
NTHU MATH 2810 Midterm Examination Solution Oct 28, 2025

(A1, B1) (24pts)

Exam A.
(a) True (b) False (c) False (d) True
(e) True (f) False (g) False (h) True

Exam B.
(a) False (b) True (c) True (d) False
(e) True (f) False (g) True (h) False

(A2, B3) (13pts)

(a) (3pts) X ∼ binomial(n, p), and given X = x, Y |X = x ∼ binomial(x, p).

(b) (6pts) Because the events {X = x}’s, x = 0, 1, . . . , n, form a partition of the sample space
and X ≥ Y (the number of heads in the second round cannot be larger than the number of
heads in the first round), by the law of total probability,

P (Y = y) =
n∑

x=y

P (X = x)P (Y = y|X = x) (because for x < y, P (Y = y|X = x) = 0)

=
n∑

x=y

(
n

x

)
px(1− p)n−x

(
x

y

)
py(1− p)x−y

=
n∑

x=y

n!

x!(n− x)!
× x!

y!(x− y)!
× px+y(1− p)n−y

=
n!

y!(n− y)!
(1− p)n−y

n∑
x=y

(n− y)!

(n− x)!(x− y)!
px+y

=
n!

y!(n− y)!
(1− p)n−y

n−y∑
z=0

(n− y)!

(n− y − z)!z!
p2y+z (let z = x− y ⇒ x = y + z)

=

(
n

y

)
p2y(1− p)n−y

n−y∑
z=0

(
n− y

z

)
pz · 1(n−y)−z

=

(
n

y

)
p2y(1− p)n−y(1 + p)n−y (by binomial theorem)

=

(
n

y

)
(p2)y(1− p2)n−y

(c) (4pts) By Bayes’ rule, for z = 0, 1, . . . , n− y,

P (X − y = z|Y = y) = P (X = y + z|Y = y) =
P (X = y + z)P (Y = y|X = y + z)

P (Y = y)

=

(
n

y+z

)
py+z(1− p)n−y−z ×

(
y+z
y

)
py(1− p)z(

n
y

)
(p2)y(1− p2)n−y

=
n!

(y + z)!(n− y − z)!
× (y + z)!

y!z!
× y!(n− y)!

n!
× pz × (1− p)n−y

(1 + p)n−y(1− p)n−y

=
(n− y)!

z!(n− y − z)!
× pz

(1 + p)z
× 1

(1 + p)n−y−z

=

(
n− y

z

)(
p

1 + p

)z (
1− p

1 + p

)(n−y)−z
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(A3, B2) (12pts)

Exam A.

(a) (4.5pts) The possible values of X are
{1, 2, 4} with the pmf fX being:
fX(1) = P (X = 1) = P ({ω1}) = 1/4,
fX(2) = P (X = 2) = P ({ω2, ω3}) = 1/2,
fX(4) = P (X = 4) = P ({ω4}) = 1/4,

and zero otherwise. The possible values of
Y are also {1, 2, 4} with the pmf fY being:
fY (1) = P (Y = 1) = P ({ω2}) = 1/4,
fY (2) = P (Y = 2) = P ({ω1, ω4}) = 1/2,
fY (4) = P (Y = 4) = P ({ω3}) = 1/4,

and zero otherwise. Hence X and Y have
the same pmf, i.e., they have the same dis-
tribution.

(b) (2pts) No. They are different maps. For
each outcome ωi ∈ Ω,
X(ω1) = 1 ̸= 2 = Y (ω1),
X(ω2) = 2 ̸= 1 = Y (ω2),
X(ω3) = 2 ̸= 4 = Y (ω3),
X(ω4) = 4 ̸= 2 = Y (ω4).

Thus P (X = Y ) < 1; they are not equal,
despite having the same distribution.

(c) (3.5pts) For ω1, ω2, ω3, ω4 ∈ Ω, X(ωi) +
Y (ωi) = 3, 3, 6, 6, respectively. Therefore,
X + Y takes values 3 (at ω1, ω2) and 6 (at
ω3, ω4) with the pmf fX+Y being:

fX+Y (3) = P (X + Y = 3)

= P ({ω1, ω2}) = 1/2,

fX+Y (6) = P (X + Y = 6)

= P ({ω3, ω4}) = 1/2,

and zero otherwise. The possible values of
3Z are also {3, 6} with the pmf f3Z being:

f3Z(3) = P (Z = 1)

= P ({ω1, ω2}) = 1/2,

f3Z(6) = P (Z = 2)

= P ({ω3, ω4}) = 1/2,

and zero otherwise. Hence X + Y and
3Z have the same pmf, i.e., they have the
same distribution.

