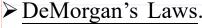
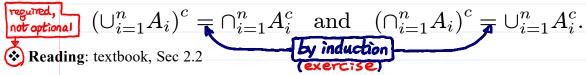
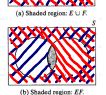
p. 3-3

- Some Simple Rules of Set Operations
 - ightharpoonup Commutative Laws. $A \cup B = B \cup A$ and $A \cap B = B \cap A$
 - Associative Laws. $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C).$
 - Distributive Laws. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
 - $(A\cap B)\cup C=(A\cup C)\cap (B\cup C)$



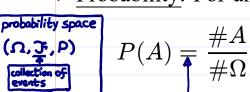




機率 測度→Probability Measure → a function: 2°→[0,1]

 $g(x)dx \leftarrow \frac{1}{1}$ length measure:

- The <u>Classical</u> Approach
 - Sample Space $\underline{\Omega}$ is a *finite* set
 - ightharpoonup Probability: For an event A,

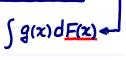


birthday is uniform

in 365 days

This explains why combinatorial Thm plays an important role in probability.

¥=x



p. 3-4

- Example (Roulette):
 - $\Omega = \{0, 00, 1, 2, 3, 4, ..., 35, 36\}$
 - $P(\{\text{Red Outcome}\}) = \frac{18}{38} = \frac{9}{19}$.

weight measure

y = F(x) non-decreasing

Example (Birthday Problem): <u>n people</u> gather at a party. What is the <u>probability</u> that they all have <u>different birthdays</u>?

- $\Omega = \underline{\text{lists}} \text{ of } \underline{n} \text{ from } \{1, 2, 3, ..., 365\}$
- $A = \{ all permutations \}$
- $P_n(A) = (365)_n / \frac{365^n}{400}$

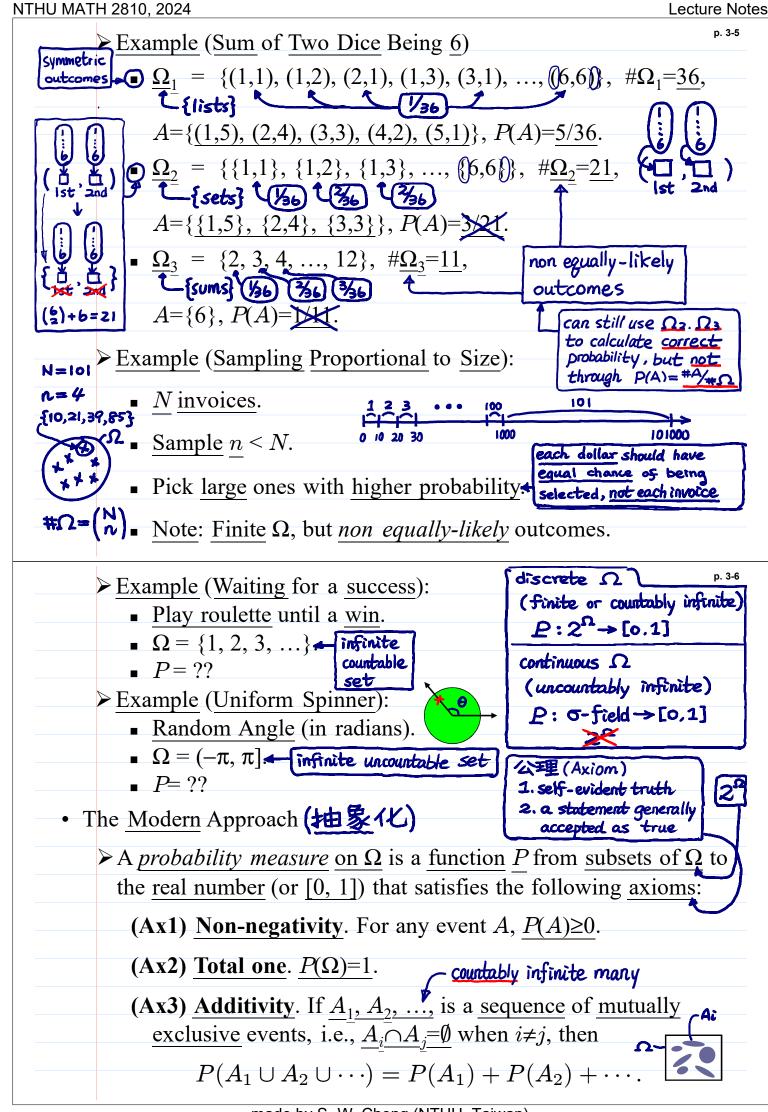
•	n	8	16	<u>22</u>	<u>23</u>	32	40
	$P_n(A)$.926	.716	.524	.492	.247	.109

