Note In(2)(3)
व $P(A)=\binom{n}{k} \frac{1}{(n)_{k}} p_{n-k}=\frac{p_{n-k}}{k!} \approx \frac{e^{-1}}{k!}$, when \underline{n} is large

$A \& A^{c}$ is a partition

$\bigcup_{i=1}^{\mathcal{M}} A_{i}=\Omega, A_{i} A_{j}=\phi, i \neq j$ 2. (Law of Total Probability) Let $\underline{A}_{1}, \ldots, A_{m_{-}}$be a partition of $\underline{\Omega}$ and $P\left(A_{i}\right)>0, i=1, \ldots, m$, then for any event $B \subset \Omega$,

3. (Bayes' Rule) Let $\underline{A}_{1}, \ldots, A_{m}$ be a partition of $\underline{\Omega}$ and $\underline{P\left(A_{i}\right)>0,}$ $i=1, \ldots, m$. If B is an event such that $P(B)>0$, then for $1 \leq j \leq m$, $P(\cdot) \xrightarrow{\substack{\text { update } \\ \text { andeccurs }}} P(\cdot \mid B)$ - meaning Ω (original samplespoce)

Example (Gold Coins):

- The Story.

Box 1 contains 2 silver coins. Box 2 contains 1 gold and 1 silver coin.
Box 3 contains 2 gold coins.
Experiment: (i) Select a box at random and, (ii)
Examine the 2 coins in order (assuming all choices are equally likely at each stage)

- Q: Given that ${ }^{\text {st }}$ coin is gold, what is the probability that Box k is selected, $k=1,2,3$?
- Let $A_{k}=\{$ Box k is selected $\}, B=\{1$ st coin is gold $\}$,

$$
\begin{aligned}
& \text { by(5) } \\
& P(B) \\
& =\frac{1}{3} \cdot 0+\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{3} \cdot 1=\frac{1}{2} .
\end{aligned}
$$

 Similarly, $P\left(A_{2} \mid B\right)=1 / 3, P\left(A_{3} \mid B\right)=2 / 3$.
Q: Given that ${ }^{\text {st }}$ coin is gold, what is the probability that $P\left(A_{3} \mid B\right){ }^{2}$ nd coin is gold?
$A_{3} \cap B \quad \square \operatorname{Let}^{4} C=\left\{2^{\text {nd }}\right.$ coin is gold $\} . P\left(B \cap C \mid A_{k}\right)= \begin{cases}0, & \text { if } k=1, \\ 0, & \text { if } k=2,\end{cases}$
$=C \cap B \quad$ by (5) 1
ㅁ $\underline{P(B \cap C)}=\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 1=\frac{1}{3} \cdot\left[\begin{array}{l}B \neq A_{2} A_{3} \\ \text { check } \Omega)\end{array}, \begin{array}{l}\text { wrong calaculation }\end{array}\right.$
$P(C \mid B)=\frac{P(B \cap C)}{P(B)}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \leftrightarrow \stackrel{\text { \&f. }}{\leftrightarrow} P\left(A_{3} \mid A_{2} \cup A_{3}\right)=\frac{1 / 3}{2 / 3}=\frac{1}{2} \downarrow$

- Example (TV Game Show: Let's Make A Deal)
- The story.

1. The contestant is given an opportunity to select one of three doors.

2. Behind one of the doors is a great prize (say, a car) and there is nothing behind the other two doors.
3. The host knows which door contains the car, but the contestant does not.

4．After the contestant select a door，the host opens an empty door that the contest did not pick．
5．After opening an empty door，the host always offers the contestant the opportunity to switch to the other remaining unopened door．
－Q：Should the contestant switch to the other door or not？

－Argument 2．Without loss of generality，assume that the $\underline{\text { contestant }}$ select door 3．Let $\underset{2}{ }$ contestant＇s choice

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{P}\left(\mathrm{~A}_{3} \mid \mathrm{B}\right) \\
=\text { ? }
\end{array} \\
& \underline{B}=\left\{\frac{\text { door } 1}{2} \text { is opened }\right\} \text { host's choice } \int \text { unopened doors: doors } 2 \& 3 \text {. } \\
& \text { - } P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=1 / 3 \\
& \text { ㅁ } P\left(B \mid A_{1}\right)=0, \quad P\left(B \mid A_{2}\right)=1 \text {, } \\
& P\left(B \mid A_{3}\right)=1 / 2
\end{aligned}
$$

$P($ switch \＆win）\quad－ Similar result obtained if $\underline{B}=\{$ door 2 is opened $\}$（exercise）
$=2 / 3 \quad$－Intuitive interpretation $W L O G$ ，assume contestant select door 3 ．
Note．not symmetric outcomes \＃\＃\｛switch to win\}
Q：Why are the 3 formulas useful in calculating probabilities？
（Note：They all benefit from conditional probabilities．）
Ans：（i）繁 \rightarrow 簡\＆簡 \＆$\cdots \&$ 簡；$\quad L P(\cdot) \rightarrow P(\cdot \mid A) \Rightarrow \Omega \underset{\substack{\text { reduced } \\ \text { spackle }}}{\text { spec }} A$
（ii）簡＝conditioning because the sample space is reduced from Ω to a smaller set．（e．g．，in many previous examples， $\underline{P(B \mid A) \text {＇s are known or easier to evaluate）}}$
－Odds and Conditional Odds
$>$ The odds of an event B ：

$>$ The odd of event \underline{B} given A :
evaluated under the probability
and $\leftrightarrows P(\cdot)$
 are said to be independent if and only if

$\begin{aligned} & \text { for calculation } \\ & \text { purpose }\end{aligned}$$P(A \cap B) \underset{\text { cf }}{=} P(A) P(B)$ in LNo.4.4
 Otherwise, they are said to be dependent.

It's a property defined on events $\uparrow \subset f$.
The "independent" defined on random variables (future lecture)

Notes. If $P(A)>0$, events A and B are independent if and only if
similarly, if $\underline{P(B)>0}$, if and only if $P(A \mid \underline{B}) \ominus P(A)$.
Q: How to interpret the equality? new infermacon $\}$

