
NTHU MATH 2810 Final Examination Solution Dec 16, 2025

(A1, B1) (13pts)

Exam-A.

(a) (4pts) hypergeometric(n, N , R) with n = 6,
N = 53, R = 6.

(b) (4pts) gamma(α, λ) with α = 1000 and λ =
5. (An alternative answer that is accept-
able is exponential(λ) with λ = 1

1000/5
=

1
200

.)

(c) (5pts) multinomial(n, m, p1, . . . , pm) with
n = 110, m = 3, p1 = 60

60+30+10
= 0.6,

p2 =
30

60+30+10
= 0.3, p3 =

10
60+30+10

= 0.1.

Exam-B.

(b) (4pts) hypergeometric(n, N , R) with n =
8, N = 60, R = 8.

(c) (4pts) gamma(α, λ) with α = 600 and λ =
4. (An alternative answer that is accept-
able is exponential(λ) with λ = 1

600/4
=

1
150

.)

(a) (5pts) multinomial(n, m, p1, . . . , pm) with
n = 90, m = 3, p1 = 50

50+35+15
= 0.5, p2 =

35
50+35+15

= 0.35, p3 =
15

50+35+15
= 0.15.

(A2, B2) (26pts)

(a) (8pts)

Exam-A. LetX be the number of times that
the sum of two fair dice equals 7 (= 1 + 6 =
2+5 = 3+4 = 4+3 = 5+2 = 6+1) in 500
independent rolls. Then

X ∼ binomial

(
500,

6

36
=

1

6

)
.

Hence

µ = E[X] = 500 · 1
6
=

250

3
,

σ2 = Var(X) = 500·1
6
·5
6
=

2500

36
, ⇒ σ =

25

3
.

Using the normal approximation with conti-
nuity correction,

P (X ≥ 90) = P (X ≥ 89.5)

= P

(
X − µ

σ
≥ 89.5− µ

σ

)
≈ P

(
Z ≥ 89.5− µ

σ

)
,

where Z ∼ N(0, 1). Compute the z-value:

89.5− µ

σ
=

89.5− 250
3

25
3

=
37

50
= 0.74.

Therefore,

P (X ≥ 90) ≈ 1− Φ(0.74) = Φ(−0.74).

Exam-B. LetX be the number of times that
the sum of two fair dice equals 5 (= 1 + 4 =
2 + 3 = 3 + 2 = 4 + 1) in 500 independent
rolls. Then

X ∼ binomial

(
800,

4

36
=

1

9

)
.

Hence

µ = E[X] = 800 · 1
9
=

800

9
,

σ2 = Var(X) = 800·1
9
·8
9
=

6400

81
, ⇒ σ =

80

9
.

Using the normal approximation with conti-
nuity correction,

P (X ≥ 80) = P (X ≥ 79.5)

= P

(
X − µ

σ
≥ 79.5− µ

σ

)
≈ P

(
Z ≥ 79.5− µ

σ

)
,

where Z ∼ N(0, 1). Compute the z-value:

79.5− µ

σ
=

79.5− 800
9

80
9

= −507

480
≈ −1.05625.

Therefore,

P (X ≥ 80) ≈ 1− Φ(−1.06) = Φ(1.06).
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(b) (6pts)

Exam-A. LetX be the location of the point.
When X < L−X (⇔ X < L/2),

X/(L−X) < 1/4 ⇔ X < L/5,

and when X > L−X (⇔ X > L/2),

(L−X)/X < 1/4 ⇔ X > 4L/5.

The question asked us to find the probabil-
ity of the event {X < L/5} ∪ {X > 4L/5}.
Because X ∼ uniform(0, L),

P ({X < L/5} ∪ {X > 4L/5})
= P ({X < L/5}) + P ({X > 4L/5})

=

∫ L/5

0

1

L
dx+

∫ L

4L/5

1

L
dx = 2/5.

Exam-B. LetX be the location of the point.
When X < L−X (⇔ X < L/2),

(L−X)/X > 5 ⇔ X < L/6,

and when X > L−X (⇔ X > L/2),

X/(L−X) > 5 ⇔ X > 5L/6.