Exam B.

(a) (4.5pts) The possible values of X are
{1, 2, 7} with the pmf fX being:
fX(1) = P (X = 1) = P ({ω3}) = 1/4,
fX(2) = P (X = 2) = P ({ω2, ω4}) = 1/2,
fX(7) = P (X = 7) = P ({ω1}) = 1/4,

and zero otherwise. The possible values of
Y are also {1, 2, 7} with the pmf fY being:
fY (1) = P (Y = 1) = P ({ω4}) = 1/4,
fY (2) = P (Y = 2) = P ({ω1, ω3}) = 1/2,
fY (7) = P (Y = 7) = P ({ω2}) = 1/4,

and zero otherwise. Hence X and Y have
the same pmf, i.e., they have the same dis-
tribution.

(b) (2pts) No. They are different maps. For
each outcome ωi ∈ Ω,
X(ω1) = 7 ̸= 2 = Y (ω1),
X(ω2) = 2 ̸= 7 = Y (ω2),
X(ω3) = 1 ̸= 2 = Y (ω3),
X(ω4) = 2 ̸= 1 = Y (ω4).

Thus P (X = Y ) < 1; they are not equal,
despite having the same distribution.

(c) (3.5pts) For ω1, ω2, ω3, ω4 ∈ Ω, X(ωi) +
Y (ωi) = 9, 9, 3, 3, respectively. Therefore,
X + Y takes values 9 (at ω1, ω2) and 3 (at
ω3, ω4) with the pmf fX+Y being:

fX+Y (3) = P (X + Y = 3)

= P ({ω3, ω4}) = 1/2,

fX+Y (9) = P (X + Y = 9)

= P ({ω1, ω2}) = 1/2,

and zero otherwise. The possible values of
3Z are also {3, 9} with the pmf f3Z being:

f3Z(3) = P (Z = 1)

= P ({ω3, ω4}) = 1/2,

f3Z(9) = P (Z = 3)

= P ({ω1, ω2}) = 1/2,

and zero otherwise. Hence X + Y and
3Z have the same pmf, i.e., they have the
same distribution.
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Exam A.

(d) (2pts) Yes. For ω1, ω2, ω3, ω4 ∈ Ω,
X(ω1) + Y (ω1) = 3 = 3× 1 = 3Z(ω1),
X(ω2) + Y (ω2) = 3 = 3× 1 = 3Z(ω2),
X(ω3) + Y (ω3) = 6 = 3× 2 = 3Z(ω3),
X(ω4) + Y (ω4) = 6 = 3× 2 = 3Z(ω4),

so X + Y = 3Z on every outcome. Hence
P (X + Y = 3Z) = 1.

Exam B.

(d) (2pts) Yes. For ω1, ω2, ω3, ω4 ∈ Ω,
X(ω1) + Y (ω1) = 9 = 3× 3 = 3Z(ω1),
X(ω2) + Y (ω2) = 9 = 3× 3 = 3Z(ω2),
X(ω3) + Y (ω3) = 3 = 3× 1 = 3Z(ω3),
X(ω4) + Y (ω4) = 3 = 3× 1 = 3Z(ω4),

so X + Y = 3Z on every outcome. Hence
P (X + Y = 3Z) = 1.

(A4, B5) (13pts)
Define, for each k ≥ 1,

Xk = 1{the k-th toss is a head} =

{
1, if the k-th toss is head,

0, if the k-th toss is tail.

Then Xk ∼ Bernoulli(p), for k ≥ 1, and

Nk =
k∑

i=1

Xi, k ≥ 1,

is distributed as binomial(k, p).

(a) (4pts) For k = 1, N1 is even iff the first toss is a tail, hence

q1 = P (N1 = 0) = P (X1 = 0) = P (1st toss is tail) = 1− p.

