straightforward. For (iii),

 The pmf is called the Poisson pmf with parameter λ. The 

distribution is named after Simeon Poisson, who derived

the approximation of Poisson pmf to binomial pmf. 

 The λ (≈npn) can be interpreted as the average 

occurrence frequency.

Theorem. The mean and variance of Poisson(λ) is

µ = λ and σ2 = λ.
proof. 
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 Note: For X~binomial(n, p), where (i) n large; (ii) p small, 

 distribution of X ≈ Poisson(λ=np)

 E(X) = np = mean of the Poisson = λ
 Var(X) = np(1−p) ≈ variance of the Poisson = λ

Poisson Process (stochastic process)

 Example: 

(1) # of earthquakes occurring during some fixed time span

(2) # of people entering a bank during a time period
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To model them, we can 

 Divide the time period, say [0, t], into n small intervals

 Make the intervals so small (then, n large) that at most 

one event can occur in each interval

⇒ Let Xn,i be the number of events occurs in ith 

interval, then assume

⇒ We can treat the number of events in a single 

interval as a Bernoulli r.v. with a small pn (≈λt/n)
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⇒ Now, the number of events in the whole period of 

time [0, t] is binomial(n, pn), where n is a quite 

large number and pn is a small probability and

npn ≈ n(λt /n) = λt

 Assume that the number of events to occur in 

non-overlapping intervals are independent 

 Definition. A Poisson process with rate λ is a 

family of r.v.’s Nt, 0�t<∞ , for which

N0 = 0 and Nt – Ns ~ Poisson(λ·(t−s)),
for 0�s<t<∞, and 

are independent whenever

0 � s1 < t1 � s2 < t2 � L � sm < tm.

Nti −Nsi , i = 1, 2, ...,m

 The distribution for the number of events occurring in 

[0, t] can be approximated by Poisson(n·pn ≈ λt)
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 Example. 

 Traffic accident occurs (光復路&建功路口) according 

to a Poisson process at a rate of λ=5.5 per month

 Q: What is the probability of 3 or more accidents occur 

in a 2 month periods?

 Here, λt = 5.5×2 = 11. (Q: What should λt be for one 

and half months? for a year?)

 Here, Nt denotes the # of events that occurs by time t

 λ: the average # of events occurring per unit time

p. 5-40

 So, N2 ~ Poisson(11), P(N2 = k) = 11k·e−11/k! and

Summary for X ~  Poisson(λ)

 Range: 

 Pmf:

 Parameter: 0<λ< ∞
 Mean: E(X)=λ
 Variance: Var(X)=λ

X = {0, 1, 2, ...}
fX(x) = λxe−λ/x!, for x ∈ X

• Hypergeometric Distribution

Experiment: Draw a sample of n (�N) balls without replacement

from a box containing R red balls and N−R white balls

 Let X be the number of red balls in the sample

 Q: What is P(X=k)? 

 Example. The Committee Example (LNp.5-6).

 (cf.) If drawn with replacement, what is the distribution of X?
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(Notice that             when either t<0 or r<t.) 


r

t

�
≡ 0

• • •
Probability Mass Function

 Theorem. For k = 0, 1, 2, …, n, 

proof. 

 (exercise) Show that the following function is a pmf.
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Theorem. The mean and variance of hypergeometric(n, N, R)

are

µ = nR
N

and σ2 = nR(N−R)(N−n)
N2(N−1) .

 The distribution of the r.v. X is called the hypergeometric

distribution with parameters n, N, and R. 

 The hypergeometric distribution is called after the 

hypergeometric identity:

proof. 
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Theorem. Let Ni→∞ and Ri→∞ in such a way that

where 0 < p < 1, then

pi ≡ Ri/Ni → p,

Ri
k

Ni−Ri
n−k

Ni

n

→
n

k
pk(1− p)n−k.

p. 5-44proof. 

 Reading: textbook, Sec 4.6, 4.7, 4.8.1~4.8.3

Summary for X ~  Hypergeometric(n, N, R)

 Range: 

 Pmf:

 Parameters: n, N, R∈ {1, 2, 3, …} and n�N, R�N

 Mean: E(X)=nR/N

 Variance: Var(X)=nR(N−R)(N−n)/(N2(N−1))

X = {0, 1, 2, ..., n}
fX (x) =



R

x

�

N−R

n−x

�
/


N

n

�
, for x ∈ X


