$>$ The odd of event \underline{B} given A ：

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { evaluated under } \\
\text { the probability } \\
\text { measure } \mathrm{P}(\cdot \mid \mathrm{A})
\end{array} \\
\text { and }
\end{array}, \frac{o(B \mid A)}{\mathrm{a}} \equiv \frac{P(B \mid A)}{P\left(B^{c} \mid A\right)}=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) / \mathrm{P}(\mathrm{~A})}{\mathrm{P}\left(A \cap B^{C}\right) / \mathrm{P}(A)}=\frac{\mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{~A} \mid \mathrm{B})}{\mathrm{P}\left(\mathrm{~B}^{\mathrm{C}}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{C}\right)} \\
& \text { and } \rightarrow P(\cdot)
\end{aligned}
$$

$$
\begin{aligned}
& \text { A occurs } \\
& P(\cdot) \xrightarrow{\text { uniats }} P(\cdot \mid A) \\
& * \text { Reading: textbook, Sec 3.1, 3.2, 3.3, } 3.5 \text { Recall, with replacement } \\
& \text { 獨立——Independence } \rightarrow \text { example (} L N_{p} .4-7 \text {) }
\end{aligned}
$$

－Definition（independence for 2 －events case）：Two events \underline{A} and \underline{B} are said to be independent if and only if $\begin{aligned} & \text { for calculation } \\ & \text { purpose }\end{aligned} \rightarrow P(A \cap B)=P(A) P(B)$ ． cf．\rightarrow（1）in $L N_{p} .4 .4$
Otherwise，they are said to be dependent．

It＇s a property defined on events
$\uparrow \quad$ cf
The＂independent＂defined on
random variables（future
lecture）

$>$ Notes．If $\underline{P(A)>0}$ ，events \underline{A} and B are independent if and only if

$$
\left.\begin{array}{l}
\text { for interpretation } \\
\text { purpose }
\end{array}\right) P\left(B \left\lvert\, \frac{A}{4}\right.\right)=\frac{P(A \cap B)}{P(A)}=\frac{P(A) P(B)}{P(A)} \rightleftharpoons_{\text {new information }} P(B)
$$

similarly，if $\underline{P(B)>0}$ ，if and only if $P(A \mid B) \ominus P(A)$ ．
Q：How to interpret the equality？new information I
$>$ Example（Sampling 2 balls，LNp．4－6～7）．Events $\underline{A \text { and } B}$ were ${ }^{\text {p．4．20 }}$ ＂independent＂for sampling with replacement，but＂dependent＂ for sampling without replacement．

$$
P(B \mid A) \neq P(B)
$$

Example（Cards）：If a card is selected from a standard deck，let can be changed $A=\{$ ace $\}$ and $B=\{$ spade $\}$ ．Then， to any
other face
－$P(A)=\frac{4}{52}=\frac{1}{13}, P(B)=\frac{13}{52}=\frac{1}{4}$,
Note $P(B \mid A)>P(B)$ ，
$P(B \mid A)>$ Theorem（Independence and Complements，2－events case）．
$=P(B) \rightarrow$ If A and B are independent，then so are A^{c} and $B . \leftarrow P\left(B \mid A^{c}\right)=P(B)$

made by S．－W．Cheng（NTHU，Taiwan）
$A \& B-$ Corollary: If A and B^{c} are independent, so are A^{c} and $B^{c}{ }^{\text {p.4.21 }}$ independent - Corollary: If $\underline{A \text { and } B}$ are independent and $\underline{0<P(A)<1}$, $0<P(B)<1$, then

$$
\begin{aligned}
& {\left[P(B)=P(B \mid A)=P\left(B \mid A^{c}\right),\right.} \\
& L_{P}\left(B^{c}\right)=P\left(B^{c} \mid A\right)=P\left(B^{c} \mid A^{c}\right) \text {, } \\
& {\left[\begin{array}{l}
P(A)=P(A \mid B)=P\left(A \mid B^{c}\right), \\
P\left(A^{c}\right)=P\left(A^{c} \mid B\right)=P\left(A^{c} \mid B^{c}\right)
\end{array}\right.}
\end{aligned}
$$