The question asked us to find the probabil-
ity of the event {X < L/6} ∪ {X > 5L/6}.
Because X ∼ uniform(0, L),

P ({X < L/6} ∪ {X > 5L/6})
= P ({X < L/6}) + P ({X > 5L/6})

=

∫ L/6

0

1

L
dx+

∫ L

5L/6

1

L
dx = 2/6.

(c) (12pts)
Let f and F be the pdf and cdf of the beta(α, α) distribution, respectively. Notice that
because f is symmetric about 1/2, for the cdf F , we have

F (x) + F (1− x) = 1 ⇒ F (1− x) = 1− F (x), for 0 < x < 1.

By definition,
A = {Θ1, . . . ,Θn ∈ (−|Θ0|, |Θ0|)}.

Because
Θi = π(2Ui − 1), i = 0, 1, . . . , n,

we have
Θi ∈ (−|Θ0|, |Θ0|) ⇐⇒ |Ui − 1

2
| < |U0 − 1

2
|.

Hence
A = {|U1 − 1

2
| < |U0 − 1

2
|, . . . , |Un − 1

2
| < |U0 − 1

2
|}.

Note that

|Ui − 1
2
| < |U0 − 1

2
| ⇐⇒ Ui ∈

(
1
2
− |U0 − 1

2
|, 1

2
+ |U0 − 1

2
|).

Fix U0 = u ∈ (0, 1). Because U0, U1, . . . , Un are i.i.d. from beta(α, α), we have

P
(
|Ui − 1

2
| < |U0 − 1

2
| | U0 = u) = P

(
|Ui − 1

2
| < |u− 1

2
| | U0 = u)

= P
(
|Ui − 1

2
| < |u− 1

2
|) = P (1

2
− |u− 1

2
| < Ui <

1
2
+ |u− 1

2
|)

= F
(
1
2
+ |u− 1

2
|
)
− F

(
1
2
− |u− 1

2
|
)

=

{
F (1− u)− F (u) = [1− F (u)]− F (u) = 1− 2F (u), 0 < u ≤ 1

2
,

F (u)− F (1− u) = F (u)− [1− F (u)] = 2F (u)− 1, 1
2
< u < 1.
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(by the symmetric property of beta(α, α), i.e., F (u) + F (1 − u) = 1, for 0 < u < 1)
distribution) and

P (A | U0 = u) = P (|U1 − 1
2
| < |U0 − 1

2
|, . . . , |Un − 1

2
| < |U0 − 1

2
| | U0 = u)

=
n∏

i=1

P
(
|Ui − 1

2
| < |U0 − 1

2
| | U0 = u) =

{
[1− 2F (u)]n, 0 < u ≤ 1

2
,

[2F (u)− 1]n, 1
2
< u < 1.

By the law of total probability,

P (A) =

∫ 1

0

P (A | U0 = u) f(u) du

=

∫ 1/2

0

[1− 2F (u)]nf(u) du+

∫ 1

1/2

[2F (u)− 1]nf(u) du

=

∫ 1/2

0

(1− 2y)n dy +

∫ 1

1/2

(2y − 1)n dy (letting y = F (u) ⇒ dy = f(u)du)

=
−1

2(n+ 1)
(1− 2y)n+1

∣∣∣∣1/2
0

+
1

2(n+ 1)
(2y − 1)n+1

∣∣∣∣1
1/2

=
1

2(n+ 1)
+

1

2(n+ 1)
=

1

n+ 1
.

An intuitive interpretation of P (A) = 1
n+1

.
Define

Wi = |Θi| ∈ (0, π), i = 0, 1, . . . , n.

Since Θ0,Θ1, . . . ,Θn are i.i.d. and have a continuous distribution, the random variables
W0,W1, . . . ,Wn are also i.i.d. and continuous. For each i = 0, 1, . . . , n, define the event

Bi = {Wi = max(W0,W1, . . . ,Wn)}.

Notice that

B0 = {W0 > max(W1, . . . ,Wn)} = {|Θ0| > |Θi| for all i = 1, . . . , n} = A.

Moreover, because the Wi’s are continuous, ties occur with probability 0, so B0, B1, . . . , Bn

form a partition (up to an event with probability 0). Hence

n∑
i=0

P (Bi) = 1.

