p. 4-17

$$P(A_1|B) = \frac{(1/3) \cdot 0}{1/2} = 0.$$
 Cf. $P(A_1) = P(A_2) = P(A_3) = P(A_3)$

- Q: Given that 1st coin is gold, what is the probability that 2nd coin is gold?
- Let $C = \{2^{\text{nd}} \text{ coin is } \text{gold}\}$. $P(B \cap C|A_k) = \{0, \text{ if } k = 2, 0, \text{ if } k = 3.\}$ A30B $P(B \cap C) = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 1 = \frac{1}{3} \cdot \frac{B \neq A_2 \cup A_3}{\text{(check }\Omega)}$ wrong intuition

$$A_3 \cap B \stackrel{\square}{=} \frac{P(B \cap C)}{=} = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 1 = \frac{1}{3} \cdot \frac{B + A_2 \cup A_3}{\text{(check }\Omega)} = \frac{P(B \cap C)}{P(A_3 \mid B)} = \frac{P(B \cap C)}{P(B)} = \frac{1/3}{1/2} = \frac{2}{3} \stackrel{\text{cf.}}{\longleftrightarrow} P(A_3 \mid A_2 \cup A_3) = \frac{1/3}{2/3} = \frac{1}{2}$$

- Example (TV Game Show: Let's Make A Deal)
 - The story.
 - 1. The contestant is given an opportunity to select one of three doors.
 - 2. Behind one of the doors is a great prize (say, a car) and there is nothing behind the other two doors.
 - 3. The host knows which door contains the car, but the contestant does not.
 - 4. After the contestant select a door, the host opens an empty door that the contest did not pick.
 - 5. After opening an empty door, the host always offers the contestant the opportunity to switch to the other remaining unopened door.
 - Q: Should the contestant switch to the other door or not?
- Argument 1 (*The Drunkar's Walk* by L. Mlodinow): "Two doors are available --- open one and you win; open the other interpretation and you lose ..., your chances of wining are 50/50." coin example (next slide)
 - Argument 2. Without loss of generality, assume that the contestant select door 3. Let A contestant's choice.

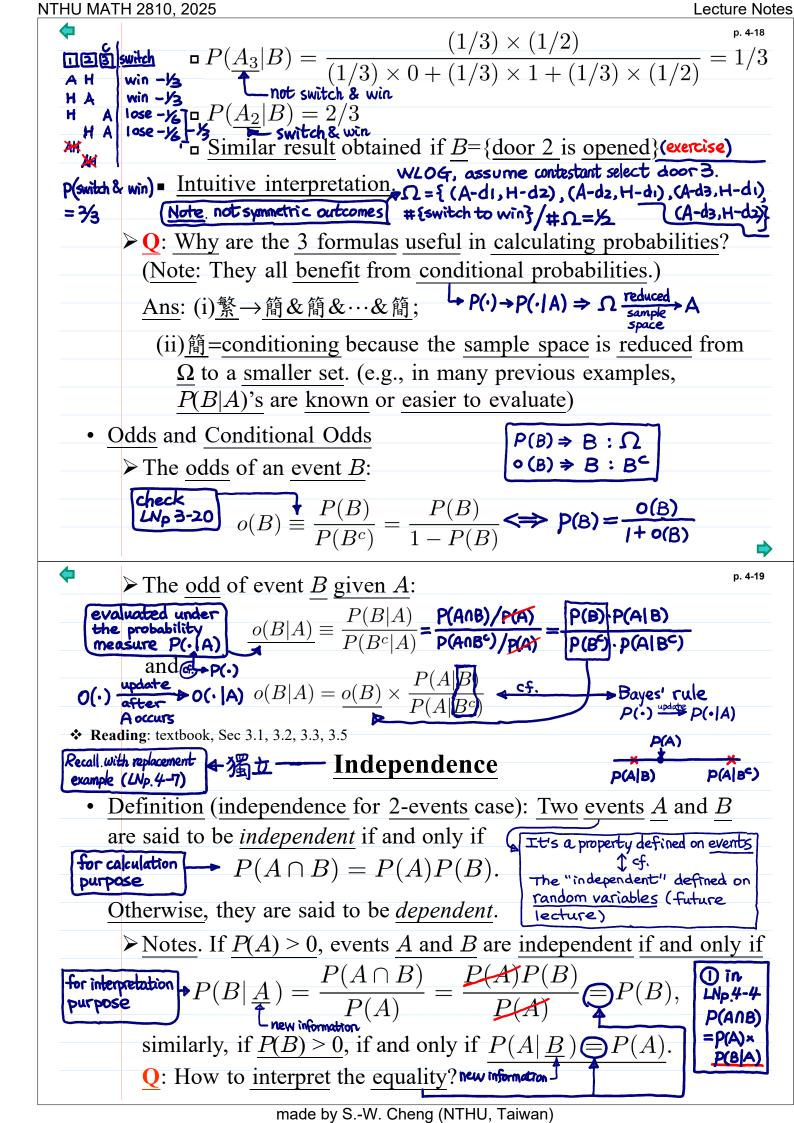
 $\underline{A}_i = \{\text{the } \underline{\text{car}} \text{ is behind the } \underline{\text{door } i}\}, i=1, 2, 3.$ $LB = \{ \frac{\text{door 1}}{\text{host's choice}} \text{ is opened} \}$