FYI. $P(B)$ and $P(B \mid A)$ not enough to decide $P\left(B \mid A^{C}\right)$,
Q: What do these equalities say? also need to know $P(A)$. It's because $>$ Example. $\quad \underline{P(A)} \& \underline{P\left(A^{\top}\right)}$: weights in (2) $\left(L_{p}, 4-4\right) \rightarrow \quad P\left(B \mid A^{C}\right)=\frac{P^{\prime}(B)-P(A) P\left(B^{\prime} \mid A\right)}{1-P(A)}$ Ans.(c) red events are independent" (assume probability \propto area)?

(b)

- Q: Let green event=\{graduate from Tsing-Hua University ${ }^{\text {p. }}$, red event $=\{$ your future dream will come true $\}$.
Which of the graphs would you prefer? Ans.usually (a)
- Q: What do we prefer? independent? or dependent? It depends $>$ Theorem (Independence and Mutually Exclusive). If A and B are mutually exclusive and $P(A)>0$, $P(B)>0$, then A and B are dependent since $0=\frac{P(\phi)}{P(A)}=\frac{\mathbf{P}(A \cap B)}{P(A)}=P(B \mid A)=0 \neq P(B)$.

 indef. said to be pairwise independent iff for all $1 \leq i<j \leq n$;
$\underline{A}_{1}, \ldots, A_{n}$ are said to be mutually independent of for $k=2, \ldots, n$,

$$
\left.\begin{array}{l}
\text { equality } \\
\text { holds } \\
\text { for any } \\
\text { K sets } \\
\text { in } \\
\left\{A_{1},\right. \text {. An }
\end{array}\right] P\left(\begin{array}{l}
P\left(A_{i_{1}} \cap A_{i_{2}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right), \quad \text { for } 1 \leq i_{1}<i_{2} \leq n, \\
P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) P\left(A_{i_{3}}\right), \quad \text { for } 1 \leq i_{1}<i_{2}<i_{3} \leq n, \\
\left.\cdots \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right), \text { for } 1 \leq i_{1}<\cdots<i_{k} \leq n, \\
\cdots \quad P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) \cdots \mathbf{P}\left(A_{n}\right)
\end{array}\right.
$$

- Suppose $\underline{A}_{1}, \ldots, A_{n}$ are mutually independent. For $1 \leq r<k \leq n$, and different $t_{1}, \ldots, t_{\mathbb{Q}} \mid t_{\underline{r+1}}, \ldots, t_{\text {(6) }} \in\{1,2, \ldots, n\}$, (exercise) for interpretation purpose $\xrightarrow[T h m \text { in }]{\text { Cf. }} P\left(A_{t_{1}} \cap \cdots \cap A_{t_{r}} \mid A_{t_{r+1}} \cap \cdots \cap A_{t_{k}}\right) \xlongequal{\cap} P\left(\underline{A_{t_{1}} \cap \cdots \cap A_{t_{r}}}\right)$.
$\left[\begin{array}{c}\substack{T h m ~ i n ~ \\ L_{p} \cdot 4 \cdot 27}\end{array}\right.$. Mutual independence implies pairwise independence; but, the converse statement is usually not true ${ }_{4}$-an example in $L N_{p} .4-24$
- " n events are independent" means "mutually independent"
$>$ Example (Sampling With Replacement)
- A sample of n balls is drawn with replacement from an urn containing R red and $N-R$ white balls
- Let $\underline{A}_{k}=\left\{\right.$ red on the $k^{\text {th }}$ draw $\}$, then $R N^{n-1 / N^{n}}=\# \mathrm{~A} / \# \Omega==P\left(A_{k}\right)=R / N, \quad k=1, \ldots, n$.

