proof. Prove by induction.

For $n>3$, by mathematical
Notes: induction (exercise) \rightharpoondown
$A_{1} \cup \cdots \cup A_{n-1} \cup A_{n}$

- There are $\binom{n}{k}$ summands in σ_{k} $+P\left(A_{1} \cap A_{2} \cap A_{3}\right)$
- In symmetric examples,

$$
\begin{array}{|l}
\begin{array}{l}
\text { symmetric } \\
\text { outcomes } \\
\text { (L Np.3-4) }
\end{array}
\end{array} \text { of. } \sigma_{k}=\binom{n}{k} P\left(A_{1} \cap \cdots \cap A_{k}\right)
$$

$$
\begin{array}{r}
\text { e.g. } K=2, P\left(A_{1} \cap A_{2}\right)=P\left(A_{1} \cap A_{3}\right) \\
=\cdots=P\left(A_{n-1} \cap A_{n}\right)
\end{array}
$$

3rd proposition in $L N_{p}$. $3-11$

$$
\begin{aligned}
& P\left(A_{1} \cup \cdots \cup A_{n}\right) \\
& P\left(A_{1} \cup \cdots \cup A_{n}\right) \\
& P\left(A_{1} \cup \cdots \cup A_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& n=2 \text {, it holds \& by (4), } L_{p} 3-311 \\
& \left(A_{1} \cap A_{3}\right) \cup\left(A_{2} \cap A_{3}\right) \\
& \begin{aligned}
& \\
&=3, P\left(A_{1} \cup A_{2} \cup A_{3}\right)=P\left(A_{1} \cup A_{2}\right)+P\left(A_{3}\right)-P\left(\left(A_{1} \cup A_{2}\right) \cap A_{3}\right) \\
&=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) \\
&=P\left(A_{1} \cap A_{3}\right)+P\left(A_{2} \cap A_{3}\right)-P\left(A_{1} \cap A_{2} \cap A_{3}\right)
\end{aligned} \\
& =P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{1} \cap A_{2}\right)-P\left(A_{1} \cap A_{3}\right)-P\left(A_{2} \cap A_{3}\right)
\end{aligned}
$$

- Note: approximation accurate to 3 decimal places if $n \geq 6$.
\checkmark countably infinite many or finite] 4 [Let $A_{n+1}=A_{n+2}=\cdots=\phi$ O Proposition: If $\underline{A_{1}}, A_{2}, \ldots$, is a partition of Ω, i.e., cf: additivity 1. $\cup_{i=1}^{\infty} A_{i}=\Omega$, axiom

2. A_{1}, A_{2}, \ldots, are mutually exclusive, then, for any event $\underline{A \subset \Omega}$,

$P(A)=\sum_{i=1}^{\infty} P\left(A \cap A_{i}\right)$.
proof. $A=A \cap \Omega \stackrel{i=1}{=} A \cap\left(\bigcup_{i=1}^{\infty} A i\right)=\bigcup_{i=1}^{\infty}(A \cap A i) \quad \begin{aligned} & \text { mutually } \\ & \text { exclusive }\end{aligned}$ $P(A)=P\left(\bigcup_{i=1}^{\infty}(A \cap A i)\right)=\sum_{i=1}^{\infty} P(A \cap A i)$

* Reading: textbook, Sec 2.4 \& 2.5

Probability Measure for Continuous Sample Space ${ }^{\text {p.3.16 }}$
O Q: How to define probability in a continuous sample space?

- Monotone Sequences of sets $\left\lfloor\left(L N_{p} .3-7\right) \rightarrow\right.$ check Examples in $L N_{p .3}$ 3-1
$>$ Definition: A sequence of events A_{1}, A_{2}, \ldots, is called increasing if
τ countably infinite many and decreasing if

$$
\begin{aligned}
& A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset A_{n+1} \subset \cdots \frac{\subset \Omega}{\lim A_{1}} \\
& \text { sing if } \\
& A_{1} \supset A_{2} \supset \cdots \supset A_{n} \supset A_{n+1} \supset \cdots \supset \emptyset
\end{aligned}
$$

The limit of an increasing sequence is defined as

$$
\text { A, U } \cdots \cup A_{n} \sqrt[\lim _{n \rightarrow \infty} A_{n}]{\cup_{i=1}^{\infty}} A_{i}
$$

and the limit of an decreasing sequence is countably

$$
A_{1} \cap \cdots \cap A_{n} \lim _{n \rightarrow \infty} A_{n}=\cap_{i=1}^{\infty} A_{i}
$$

$>$ Example: If $\underline{\Omega=\mathbb{R}}$ and $\underline{A_{k}}=(-\infty, 1 / k)$, then A_{k} 's are decreasing and

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} A_{k}=\left\{\omega: \omega<1 / k \text { for all } k \in \mathbb{Z}_{+}\right\}=(-\infty, 0] . \\
& \xrightarrow{t / 1 / 2} \text { (exercise) } \quad \boldsymbol{A}_{\boldsymbol{k}}=\left(-\infty,-\frac{1}{k}\right] \uparrow, \lim _{k \rightarrow \infty} A_{\boldsymbol{k}}=(-\infty, 0)
\end{aligned}
$$

made by S.-W. Chang (NTHU, Taiwan)

