$>$ Example（Waiting for a success）：
－Play roulette until a win．
－$\Omega=\{1,2,3, \ldots\} \leftrightarrow\left[\begin{array}{l}\text { infinite } \\ \text { countable } \\ \text { set }\end{array}\right.$
$>$ Example（Uniform Spinner）：
－Random Angle（in radians）．
－$\Omega=(-\pi, \pi]$ ．- infinite uncountable set
－$P=$ ？？
－The Modern Approach（抽象化）
discrete $\Omega<$ p．3－6
（finite or courtably infinite） $P: 2^{\Omega} \rightarrow[0.1]$
continuous Ω （uncountably infinite） $P: \sigma$－field $\rightarrow[0,1]$ $2{ }^{2 \pi}$
公理（Axiom）
1．self－evident truth
2．a statement generally accepted as true
$>$ A probability measure on Ω is a function \underline{P} from subsets of Ω to the real number（or $[0,1]$ ）that satisfies the following axioms：
（Ax1）Non－negativity．For any event $A, \underline{P(A) \geq 0}$ ．
（Ax2）Total one．$\underline{P(\Omega)=1 \text { ．}}$

countably infinite many

（Ax3）Additivity．If $\underline{A_{1}}, A_{2}, \ldots$ ，is a sequence of mutually A_{i} exclusive events，i．e．，$\underline{A}_{i} \cap A_{j}=\emptyset$ when $i \neq j$ ，then

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

－Notes：

> check whether the classical approach satisfies the 3 axioms (exercise)

口These axioms restrict probabilities，but do not define them．
－Probability is a property c．f．

$$
P: \underline{2}^{\Omega} \rightarrow[0,1]
$$

$$
P(A)=\frac{\# A}{\# \Omega}
$$

Define Probability Measures in a Discrete Sample Space．
4 finite or countably infinite Ω
－Q：Is it required to define probabilities directly on every events？（e．g．，\underline{n} possible outcomes in $\Omega, \underline{2^{n}-1}$ possible events）
－Suppose $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ ，finite or countably infinite，
$\xrightarrow{\text { let }} \underset{\sim}{p: \Omega \rightarrow[0,1]}$ satisfy no need to be symmetric

（Q：how to define p ？
$>$ Example: In the classical approach, $p(\omega)=1 / \# \Omega$. For example, ${ }^{\text {p.3-8 }}$ throw a fair dice, $\Omega=\{1, \ldots, 6\}, p(1)=\ldots=p(6)=1 / 6$ and $\bar{P}($ odd $)=\overline{P(\{1,3,5\})=p(1)+p(3)+p(5)=3 / 6=1 / 2 .}=\frac{\# \mathrm{~A}}{\# \Omega}$
$>$ Example (non equally-likely events): Throwing an unfair dice might have $p(1)=3 / 8, p(2)=p(3)=\ldots=p(6)=1 / 8$, and $\underline{P}($ odd $)=P(\{1,3,5\})=p(1)+p(3)+p(5)=5 / 8$. (c.f., Examples in LNp.3-5)
Example (Waiting for Success - Play Roulette Until a Win):

- Let $r=9 / 19$ and $q=1-r=10 / 19<L_{p} .3-4$
- $\underline{\Omega}=\{\underline{1,2,3, \ldots}\} \leftarrow$ infinite, countable

T~. For an event $\underline{A \subset \Omega}$, let
${ }^{2}$ is an uncoutable set

$$
P(A)=\sum_{n \in A} p(n)
$$

For example, $\underline{\mathrm{Odd}}=\{1,3,5,7, \ldots\}$

$$
\begin{aligned}
P(\mathrm{Odd}) & =\sum_{k=0}^{\infty} p(2 k+1)=\sum_{k=0}^{\infty} r q^{(2 k+1)-1}=r \sum_{k=0}^{\infty} q^{2 k} \\
& =r /\left(1-q^{2}\right)=19 / 29
\end{aligned}
$$

* Reading: textbook, Sec $2.3 \& \frac{2.5}{a}$ read more examples of sample spaces having symmetric outcomes (classical approach) Some Consequences of the 3 Axioms $\rightarrow \equiv$ 原色 RGB
- Proposition: For any sample space Ω, the probability of the empty set is zero, i.e.,

$$
P(\emptyset)=0 .
$$

proof. In $(A \times 3)$, let $A_{1}=\Omega, A_{2}=A_{3}=\cdots=\phi, \Rightarrow A_{i} \cap A_{j}=\phi . \forall i, j$. $B_{y}(A \times 3) . P(\Omega)=P(\Omega)+\sum_{n=2}^{\infty} \frac{P(\phi)}{(1-2 \times 2) \rightarrow 11}=0$