P(Ai|B)=? ← $P(A_1) = P(A_2) = P(A_3) = 1/3$ P(B)

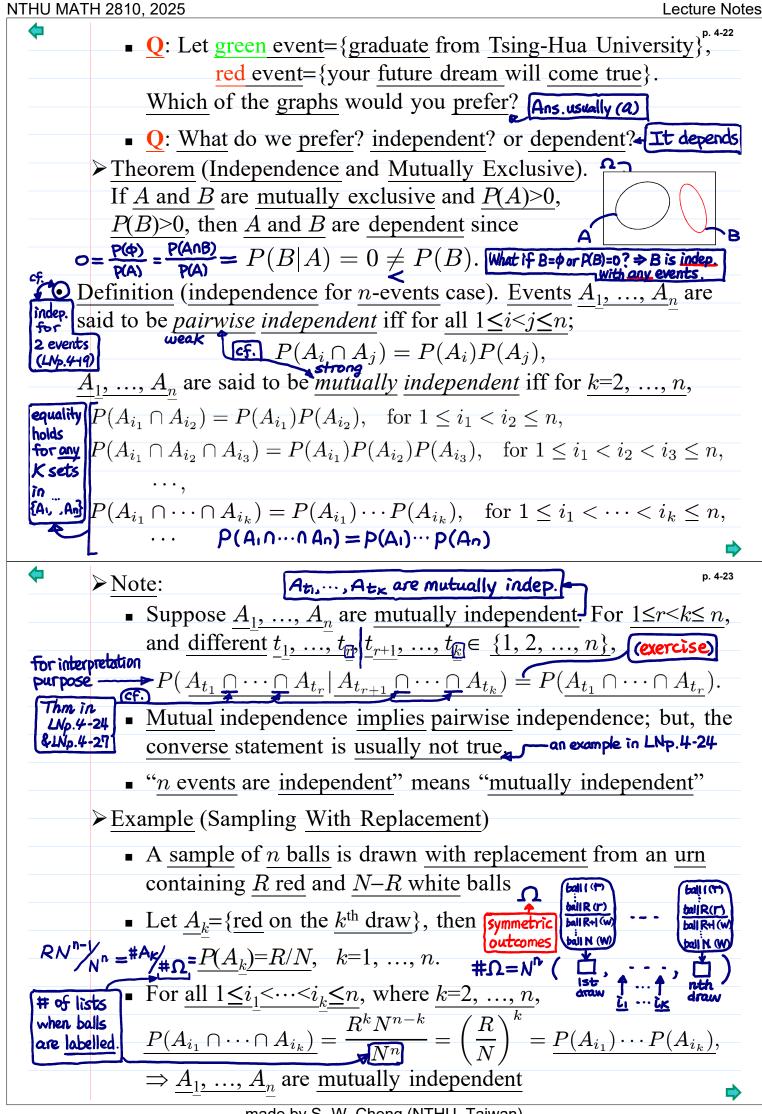
 $P(B|A_1) = 0, P(B|A_2) = 1,$ P(B|A) P(B|A2) P(B|A2) $P(B|A_3) = 1/2$

or door 2 $\#\Omega=6$ but asymmetric

made by S.-W. Cheng (NTHU, Taiwan)



made by S.-W. Cheng (NTHU, Taiwan)



p. 4-24

- Let $A = \{ \text{Spades or Clubs} \},$ $B=\{\text{Hearts or Clubs}\},\$ $C=\{\text{Diamonds or Clubs}\}.$
- $\underline{P(A)} = 26/52 = 1/2$, similarly, $\underline{P(B)} = P(C) = 1/2$. $\underline{P(A \cap B)} = P(\{\text{Clubs}\}) = \frac{13}{52} = \frac{1}{4} = \underline{P(A)P(B)}$, similarly,

$$\underline{P(A \cap C)} = 1/4 = \underline{P(A)P(C)}, \ \underline{P(B \cap C)} = 1/4 = \underline{P(B)P(C)}.$$

 $\Rightarrow A, B,$ and C are pairwise independent

P(A|Bnc) P((clubs)) - However,

 $P(A \cap B \cap C) = P(\{\text{Clubs}\}) = \frac{1}{4} \neq \frac{1}{8} = P(A)P(B)P(C),$ $P(B_{1} \cap B_{2}) = \frac{1}{4} \neq \frac{1}{8} = \frac{1}{8}$

Theorem (Independence and Complements, n-events case). $A_1, ..., A_n$ are mutually independent if and only if $P(B_1 \cap \cdots \cap B_{\underline{n}}) = P(B_1) \cdots P(B_{\underline{n}}),$

where \underline{B}_i is either \underline{A}_i or \underline{A}_i^c , for i=1, ..., n.