$>$ A useful identity:

$$
9 / 14 \quad\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

- Partitions

$>$ Example: How many distinct arrangements formed from the letters

$\mathrm{M} \mathrm{I}_{1} \mathrm{SiS}_{2} \mathrm{~S}_{2} \mathrm{I}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} \mathrm{I}_{3} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{I}_{4}$?

1233445678891011
permutations 4 " 5 " treated partitions. There are 11 letters which can be arranged in 11! Ways "different" But, this leads to double counting. If the 4 " S " are permuted, then nothing is changed. Similarly, for the 4 " I "s and 2 " P "s. List - Each configuration of letters counted

list	

(2Definition: Let Z be a set with n objects. If $r \geq 2$ is an integer, gener.
ailie then, an ordered partition of Z into r subsets is a list subsets of Z whose union is Z; i.e., combination
($\{1,2\},\{3,4\},\{5,6\}$)
$=(\{2,2\},\{4,3\},\{6,5\})$

- $Z_{i} \cap Z_{j}=\emptyset$, if $i \neq j$, and
- $Z_{1} \cup \cdots \cup Z_{r}=Z$.

$>$ Let $n_{i}=\# Z_{i}$, the number of elements in Z_{i}. Then, $n_{1}, \ldots, n_{r} \geq 0$, and $n_{1}+\cdots+n_{r}=n$.
math, sci books example $\left(L N_{D} .2-5\right)$].c.f.

- Example: In the "MISSISSIPPI" example, 11 positions,

$$
n_{1}=4 \text { "I's }, \quad \underline{n_{2}}=1 \text { "M"s }, \quad \underline{n_{3}}=2 \text { "P"s }, \quad \underline{n_{4}}=4 \text { "S"s }
$$

- In a bridge game, a deck of 52 cards is partitioned into four hands of size 13 each, one for each of South, West, North, and (

if $r=2 \Rightarrow$ combination

The Partitions Formula. Let $n, r \geq 1$, and $n_{1}, \ldots, n_{r} \geq 0$ be integers combination s.t. $n_{1}+\cdots+n_{r}=n$. If Z is a set of n objects, then there are

list) (called multinomial coefficients) ways to partition Z into r subsets (Z_{1}, \ldots, Z_{r}) for which $\# Z_{i}=\underline{n}_{i}$ for $i=1, \ldots, r$.

Champion $\bullet n$ players divided into $n / 2$ pairs

- losers of each pair eliminated; winner go next round - the process repeated until a single player remains Q: How many possible outcomes for the $1^{\text {st }}$ round? $\begin{gathered}\text { (1) \# of different pairing } \\ \text { (order matters) }\end{gathered} \frac{n!}{2!\cdots 2!}=\frac{n!}{2^{n / 2}}{ }^{(2)} \frac{n!}{2^{n / 2}} \times \frac{1 \times(n / 2)!}{(\underbrace{2 \times \cdots 2}_{n / 2})}=\frac{n!}{(n / 2)!}$ Q: How many possible outcomes of the tournament?

$$
\text { Ist round } \frac{n!}{(n / 2)!} \times \frac{(n / 2)!}{(n / 4)!} \times \cdots \times \frac{3!}{1!}=n!\quad \sqrt{2 n d} \text { round }
$$

Alternative argument:

- The Number of Integer Solutions
(-If n and r are positive integers, how many integer solutions are there to the equations: $n_{1}, \ldots, n_{r} \geq 0$ and $n_{1}+\cdots+n_{r}=n$?
such arrangements, since an arrangement is determined by the a places occupied by $\underline{\text { A. }}$
$>$ Example: Suppose $n=8$ and $r=4$. Represent solutions by " o " and "+" by " ".
- For example, ooo $\mid o o \| o o o m e a n s n_{1}=3, n_{2}=2, n_{3}=0, n_{4}=3$.
- Note: only $\underline{r-1}(=3)$ " \mid "s are needed.

$>$ A general formula. For positive integers n and r, there are

integer solutions to $\underline{n_{1}, \ldots, n_{r} \geq 0}$ and $\underline{n_{1}+\cdots+n_{r}=n}$.
$>$ If $n \geq r$, then there are

$$
\binom{n-1}{r-1}
$$

$$
\begin{aligned}
& n_{i}^{\prime}=n_{i}-1 \\
& n_{i}^{\prime} \geqslant 0 \\
& n_{1}^{\prime}+n_{2}^{\prime}+\cdots+n_{r}^{\prime}=n_{1}+\cdots+n_{r}-r=n-r \\
& \Rightarrow n^{\prime}=n-r
\end{aligned}
$$

solutions with $n_{i} \geq 1$, for $i=1, \ldots, r$.
Summary

allow repetition
no repetition

order matters order matters

no repetition
-order matter between List Permutation Combination $\xrightarrow{\text { order matter within }}$
$n_{1 \times \cdots} \times n_{r} \quad \frac{(n)_{5}}{}=\frac{n!}{(n-r)!}$

$$
\binom{n}{r}=\frac{r u}{r!(n-r)!}
$$ Integer n