For k ≥ 2, write Nk = Nk−1 +Xk with Xk ∼ Bernoulli(p) independent of Nk−1. Then Nk

is even iff either {Nk−1 is odd and Xk = 1} or {Nk−1 is even and Xk = 0}. Therefore, by
the law of total probability and independence,

qk = P (Nk is even)

= P (Nk−1 is odd)× P (Xk = 1|Nk−1 is odd)

+P (Nk−1 is even)× P (Xk = 0|Nk−1 is even)

= P (Nk−1 is odd)× P (Xk = 1)

+P (Nk−1 is even)× P (Xk = 0)

= P (Nk−1 is odd)× p+ P (Nk−1 is even)× (1− p)

= p(1− qk−1) + (1− p)qk−1.

Equivalently,
qk = (1− 2p) qk−1 + p, k ≥ 2.

(b) (4pts) Let r = 1− 2p. From part (a),

qk = r qk−1 + p

= r
(
r qk−2 + p

)
+ p = r2qk−2 + pr + p

= r2
(
r qk−3 + p

)
+ pr + p = r3qk−3 + pr2 + pr + p

= · · ·

= rk−1qk−(k−1) + p(r0 + r1 + r2 + · · ·+ rk−2) = rk−1q1 + p
k−2∑
j=0

r j

= rk−1(1− p) + p · 1− rk−1

1− r
.
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Since r = 1− 2p, for k = 1, 2, . . .,

qk = (1−2p)k−1(1−p)+p · 1− (1− 2p)k−1

2p
=

1

2
+
1

2
(1−2p)×(1− 2p)k−1 =

1 + (1− 2p)k

2
.

(c) (5pts) Because Nk ∼ binomial(k, p), by the definition of pmf,

qk = P (Nk is even) =

⌊k/2⌋∑
i=0

P (Nk = 2i) =

⌊k/2⌋∑
i=0

(
k

2i

)
p 2i(1− p) k−2i.

Recall the identity. Applying it with l = k, a = p, b = 1− p, we have

qk =

⌊k/2⌋∑
i=0

(
k

2i

)
p 2i(1− p) k−2i

=
1

2
· {[(1− p) + p]k + [(1− p)− p]k}

=
1 + (1− 2p)k

2
,

which matches the answer in part (b).

(A5, B4) (13pts)

(a) (4pts) Exactly, X ∼ binomial(n, p) with n = 107 and p = 10−7. Since n is large and p is
small, we can use the Poisson approximation to the binomial:

X
d
≈ Poisson(λ), λ = np = 1.

Thus for k = 0, 1, 2, . . . ,

P (X = k) ≈ e−1

k!
.

This is faster and easier for computing probabilities.

(b) (4pts) “Finding one such person” means X is at least one, i.e., the event {X ≥ 1}. “The
police inspector finds one such person and there is at least one other” means X is at least
two, i.e., the event {X ≥ 2}. Hence we are to compute P (X ≥ 2|X ≥ 1). Under the
Poisson(1) model,

P (X ≥ 2|X ≥ 1) =
P (X ≥ 2)

P (X ≥ 1)
=

1− P (X = 0)− P (X = 1)

1− P (X = 0)

≈ 1− e−1 − e−1

1− e−1
=

1− 2e−1

1− e−1
.

(c) (5pts) “Reasonably confident that n is all” is taken to mean

P (X ≥ n+ 1 | X ≥ n) ≤ ρ,

for a small prescribed ρ ∈ (0, 1). Under the Poisson(1) approximation,

P (X ≥ n) ≈
∞∑
k=n

e−1 1

k!
, P (X ≥ n+ 1) ≈

∞∑
k=n+1

e−1 1

k!
.
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Therefore, from

P (X ≥ n+ 1|X ≥ n) =
P (X ≥ n+ 1)

P (X ≥ n)
=

∑∞
k=n+1 P (X = k)∑∞
k=n P (X = k)

≈
e−1
∑∞

k=n+1
1
k!

e−1
∑∞

k=n
1
k!

=

∑∞
k=n+1

1
k!∑∞

k=n
1
k!

≤ ρ,

the desired n is (approximately, by the Poisson approximation) the smallest integer satis-
fying

∞∑
k=n+1

1

k!
≤ ρ

∞∑
k=n

1

k!
.