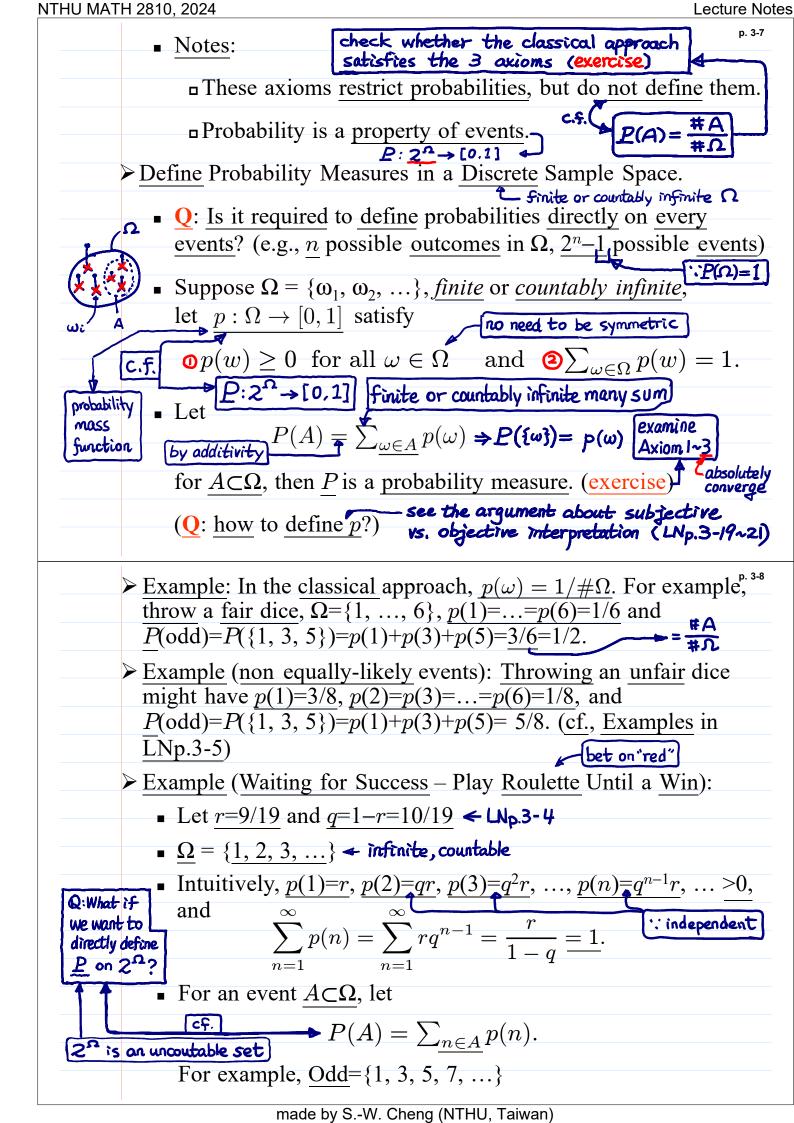
365 365 365 1st , ..., nth

• Inadequacy of the Classical Approach

 $P(A) = \frac{\#A}{\#\Omega}$ The requires: $\frac{\text{Finite }\Omega}{\text{Symmetric}} \text{ Outcomes}$

i.e., all outcomes in Ω are equally likely to occur, for $\omega \in \Omega$ $P(\{\omega\}) = \frac{1}{\#\Omega}$





$$P(\text{Odd}) = \sum_{k=0}^{\infty} p(2k+1) = \sum_{k=0}^{\infty} rq^{(2k+1)-1} = r \sum_{k=0}^{\infty} q^{2k}$$

$$= r/(1-q^2) = 19/29.$$

* Reading: textbook, Sec 2.3 & 2.5 read more examples of sample spaces having symmetric outcomes (classical approach)