- For all $1 \leq i_{1}<\cdots<i_{k} \leq n$, where $k=2, \ldots, n$,

$\Rightarrow \underline{A}_{1}, \ldots, A_{n}$ are mutually independent
$>$ Example. Draw one card from a standard deck.
- Let $A=\{$ Spades or Clubs $\}$,
$B=\{$ Hearts or Clubs $\}$,
$\underline{C}=\{$ Diamonds or Clubs $\}$.
- $\underline{P(A)}=26 / 52=1 / 2$, similarly, $P(B)=P(C)=1 / 2$.
- $\underline{P(A \cap B)}=P(\{\mathrm{Clubs}\})=\frac{13}{52}=\frac{1}{4}=\underline{P(A) P(B)}$, similarly,
$\underline{P(A \cap C)}=1 / 4=\underline{P(A) P(C)}, \underline{P(B \cap C)}=1 / 4=\underline{P(B) P(C)}$.
$\Rightarrow A, B$, and C are pairwise independent
$\mathrm{P}(\mathrm{A} \mid \mathrm{BnC}):$ However,
$\left.=\frac{P(\{C l u b 3\})}{P(\{C \operatorname{lubs\} })}\right) P(A \cap B \cap C)=P(\{\mathrm{Clubs}\})=\frac{1}{4} \neq \frac{1}{8}=\underline{P(A) P(B) P(C),}$

 $\underline{A}_{\underline{1}, \ldots, A_{n}}$ are mutually independent if and only if

$$
\underline{P\left(B_{1} \cap \cdots \cap B_{\underline{n}}\right)}=\underline{P\left(B_{1}\right) \cdots P\left(B_{\underline{n}}\right)},
$$

where \underline{B}_{i} is either A_{i} or $A_{i}{ }^{c}$, for $i=1, \ldots, n$.

outline of proof．
（ \Rightarrow only if）．Apply Theorem in LN．4－20 \＆by induction

$$
\begin{aligned}
& A_{i} \xrightarrow{\text { index. }} B \\
& A_{i_{1}}^{c} \xrightarrow{\text { index. }} B \\
& P\left(A_{i_{1}}^{c} \cap B\right) \\
& =P\left(A_{i i}^{c}\right) \cdot P(B) \\
& A_{1} \cap \ldots \cap A_{n} \longrightarrow A_{1} \cap \ldots \cap A_{i-1} \cap A_{i,}^{C} \cap A_{i+1} \cap \ldots \cap A_{n} \rightarrow \text { three } \\
& \text { with true for any k out of } n \text { sets] }{ }^{2} \text { one set }-B \text { isth } \begin{array}{l}
\text { mutually } \\
\text { index. }
\end{array} \\
& \rightarrow A_{1} \cap \cap A_{i_{i-1}} \cap A_{i n}^{c} \cap A_{i_{1}+1} \cap \cdots \cap A_{i_{2}-1} \cap A_{i_{2}}^{c} \cap A_{i_{2}+1} \cap \ldots A_{n} \rightarrow \cdots \\
& \left(\Leftarrow \text { if) trivial, } P\left(A_{1} \cap \cap A_{n}\right)=P\left(A_{1}\right) \cdots P\left(A_{n}\right)\right. \text {. } \\
& P\left(A_{1} \cap \cdots A_{n-1}\right)=P\left(A_{1} \cap \cdots \cap A_{n-1} \cap A_{n}^{n}\right)+P\left(A_{1} \cap \cdots \cap A_{n-1} \cap A_{n}^{c}\right) \\
& =P\left(A_{1}\right) \cdots P\left(A_{n-1}\right) P\left(A_{n}\right)+P\left(A_{1}\right) \cdots P\left(A_{n-1}\right) P\left(A_{n}^{c}\right) \\
& =P\left(A_{1}\right) \cdots P\left(A_{n-1}\right)\left[P\left(A_{n}\right)+P\left(A_{n}^{c}\right)\right] \equiv D \\
& \text { Similarly, } P\left(A_{1} \cap \cdots \cap A_{n-2} \cap A_{n-1}^{c}\right)=P\left(A_{1}\right) \cdots P\left(A_{n-2}\right) P\left(A_{n-1}^{C}\right)
\end{aligned}
$$

