條件机率Conditional Probability \＆Bayes＇Rule new information

－Q：Should the following probabilities be different？
same
changed
event \rightarrow Event $=$ a pitcher wins at least 16 games
－Q：What causes the differences？
$>$ For an event，new information（ie．，some other event has occurred）could change its probability
$>$ We call the altered probability a conditional probability
－Mathematical Definition：If A and B are two events in a sample space Ω and $P(A)>0$ ，then $t_{\text {event occurred }}$ event of interest
$\left.\begin{array}{l}\text { reasonable to } \\ \text { define for } \mathrm{A} \\ \text { with } P(A)=0 \text { ？}\end{array}\right] \quad P(B \mid A) \equiv \frac{P(A \cap B)}{P(A)}, ~$
is called the conditional probability of \underline{B} given A ．

$$
\begin{aligned}
& P(A)=\# A / \# \Omega \text { and } P(A \cap \mathrm{~B})=\#(A \cap B) / \# \Omega \\
& \Rightarrow P(B \mid A)=\frac{\#(A \cap B) / \# \Omega}{\# A / \# \Omega}=\frac{\#(A \cap B)}{\# A} \stackrel{c 5}{\#(B)} \\
& \hline=\frac{\# B}{\# \Omega}
\end{aligned}
$$

（future lecture）
－Example：A family is known to have 2 children，at least one A

$$
\begin{aligned}
& \text { - } \Omega=\{b b, b g, g b, g g\}\}^{\text {symmetric outcomes }} \text { at least one boy } \\
& \text { - } A=\{b g, g b, g g\} \text { and } B=\{b b, \underline{b g, g b}\} \leftarrow P(B)=3 / 4 \\
& \text { - } P(B \mid A)=\#(A \cap B) / \# A=2 / 3
\end{aligned}
$$

－Note：$\# \Omega$ is reduced to $\# A$ ．
$>$ In effect by conditioning,

- we are restricting the sample space from Ω to A, i.e.,

$$
\Omega \rightarrow A,
$$

- and, for an arbitrary event B (in Ω) to occur when A has occurred, we need that both A and B occur together, i.e.,

$$
\underline{B \rightarrow B \cap A} .
$$

$A \cap B$
$>$ The division by $P(A)$ in the definition above rescales all probabilities from the entire sample space Ω to being relative to the new sample space $A(\because P($ sample space $)=1)$
$>P(B \mid A)$ is a probability measure defined on B, but not A. (*) It can be : $P(j \mid A)$ satisfies the 3 axioms of probability (exercise)

- Any propositions developed in Chapter 2 for probability
:P(PlA) \&P(B |AC) might be easier to evaluate measures can be applied on $P(\cdot \mid A)$.

- 3 Useful Formulas for Calculating Probabilities (for 2-events case) order not matter $\mathcal{F} P(B) P(A \mid B)$ if $P(B)>0$. 1. If $P(A)>0$, then $P(A \cap B) \stackrel{ }{=} P(A) P(B \mid A)$. to garantee
the cond. prob. proof. By the definition of cond. prob., well defined

2. If $0<P(A)<1$, then $P(B / A)=P(A \cap B) / P(A)$ $P(B)=\stackrel{\overparen{P}(A) P(B \mid A)+\widetilde{\widetilde{P}\left(A^{c}\right) P}\left(B \mid A^{c}\right) . ~}{2}$ proof. $B=B \overline{\cap \Omega}$ mutually $\quad=B \cap\left(A \cup A^{C}\right)$ exclusive $=(B \cap A) \cup\left(B \cap A^{c}\right)$ $P(B \cap A) \xrightarrow{\text { by }(1)} P\left(B \cap A^{c}\right)$
3. If $0<P(A)<1$ and $P(B)>0$, then $P(\cdot) \frac{\text { update }}{\text { Boccurs }} P(\cdot / B)$
proof.
$P(B \mid A)+P\left(B \mid A^{C}\right) \neq 1$

- Example (Urn Problem) - prototype of many applications
- The Story. n balls sequentially and randomly chosen,

$>$ Example (Sampling Experiments): An urn contains \underline{R} red balls and $N-R$ white balls. Sample 2 balls from the urn.
- $A=$ \{red on the first draw $\}$
$B=\{$ red on the second draw $\}$
- Sampling Without Replacement:

