

Sample Space and Events

- Sample Space Ω : the set of all possible outcomes in a random phenomenon. Examples:

1. Sex of a newborn child: $\Omega = \{\text{girl, boy}\}$

2. The order of finish in a race among the 7 horses 1, 2, ..., 7:

$$\Omega = \{ \text{all } 7! \text{ Permutations of } (1, 2, 3, 4, 5, 6, 7) \}$$

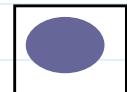
3. Flipping two coins: $\Omega = \{(\text{H, H}), (\text{H, T}), (\text{T, H}), (\text{T, T})\}$

4. Number of phone calls received in a year: $\Omega = \{0, 1, 2, 3, \dots\}$

5. Lifetime (in hours) of a transistor: $\Omega = [0, \infty)$

- Event: Any (measurable) subset of Ω is an event. Examples:

1. $A = \{\text{girl}\}$: the event - child is a girl.



2. $A = \{\text{all outcomes in } \Omega \text{ starting with a 3}\}$: the event - horse 3 wins the race.

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

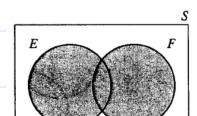
- $A = \{(\text{H, H}), (\text{H, T})\}$: the event - head appears on the 1st coin.
- $A = \{0, 1, \dots, 500\}$: the event - no more than 500 calls received
- $A = [0, 5]$: the event - transistor does not last longer than 5 hours.

➤ an event occurs \Leftrightarrow outcome \in the event (subset)

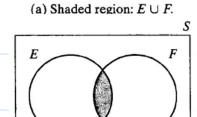
➤ Q: How many different events if $\#\Omega = n < \infty$?

- Set Operations of Events

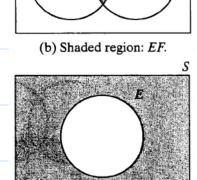
➤ Union. $C = A \cup B \Rightarrow C$: either A or B occurs



➤ Intersection. $C = A \cap B \Rightarrow C$: both A and B occur



➤ Complement. $C = A^c \Rightarrow C$: A does not occur



➤ Mutually exclusive (disjoint). $A \cap B = \emptyset \Rightarrow A$ and B have no outcomes in common.

➤ Definitions of union and intersection for more than 2 events can be defined in a similar manner

- Some Simple Rules of Set Operations

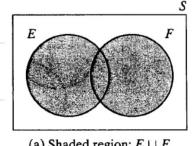
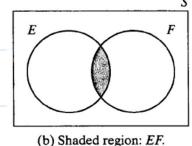
➤ Commutative Laws. $A \cup B = B \cup A$ and $A \cap B = B \cap A$

➤ Associative Laws. $(A \cup B) \cup C = A \cup (B \cup C)$
 $(A \cap B) \cap C = A \cap (B \cap C).$

➤ Distributive Laws. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

➤ DeMorgan's Laws.

$$(\cup_{i=1}^n A_i)^c = \cap_{i=1}^n A_i^c \quad \text{and} \quad (\cap_{i=1}^n A_i)^c = \cup_{i=1}^n A_i^c.$$



❖ **Reading:** textbook, Sec 2.2

Probability Measure

- The Classical Approach

➤ Sample Space Ω is a finite set

➤ Probability: For an event A ,

$$P(A) = \frac{\#A}{\#\Omega}$$

NTHU MATH 2810, 2025, Lecture Notes
 made by S.-W. Cheng (NTHU, Taiwan)

➤ Example (Roulette):

- $\Omega = \{0, 00, 1, 2, 3, 4, \dots, 35, 36\}$
- $P(\{\text{Red Outcome}\}) = 18/38 = 9/19.$

➤ Example (Birthday Problem): n people gather at a party. What is the probability that they all have different birthdays?

- $\Omega = \text{lists of } n \text{ from } \{1, 2, 3, \dots, 365\}$
- $A = \{\text{all permutations}\}$
- $P_n(A) = (365)_n / 365^n$

n	8	16	22	23	32	40
$P_n(A)$.926	.716	.524	.492	.247	.109

- Inadequacy of the Classical Approach

$$P(A) = \frac{\#A}{\#\Omega}$$

➤ It requires:

- Finite Ω
- Symmetric Outcomes

➤ Example (Sum of Two Dice Being 6)

- $\underline{\Omega}_1 = \{(1,1), (1,2), (2,1), (1,3), (3,1), \dots, (6,6)\}$, $\#\underline{\Omega}_1 = 36$,

$A = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$, $P(A) = 5/36$.

- $\underline{\Omega}_2 = \{\{1,1\}, \{1,2\}, \{1,3\}, \dots, \{6,6\}\}$, $\#\underline{\Omega}_2 = 21$,

$A = \{\{1,5\}, \{2,4\}, \{3,3\}\}$, $P(A) = 3/21$.

- $\underline{\Omega}_3 = \{2, 3, 4, \dots, 12\}$, $\#\underline{\Omega}_3 = 11$,

$A = \{6\}$, $P(A) = 1/11$.

➤ Example (Sampling Proportional to Size):

- N invoices.
- Sample $n < N$.
- Pick large ones with higher probability.
- Note: Finite Ω , but *non equally-likely* outcomes.

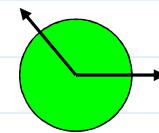
NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ Example (Waiting for a success):

- Play roulette until a win.
- $\Omega = \{1, 2, 3, \dots\}$.
- $P = ??$

➤ Example (Uniform Spinner):

- Random Angle (in radians).
- $\Omega = (-\pi, \pi]$.
- $P = ??$



- The Modern Approach

➤ A probability measure on Ω is a function P from subsets of Ω to the real number (or $[0, 1]$) that satisfies the following axioms:

(Ax1) Non-negativity. For any event A , $P(A) \geq 0$.

(Ax2) Total one. $P(\Omega) = 1$.

(Ax3) Additivity. If A_1, A_2, \dots is a sequence of mutually exclusive events, i.e., $A_i \cap A_j = \emptyset$ when $i \neq j$, then

$$P(A_1 \cup A_2 \cup \dots) = P(A_1) + P(A_2) + \dots$$

- Notes:

- These axioms restrict probabilities, but do not define them.
- Probability is a property of events.

➤ Define Probability Measures in a Discrete Sample Space.

- Q: Is it required to define probabilities directly on every events? (e.g., n possible outcomes in Ω , $2^n - 1$ possible events)
- Suppose $\Omega = \{\omega_1, \omega_2, \dots\}$, finite or countably infinite, let $p : \Omega \rightarrow [0, 1]$ satisfy

$$p(w) \geq 0 \text{ for all } \omega \in \Omega \quad \text{and} \quad \sum_{\omega \in \Omega} p(\omega) = 1.$$

- Let

$$P(A) = \sum_{\omega \in A} p(\omega)$$

for $A \subset \Omega$, then P is a probability measure. (exercise)

(Q: how to define p ?)

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Example: In the classical approach, $p(\omega) = 1/\#\Omega$. For example, throw a fair dice, $\Omega = \{1, \dots, 6\}$, $p(1) = \dots = p(6) = 1/6$ and $P(\text{odd}) = P(\{1, 3, 5\}) = p(1) + p(3) + p(5) = 3/6 = 1/2$.
- Example (non equally-likely events): Throwing an unfair dice might have $p(1) = 3/8$, $p(2) = p(3) = \dots = p(6) = 1/8$, and $P(\text{odd}) = P(\{1, 3, 5\}) = p(1) + p(3) + p(5) = 5/8$. (c.f., Examples in LNp.3-5)
- Example (Waiting for Success – Play Roulette Until a Win):
 - Let $r = 9/19$ and $q = 1 - r = 10/19$
 - $\Omega = \{1, 2, 3, \dots\}$
 - Intuitively, $p(1) = r$, $p(2) = qr$, $p(3) = q^2r$, \dots , $p(n) = q^{n-1}r$, $\dots > 0$, and

$$\sum_{n=1}^{\infty} p(n) = \sum_{n=1}^{\infty} rq^{n-1} = \frac{r}{1-q} = 1.$$

- For an event $A \subset \Omega$, let

$$P(A) = \sum_{n \in A} p(n).$$

For example, Odd = $\{1, 3, 5, 7, \dots\}$

$$\begin{aligned}
 P(\text{Odd}) &= \sum_{k=0}^{\infty} p(2k+1) = \sum_{k=0}^{\infty} rq^{(2k+1)-1} = r \sum_{k=0}^{\infty} q^{2k} \\
 &= r/(1-q^2) = 19/29.
 \end{aligned}$$

❖ **Reading:** textbook, Sec 2.3 & 2.5

Some Consequences of the 3 Axioms

- **Proposition:** For any sample space Ω , the probability of the empty set is zero, i.e.,

$$P(\emptyset) = 0.$$

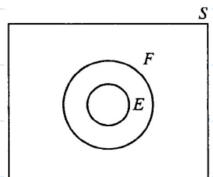
- **Proposition:** For any finite sequence of mutually exclusive events A_1, A_2, \dots, A_n ,

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n).$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- **Proposition:** If A is an event in a sample space Ω and A^c is the complement of A , then $P(A^c) = 1 - P(A)$.

- **Proposition:** If A and B are events in a sample space Ω and $A \subset B$, then $P(A) \leq P(B)$ and $P(B - A) = P(B \cap A^c) = P(B) - P(A)$.



➤ **Example** (摘自“快思慢想”，Kahneman).

琳達是個三十一歲、未婚、有話直說的聰明女性。她主修哲學，在學生時代非常關心歧視和社會公義的問題，也參與過反核遊行。下面那一個比較可能？

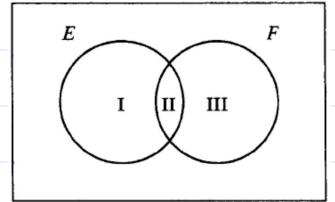
- 琳達是銀行行員。
- 琳達是銀行行員，也是活躍的女性主義運動者。

- Proposition: If A is an event in a sample space Ω , then

$$0 \leq P(A) \leq 1.$$

- Proposition: If A and B are two events in a sample space Ω , then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$



- Proposition: If A_1, A_2, \dots, A_n are events in a sample space Ω , then

$$P(A_1 \cup \dots \cup A_n) \leq P(A_1) + \dots + P(A_n).$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Proposition (inclusion-exclusion identity): If A_1, A_2, \dots, A_n are any ^{p. 3-12} n events, let

$$\sigma_1 = \sum_{i=1}^n P(A_i),$$

$$\sigma_2 = \sum_{1 \leq i < j \leq n} P(A_i \cap A_j),$$

$$\sigma_3 = \sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k),$$

$$\dots = \dots$$

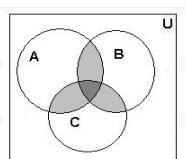
$$\sigma_k = \sum_{1 \leq i_1 < \dots < i_k \leq n} P(A_{i_1} \cap \dots \cap A_{i_k})$$

$$\dots = \dots$$

$$\sigma_n = P(A_1 \cap A_2 \cap \dots \cap A_n).$$

Q: For an outcome w contained in m out of the n events, how many times is its probability $p(w)$ repetitively counted in $\sigma_1, \dots, \sigma_n$?

then



$$P(A_1 \cup \dots \cup A_n) = \sigma_1 - \sigma_2 + \sigma_3 - \dots + (-1)^{k+1} \sigma_k + \dots + (-1)^{n+1} \sigma_n.$$

➤ Notes:

- There are $\binom{n}{k}$ summands in σ_k

- In symmetric examples,

$$\underline{\sigma_k} = \binom{n}{k} P(A_1 \cap \dots \cap A_k)$$

- It can be shown that

$$P(A_1 \cup \dots \cup A_n) \leq \sigma_1$$

$$P(A_1 \cup \dots \cup A_n) \geq \sigma_1 - \sigma_2$$

$$P(A_1 \cup \dots \cup A_n) \leq \sigma_1 - \sigma_2 + \sigma_3$$

...

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ Example (The Matching Problem).

- Applications: (a) Taste Testing. (b) Gift Exchange.
- Let Ω be all permutations $\omega = (i_1, \dots, i_n)$ of $1, 2, \dots, n$.
Thus, $\#\Omega = n!$.
- Let

$$\underline{A_j} = \{\omega: i_j = j\} \text{ and } A = \underline{\cup_{i=1}^n A_i},$$

Q: $P(A) = ?$ (What would you expect when n is large?)

- By symmetry,

$$\underline{\sigma_k} = \binom{n}{k} P(A_1 \cap \dots \cap A_k),$$

- Here,

$$P(A_1) = \frac{1 \times (n-1)!}{n!} = \frac{1}{n},$$

$$P(A_1 \cap A_2) = \frac{(n-2)!}{n!} = \frac{1}{(n)_2},$$

$$\dots = \dots,$$

$$P(A_1 \cap \dots \cap A_k) = \frac{(n-k)!}{n!} = \frac{1}{(n)_k}.$$

for $k = 1, \dots, n$.

- So, $\sigma_k = \binom{n}{k} \frac{1}{(n)_k} = \frac{1}{k!}$,

$$P(A) = \sigma_1 - \sigma_2 + \cdots + (-1)^{n+1} \sigma_n = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!},$$

$$P(A) = 1 - \sum_{k=0}^n (-1)^k \frac{1}{k!} \approx 1 - \frac{1}{e} = 0.632 \Rightarrow P(A^c) \approx e^{-1} = 0.368$$

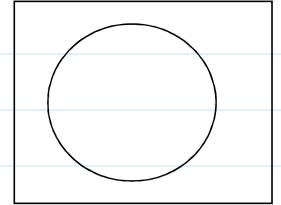
- Note: approximation accurate to 3 decimal places if $n \geq 6$.