Proposition: If $\underline{A}_{1}, A_{2}, \ldots$, is increasing or decreasing, then

LN P. 3-3 DeMorgan's Law

$$
\left(\lim _{n \rightarrow \infty} A_{n}\right)^{c}=\lim _{n \rightarrow \infty} A_{n}^{c}
$$

- Proposition: If $\underline{A}_{1}, A_{2}, \ldots$, is increasing or decreasing, then limit of numbers

$\lim A_{n}=A$ a P.M. $\lim \& P$ exchangable measurable
proof.@An increasing.

$$
\begin{aligned}
& \text { Let } B_{1}=A_{1}, B_{2}=A_{2} \cap A_{1}^{c}, \cdots, B_{n}=A_{n} \cap A_{n-1}^{c}, \cdots \\
& \Rightarrow \bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty} A_{n}, \bigcup_{n=1}^{k} B_{n}=\bigcup_{n=1}^{k} A_{n}=A_{k}, B_{i} \cap B_{j}=\phi \text { for for } i \neq j+j \\
& \text { excise }
\end{aligned}, \begin{aligned}
& P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=P\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} P\left(B_{n}\right)=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} P\left(B_{n}\right) \\
& \quad=\lim _{k \rightarrow \infty} P\left(\bigcup_{n=1}^{k} B_{n}\right)=\lim _{k \rightarrow \infty} P\left(\bigcup_{n=1}^{k} A_{n}\right)=\lim _{k \rightarrow \infty} P\left(A_{k}\right) \quad \begin{array}{l}
\text { by } A_{x} 3 \\
\text { Additivity }
\end{array}
\end{aligned}
$$

(b) An decreasing $\Rightarrow A_{n}^{c}$ increasing

$$
I-P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P\left(\left(\lim _{n \rightarrow \infty} A_{n}\right)^{c}\right) \quad \sigma \text { countable sums }
$$

$$
\begin{aligned}
& =P\left(\lim _{n \rightarrow \infty} A_{n}^{c}\right)=\lim _{\substack{n \rightarrow \infty \\
\lim _{n \rightarrow \infty}}} P\left(A_{n}^{c}\right)=\lim _{n \rightarrow \infty} 1-P\left(A_{n}\right)=I-\lim _{n \rightarrow \infty} P\left(A_{n}\right) \\
& \text { nile (Uniform Spinner): Let } \Omega=(-\pi, \pi] . \text { Define }
\end{aligned}
$$

$$
\not \text { Reading: textbook, Sec. } 2.6
$$

a countable (but dense) set.

Objective vs．Subjective＂Interpretation＂of Probability

－Evaluate the following statements
obj $\rightarrow 1$ ．This is a fair coin
subj $\rightarrow 2$ ．It＇s $\underline{90 \%}$ probable that Shakespeare actually wrote Hamlet
－Q：What do we mean if we say that the probability of rain

－The Objective（Frequency）Interpretation 頻率
$>$ Through Experiment：Imagine the experiment repeated \underline{N} times．For an event A ，let

$$
N_{A}=\# \text { occurrences of } A . \text { frequency }
$$

Then，random number ${ }^{\uparrow}$

$$
\left.P(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}\right]^{\sqrt{4}}\left[\begin{array}{l}
\text { By Law of Large } \\
\text { Number (future } \\
\text { lecture or course) }
\end{array}\right]
$$

$>$ Example（Coin Tossing）：

The result is consistent with $P(H)=0.5$ ．
＊odds of an event（勝敗率，賠率）
－The Subjective Interpretation $\quad O(A)=\frac{P(A)}{P\left(A A^{c}\right)}=\frac{P(A)}{1-P(A)} \Rightarrow P(A)=\frac{o(A)}{1+O(A)}$
$>$ Strategy：Assess probabilities by imagining bets $\sqrt{O(A) \in[0, \infty)}$
$>$ Example：押 $2: 1^{\text {賺 }}$
－Peter is willing to give two to one odds that it

event A

 will rain tomorrow．His subjective probability $P(A) \uparrow \Leftrightarrow O(A) T \Leftrightarrow O C A \in L$（Peter）true $O(A)=\frac{B(A)}{P\left(A^{c}\right)} \geqslant \frac{2}{1}$
1－＂P（A） for rain tomorrow is at least $2 / 3$
－Paul accepts the bet．His subjective $\begin{aligned} & \left(\text { Paul）true } O\left(A^{C}\right)=\frac{P\left(A^{(}\right)}{P(A)} \geqslant \frac{1}{2}\right.\end{aligned}$ probability for rain tomorrow is at most $2 / 3$

Bayesian approach \leftrightarrows

Probabilities are simply personal measures of how likely we think it is that a certain event will occur degree of personal belief．
eng. 2 in KNp. 3-19.
This can be applied even when the idea of repeated experiments is not feasible
Summary

$$
P\left(\lim A_{n}\right)=\lim P\left(A_{n}\right)
$$