－Example（Series and Parallel Connections of Relays）．
Series Connection乚串聯

－The Story．For \underline{n} electrical relays $\underline{R}_{1}, \ldots, R_{n}$ ，let $\mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \longleftrightarrow \underline{A}_{\underline{k}}=\left\{\underline{R}_{\underline{k}} \underline{\text { works }}\right.$ properly $\}$, $\underline{\left.\text { from } S \text { to } E \text {（corresponding to the event } A_{1} \cap \cdots \cap A_{n}\right) \subseteq A_{i}}$ is $P\left(A_{1} \cap \ldots A_{\text {index }}\right.$

at least one $\because(1)$ Parallel Connection．The probability that current can event occur flow from S to E（corresponding to the event

$$
\begin{aligned}
& \left.\mathrm{A}_{i} \subseteq \rightarrow \rightarrow A_{1} \cup \cdots \cup A_{n}\right) \text { is } \\
& \begin{aligned}
&\left(\bigcup_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}\right)^{c}=\bigcap_{i=1}^{n} \mathrm{~A}_{i}^{c} \\
& \Delta N_{p .3-12} \rightarrow P\left(\mathrm{Al}_{1} \cup \cdots \cup A_{n}\right)=\sigma_{1}-\sigma_{2}+\sigma_{3}-\sigma_{4}+\cdots
\end{aligned}
\end{aligned}
$$

＊＂Independence＂often simplifies the calculation of probability，

- Combination of Series and Parallel Connections
$B_{1}=\left\{T_{1}\right.$ work $\left.s\right\}$
$P\left(B_{1}\right)=1-\left[\left(1-P\left(A_{1}\right)\right)\left(1-P\left(A_{2}\right)\right)\right]$
$B_{2}=\left\{T_{2}\right.$ works $\}$
$\longrightarrow P\left(B_{2}\right)=P\left(B_{1}\right) \cdot P\left(A_{3}\right)$
$B_{3}=\left\{T_{3}\right.$ works $\}$

$$
P\left(B_{3}\right)=P\left(A_{4}\right) P\left(A_{5}\right)
$$

$B_{4}=\left\{T_{4}\right.$ works $\}$
$P\left(B_{4}\right)=1-\left[\left(1-p\left(B_{2}\right)\right)\left(1-p\left(B_{3}\right)\right)\right.$ $\left.\left(1-p\left(A_{6}\right)\right)\right]$
$B_{5}=\left\{T_{5}\right.$ works $\}$
$P\left(B_{5}\right)=P\left(B_{4}\right) \cdot P\left(A_{7}\right) \cdot P\left(A_{8}\right)$
: Why B_{1}, A_{3} index.?

$$
\begin{aligned}
& B_{2}, B_{3} \text {. And ep.? } \\
& B_{4}, A_{7} \text {. A8 modes. }
\end{aligned}
$$

$\underbrace{\left.\left(\frac{\left(A_{1} \cup A_{2}\right)}{B_{1}} B_{2}\right) \cup A_{3}\right) \cup\left(A_{4} \cap A_{5}\right) \cup A_{6}}_{B_{5}} B_{3}) \cap A_{7} \cap A_{8}$
Theorem. If $\underline{A}_{1}, \ldots, A_{n}$ are mutually independent and $\underline{B}_{1}, \ldots$, $\underline{B}_{m}, m \leq n$, are formed by taking unions or intersections of
 are mutually independent.