Some Consequences of the 3 Axioms = 原色RGB

• Proposition: For any sample space Ω , the probability of the empty set is zero, i.e.,

$$P(\emptyset) = 0. - 1$$

$$P(\text{proof} : \text{In (Ax3), let } A_1 = \Omega, A_2 = A_3 = \cdots = \phi, \Rightarrow \text{Ain } A_j = \phi, \forall i, j.$$

$$B_y \text{(Ax3), } P(\Omega) = P(\Omega) + \sum_{n=2}^{\infty} P(\phi) \qquad (Ax1)$$

Proposition: For any finite sequence of mutually exclusive events $A_1, A_2, ..., A_n$.

Finite version of Ax3

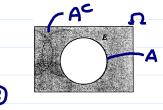
$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n).$$

of Ax3) proof. In (Ax3), let $A_{n+1} = A_{n+2} = \cdots = \phi$, then @ holds : $P(\phi) = 0$

• Proposition: If \underline{A} is an event in a sample space Ω and \underline{A}^c is the complement of A, then $P(A^c) = 1 - P(A)$.

Proof. A^c \cup A = Ω , A^c \cap A = ϕ

 $\frac{\text{proof.}}{I = P(\Omega) = P(A^c \cup A) = P(A^c) + P(A)} = P(A^c \cup A) = P(A^c \cup A) = P(A^c) + P(A) = P(A^c) + P(A^c)$



p. 3-10

• Proposition: If \underline{A} and \underline{B} are events in a sample space Ω and $\underline{A} \subset \underline{B}$, then $P(A) \leq P(B)$ and $P(B - A) = P(B \cap A^c) = P(B) - P(A)$.

少身件 proof B=AU(BNA) [by (Ax1)

 $P(B) = P(A) + P(B \cap A^{c}) \ge P(A)$

Example (摘自"快思慢想", Kahneman).

Recall. 上 馬路三寶 example (LNp.1-8)

琳達是個三十一歲、未婚、有話直說的聰明女性。她主修哲學,在學生時代非常關心歧視和社會公義的問題,也參與過反核遊行。下面那一個比較可能?

Ai 琳達是銀行行員。Ai

AINA2 ■ 琳達是銀行行員,也是活躍的女性主義運動者。

p. 3-11

Proposition: If \underline{A} is an event in a sample space Ω , then

This is Axiom I in textbook

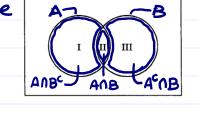
 $0 \le P(A) \le 1. = P(\Omega) & A \subset \Omega$

• Proposition: If \underline{A} and \underline{B} are two events in a sample space Ω , then

 $P(A \cup B) \leqslant P(A) + P(B) + P(A \cap B). \qquad --- \checkmark$

proof. AUB = IUIUII and

remove disjoint codition I, II, III mutually exclusive $P(A \cup B) = P(I) + P(II) + P(III)$ P(A) = P(I) + P(II) P(B) = P(II) + P(III) $P(A \cap B) = P(II)$



• Proposition: If $\underline{A_1}, \underline{A_2}, ..., \underline{A_n}$ are events in a sample space Ω , then

$$P(\underline{A_1 \cup \dots \cup A_n}) \le P(A_1) + \dots + P(A_n) \overset{\text{cf.}}{\longleftrightarrow} 2 & \textcircled{4}$$

<u>proof.</u> $P((A_1 \cup \dots \cup A_{n-1}) \cup A_n) \leq \underline{P(A_1 \cup \dots \cup A_{n-1})} + P(A_n)$

$$by \textcircled{+} P(A_1 \cup \cdots \cup A_{n-2}) + P(A_{n-1}) + P(A_n)$$

$$P(A_1) + \cdots + P(A_n)$$