－Proposition：If \underline{A} is an event in a sample space Ω and $\underline{A^{c}}$ is the complement of A ，then

$$
P\left(A^{c}\right)=1-P(A) \cdot-3
$$

proof．$A^{c} \cup A=\Omega, A^{c} \cap A=\phi$

$$
I=P(\Omega)=P\left(A^{c} \cup A\right)=P\left(A^{c}\right)+P(A) \text { rby(2) }
$$

－Proposition：If A and B are events in a sample space Ω and $\underline{A \subset B}$ ，
then $P(A) \leq P(B)$ set minus
then $P(A) \leq P(B)$ and $P(B-A)=P\left(B \cap A^{c}\right)=P(B)-P(A)$ ．
少見事件 proof．

$$
\begin{aligned}
& \text { proof. } B=A \cup\left(B \cap A^{c}\right) \\
& P(B)=P(A)+P\left(B \cap A^{c}\right) \geqslant P(A) \\
& \text { Example (摘自"快思慢想", Kahneman). } \\
& \text { 琳達是個三十一歲, 未婚, 有話直說的聰 } \\
& \text { 哲學, 在學生時代非常關心歧視和社會公 } \\
& \text { 與過反核遊行。下面那一個比較可能? }
\end{aligned}
$$

Recall．
馬路三寶 琳達是個三十一歲，未婚，有話直說的聰明女性。她主修 example
$\left(L_{p}\right.$ ． $\left.1-8\right)$ 哲學，在學生時代非常關心歧視和社會公義的問題，也參
A_{1}－琳達是銀行行員 $-A_{1}$
$A_{1} \cap A_{2}$－琳達是銀行行員 ，也是活躍的女性主義運動者 $+A_{2}$
${ }_{\infty} \bigcirc$ Proposition：If A is an event in a sample space Ω ，then This is Axiom 1 in textbook

$$
\text { Ax } \frac{0 \leq P(A) \leq 1 .=P(\Omega) \& A \subset \Omega, ~}{s}
$$

－Proposition：If A and B are two events in a sample space Ω ，then

$$
P(A \cup B) \leqslant P(A)+P(B) \Leftarrow P(\underline{A \cup B})=P(A)+P(B)-P(A \cap B) .
$$ proof．$A \cup B=I \cup I I \cup$ III and

I，II，III mutually exclusive
remove disjoint condition

$$
\begin{aligned}
P(A \cup B) & =P(\text { I })+P(\text { II })+P(\text { III }) \\
P(A) & =P(\text { I })+P(\text { II }) \\
P(B) & =\overline{=} P(\text { II })+P \text { (III }) \\
P(A \cap B) & =P(\text { II })
\end{aligned}
$$

－Proposition：If $\underline{A_{1}}, A_{2}, \ldots, A_{n}$ are events in a sample space Ω ，then

$$
\begin{aligned}
P\left(A_{1} \cup \cdots \cup A_{n}\right) \leq P\left(A_{1}\right)+\cdots+P\left(A_{n}\right) & \text { c.f. }
\end{aligned}
$$

マ・ Proposition (inclusion-exclusion identity): If $\underline{A}_{1}, A_{2}, \ldots, A_{n} \underline{a r e}$ an $y^{\text {p.3.12 }}$
n events, let
generalization of (4)

$$
\sigma_{2}=\sum_{i} P\left(A_{i} \cap A_{j}\right),
$$

$$
\left[\begin{array}{l}
n \\
2
\end{array}\right) \text { different }\{i, j\}, \quad, \quad 1 \leq i<j \leq n
$$

$$
\sigma_{3}=\sum P\left(A_{i} \cap A_{j} \cap A_{k}\right)
$$

$\binom{n}{3}$ different $\{i, j, k\}, ~ 1 \leq i<j<k \leq n$

$$
P\left(\underline{A_{1} \cup \cdots \cup A_{n}}\right)=\sigma_{1}-\sigma_{2}+\sigma_{3}-\cdots+(-1)^{k+1} \sigma_{k}+\cdots+(-1)^{n+1} \sigma_{n}
$$