Note 1 in LN . 4-23
$\left(i_{1}, i_{2}, \cdots, i_{n}\right)$
a permutation
$o f(1,2, \cdots, n)$

sketch of proof
(i) For $m=2, W L O G$, suppose that $j+1$
\because index $_{6} B_{1}=A_{1} \cap \cdots \cap A_{j}, B_{2}=A_{k} \cap \cdots \cap A_{2}, 1 \leqslant j<k \leqslant n\left(\left(\left(A_{1} \cup A_{2}\right) \cap A_{3}\right) \cup\left(A_{4} \cap A_{5}\right) \cup A_{6}\right) \cap A_{7} \cap A_{8}$ $P\left(B_{1}\right)=P\left(A_{1}\right) \cdots P\left(A_{j}\right) \& P\left(B_{2}\right)=P\left(A_{k}\right) \cdots P\left(A_{n}\right) \&$ $P\left(B_{1} \cap B_{2}\right)=P\left(A_{1} \cap \cdots \cap A_{j} \cap A_{k} \cap \cdots \cap A_{n}\right)$ $=P\left(A_{1}\right) \cdots P\left(A_{j}\right) \cdot P\left(A_{k}\right) \cdots P\left(A_{n}\right)=P\left(B_{1}\right) P\left(B_{2}\right)$
(ii) Next, if $B_{1}=A_{1} \cap \cdots \cap A_{j}, 1 \leqslant j<k \leqslant n$ $B_{2}=A_{k} \underline{u} \cdots \underline{U} A_{n}$ $\Rightarrow B_{2}^{c}=A_{k}^{c} \cap \cdots \cap A_{2}^{c}$
Then, $B_{1} \& B_{2}^{c}$ are indep. ($\because A_{1}, \cdots, A_{j}, A_{k}^{c}, \cdots, A_{n}^{c}$ $\Rightarrow B_{1} \& B_{2}$ are indep. mutually indep. \&

mutually independent (iii) The other cases are similar. by (i))

- Definition (conditional independence): Events $\underline{B_{1}}, \ldots, B_{n}$ are (pairwise or mutually) independent under the probability measure $P(\cdot \mid A) \leftarrow$ Recall. $\mathrm{P}(\cdot) \& \mathrm{P}(\cdot \mid \mathrm{A})$ in $L \mathrm{~N}_{\mathrm{p}} .4-3$ income \& gender I professional job e.g., \underline{B}_{1} and B_{2} are conditionally independent given A iff

P(•) $\quad P\left(\underline{B_{1} \cap B_{2}} \mid A\right)=P\left(B_{1} \mid A\right) P\left(B_{2} \mid A\right)$,

C5. Example (Gold Coins):
Example - The Story.
 $k-i$ silver coins, $i=0,1, \ldots, k$.
a Experiment: (i) Select a box at random, (ii)
Draw coins with replacement from the box

- Q: Given that first n draws are all gold, what is the probability that $(n+1)^{\text {st }}$ draw is gold?

- Let $\underline{A_{i}}=\{\underline{\operatorname{Box} i}$ is selected $\}, \underline{B}=\{\underline{\text { first } n \text { draws }}$ are gold $\}$,

$$
\begin{aligned}
& \text { By(5) under } \frac{C}{B}=\left\{(n+1)^{\text {st }} \text { draw is gold }\right\} \\
& \underline{\mathrm{P}(\cdot \mid \mathrm{B})} \frac{\text { By applying law of total probability on } \underline{P(\cdot \mid B)}}{\underline{P(\underline{C} \mid B)} \stackrel{\underline{n}}{=} \sum_{i=0}^{k} P\left(A_{i} \mid B\right) P\left(C \mid A_{i} \cap B\right)}
\end{aligned}
$$

\square Because B and C are conditionally independent given A_{i},

 c c. $\longrightarrow \underline{Q}:$ Are the events B and C independent under $P(\cdot)$? Ans. No: Summary

Intuition is

3. Bayes' rule
complex $=$ simpler $\& \cdots$ \& simpler

* Reading: textbook, Sec 3.4, 3.5