- Proposition: If $\underline{A_1, A_2, \dots}$ is a partition of Ω , i.e.,

- $\cup_{i=1}^{\infty} A_i = \Omega$,
- A_1, A_2, \dots are mutually exclusive,

then, for any event $\underline{A \subset \Omega}$,

$$P(A) = \sum_{i=1}^{\infty} P(A \cap A_i).$$



❖ Reading: textbook, Sec 2.4 & 2.5

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Probability Measure for Continuous Sample Space

- Q: How to define probability in a continuous sample space?
- Monotone Sequences of sets

➤ Definition: A sequence of events $\underline{A_1, A_2, \dots}$ is called increasing if

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots \subset \Omega$$

and decreasing if

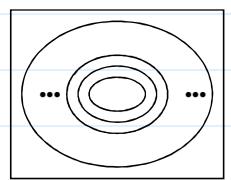
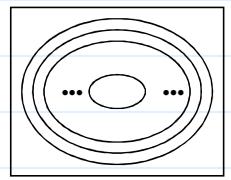
$$A_1 \supset A_2 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots \supset \emptyset$$

The limit of an increasing sequence is defined as

$$\lim_{n \rightarrow \infty} A_n = \underline{\cup}_{i=1}^{\infty} A_i$$

and the limit of an decreasing sequence is

$$\lim_{n \rightarrow \infty} A_n = \underline{\cap}_{i=1}^{\infty} A_i$$



➤ Example: If $\underline{\Omega = \mathbb{R}}$ and $\underline{A_k = (-\infty, 1/k)}$, then A_k 's are decreasing and

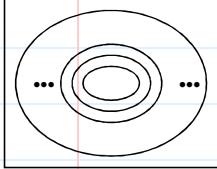
$$\lim_{k \rightarrow \infty} A_k = \{\omega : \underline{\omega < 1/k} \text{ for all } k \in \mathbb{Z}_+\} = (-\infty, 0].$$

- Proposition: If $\underline{A_1}, \underline{A_2}, \dots$, is increasing or decreasing, then

$$\left(\lim_{n \rightarrow \infty} A_n \right)^c = \lim_{n \rightarrow \infty} A_n^c$$

- Proposition: If $\underline{A_1}, \underline{A_2}, \dots$, is increasing or decreasing, then

$$\lim_{n \rightarrow \infty} P(A_n) = P\left(\lim_{n \rightarrow \infty} A_n\right).$$



NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Example (Uniform Spinner): Let $\underline{\Omega} = (-\pi, \pi]$. Define

$$P((a, b]) = \frac{b - a}{2\pi}.$$

for subintervals $(a, b] \subset \Omega$. Then, extend P to other subsets using the 3 axioms. For example, if $-\pi < a < b < \pi$,

$$\begin{aligned} P([a, b]) &= P\left(\left(\bigcap_{k=1}^{\infty} \left(a - \frac{1}{k}, b\right]\right) \cap \Omega\right) = P\left(\bigcap_{k=1}^{\infty} \left(\left(a - \frac{1}{k}, b\right] \cap \Omega\right)\right) \\ &= \lim_{k \rightarrow \infty} P\left(\left(a - \frac{1}{k}, b\right] \cap \Omega\right) \\ &= \lim_{k \rightarrow \infty} \frac{1}{2\pi} \left(b - a + \frac{1}{k}\right) = \frac{b - a}{2\pi}. \end{aligned}$$

- Some notes

- $P(\{a\}) = P([a, b] - (a, b]) = P([a, b]) - P((a, b]) = 0$.

- If $\underline{C} = \{\underline{\omega_1}, \underline{\omega_2}, \dots\} \subset \Omega$, then

$$P(C) = \sum_{i=1}^{\infty} P(\{\omega_i\}) = 0 + 0 + \dots = 0.$$

- The probability of all rational outcomes is zero

❖ **Reading:** textbook, Sec. 2.6

Objective vs. Subjective “Interpretation” of Probability

- Evaluate the following statements

1. This is a fair coin

2. It's 90% probable that Shakespeare actually wrote Hamlet

- Q: What do we mean if we say that the probability of rain tomorrow is 40%?

Objective: Long run relative frequencies

Subjective: Chosen to reflect opinion

- The Objective (Frequency) Interpretation

➤ Through Experiment: Imagine the experiment repeated N times. For an event A , let

$$N_A = \# \text{ occurrences of } A.$$

Then,

$$P(A) \equiv \lim_{N \rightarrow \infty} \frac{N_A}{N}.$$

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ Example (Coin Tossing):

N	100	1000	10000	100000
N_H	55	493	5143	50329
N_H/N	.550	.493	.514	.503

The result is consistent with $P(H)=0.5$.

- The Subjective Interpretation

➤ Strategy: Assess probabilities by imagining bets

➤ Example:

- Peter is willing to give two to one odds that it will rain tomorrow. His subjective probability for rain tomorrow is at least $2/3$

- Paul accepts the bet. His subjective probability for rain tomorrow is at most $2/3$

➤ Probabilities are simply personal measures of how likely we think it is that a certain event will occur

➤ This can be applied even when the idea of repeated experiments is not feasible

❖ **Reading:** textbook, Sec. 2.7

NTHU MATH 2810, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)