(A6, B7) (13pts)

(a) (4pts) For n = 0, 1, . . . , r, the event {Nb,r > n} means: the first n draws are all red. In
drawing without replacement, the outcomes are not independent: each draw changes the
composition of the urn, so later draws depend on the earlier ones. Hence probabilities
should be computed via the multiplication law:

P (Nb,r > n) = P ({first n draws are all red})
= P ({1st draw is red})× P ({2nd draw is red} | {1st draw is red})× · · ·

×P (nth draw is red | {first n− 1 draws are red})

=
r

b+ r
× r − 1

b+ r − 1
× · · · × r − n+ 1

b+ r − n+ 1(
or =

(
r
n

)(
b
0

)(
b+r
n

) by hypergeometric distribution

)

=
r! (b+ r − n)!

(b+ r)! (r − n)!
.

If n ≥ r + 1, it is impossible to obtain more than r reds before a blue appears, since the
urn contains only r red balls; hence P (Nb,r > n) = 0 for n = r + 1, r + 2, . . ..

(b) (4pts) Applying the homework-problem-identity to Nb,r and using part (a), we have

E(Nb,r) =
r∑

n=0

r! (b+ r − n)!

(b+ r)! (r − n)!

=
r∑

n=0

r! b!

(b+ r)!
· (b+ r − n)!

b! (r − n)!
=

1(
b+r
b

) r∑
n=0

(
b+ r − n

b

)
.

By the given hint,

r∑
n=0

(
b+ r − n

b

)
=

(
b+ r

b

)
+

(
b+ r − 1

b

)
+ · · ·+

(
b

b

)
=

(
b+ r + 1

b+ 1

)
.

Therefore,

mb,r ≡ E(Nb,r) =

(
b+r+1
b+1

)(
b+r
b

) =
(b+ r + 1)!

(b+ 1)! r!
· b! r!

(b+ r)!
=

b+ r + 1

b+ 1
.
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(c) (5pts) Notice that Nb,r takes values in {1, 2, . . . , r + 1}. By the definition of expectation,

mb,r = E(Nb,r) =
r+1∑
n=1

nP (Nb,r = n)

= 1 · P (Nb,r = 1) +
r+1∑
n=2

n · P (Nb,r = n)

= P ({first ball is blue})

+
r+1∑
n=2

n · P ({first ball is red})P (Nb,r−1 = n− 1) (by Hints (i) and (ii))

=
b

b+ r
+

r

b+ r
·

r∑
n′=1

(n′ + 1)P (Nb,r−1 = n′) (letting n′ = n− 1)

=
b

b+ r
+

r

b+ r
·

[
r∑

n′=1

n′P (Nb,r−1 = n′) +
r∑

n′=1

P (Nb,r−1 = n′)

]

=
b

b+ r
+

r

b+ r
· (mb,r−1 + 1). (since Nb,r−1 can take the values 1, 2, . . . , r)

This recursion matches the closed form in (b) and can be verified by induction.

(A7, B6) (12pts)

(a) (3pts) Here X + 1 is the total number of independent Bernoulli(p = 1/2) trials (i.e., births)
until the first success (i.e., the first son is born). Thus

X + 1 ∼ geometric(p = 1/2) (or equivalently NB(r=1, p=1/2)).

(b) (2pts) By linearity of expectation, E(X) + 1 = E(X + 1). From (a) and “some useful
formula,” E(X + 1) = 1/p = 1/(1/2) = 2. Therefore, E(X) = 2− 1 = 1.

(c) (1.5pts) Because the family stops having children at the first boy, the number of boys in such
a family is always one. So, the pmf of Y is fY (1) = P (Y = 1) = 1, and zero otherwise.
Therefore E(Y ) = 1× P (Y = 1) = 1× 1 = 1.

(d) (2.5pts) Under this policy, we have E(X) = E(Y ) = 1, so on average the numbers of girls
and boys in the next generation are equal; there is no expected “surplus of women.” Hence
the argument in the verse is not reasonable.

(e) (3pts) Since adding a constant does not change variance, V ar(X) = V ar(X + 1). From
(a) and “some useful formula,” V ar(X + 1) = (1 − p)/p2 = (1/2)/(1/4) = 2. Therefore,
V ar(X) = 2. Since Y ≡ 1 is a degenerate random variable, V ar(Y ) = 0.
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