By symmetry (exchangeability) of the i.i.d. sample (W0,W1, . . . ,Wn), each index is equally
likely to attain the unique maximum, so the probabilities are equal:

P (B0) = P (B1) = · · · = P (Bn).

Therefore,

1 =
n∑

i=0

P (Bi) = (n+ 1)P (B0) =⇒ P (A) = P (B0) =
1

n+ 1
.
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In fact, this intuitive interpretation shows that the result is distribution-free: the specific
beta(α, α) assumption is not essential. As long as Θ0,Θ1, . . . ,Θn are i.i.d. from any con-
tinuous distribution on (−π, π), the variables Wi = |Θi| are i.i.d. and continuous as well, so
the maximum among W0,W1, . . . ,Wn is attained at a unique index with probability 1. By
exchangeability, each index is equally likely to be the maximizer, and therefore

P (A) =
1

n+ 1

still holds even when the distribution of Θi is not beta(α, α).

(A3, B4) (15pts)

(a) (2pts) The pdf of the Weibull(α, β) distribution is

fX(x) =
d

dx
FX(x) =

β

αβ
xβ−1e−(

x
α)

β

for x ≥ 0, and f(x) = 0, for x < 0.

(b) (4pts) Notice that if X1, . . . , Xn are i.i.d. from a continuous distribution with cdf F , then
F (X1), . . . , F (Xn) are i.i.d. ∼ uniform(0, 1). For the case of Weibull(α, β), let Ui = F (Xi) =

1− e−(
Xi
α )

β

, for i = 1, . . . , n, then

Xi = F−1(Ui) = α [− log(1− Ui)]
1
β , i = 1, . . . , n,

are i.i.d. ∼ Weibull(α, β) distribution.

(c) (5pts) The transformation y = (x/α)β is strictly increasing for x ≥ 0. Its inverse is

x = α y1/β, y ≥ 0,

and
dx

dy
= (α/β) y(1/β)−1.

Hence, from part (a), by the change-of-variables formula,

fY (y) = fX(αy
1/β)

∣∣∣∣dxdy
∣∣∣∣

=

[
β

αβ

(
αy1/β

)β−1
exp

(
−
(
αy1/β

α

)β
)][

α

β
y(1/β)−1

]
=

[
β

α
y(β−1)/β e−y

] [
α

β
y(1−β)/β

]
= e−y, y ≥ 0.

Therefore,
fY (y) = e−y, y ≥ 0 ⇒ Yi ∼ exponential(1).

An alternative approach is to derive the cdf of Y directly from the cdf of X given in the
problem. For y ≥ 0,

FY (y) = P (Y ≤ y) = P

((
X

α

)β

≤ y

)
= P

(
X ≤ αy1/β

)
= FX(αy

1/β) = 1− exp

(
−
(
αy1/β

α

)β
)

= 1− e−y.
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Thus,
FY (y) = 1− e−y, y ≥ 0 ⇒ Yi ∼ exponential(1).

(Indeed, differentiating FY gives fY (y) = e−y, consistent with the previous result.)

Since X1, . . . , Xn are i.i.d. and each Yi = (Xi/α)
β is a transformation of Xi only, Y1, . . . , Yn

are i.i.d. exponential(1). A standard result states that the sum of n i.i.d. exponential(1)
random variables has a gamma(n, 1) distribution. Therefore,

Y1 + · · ·+ Yn ∼ gamma(n, 1).

(d) (4pts) Let X(1) = min{X1, . . . , Xn}. For x > 0,

P (X(1) > x) = P (X1 > x, · · · , Xn > x) = [P (X1 > x)]n =
[
e−(

x
α)

β]n
= e−n( x

α)
β

.

Therefore, the cdf of X(1) is

FX(1)
(x) =

{
1− e−n( x

α)
β

, for x ≥ 0,
0, for x < 0,

which shows that X(1) ∼ Weibull(αn− 1
β , β).

(A4, B3) (16pts)

(a) (2pts) Because X1 and X2 are independent, their joint pdf is

fX1,X2(x1, x2) = fX1(x1)fX2(x2) =
1

2π
e−(x2

1+x2
2)/2,

where −∞ < x1, x2 < ∞.

(b) (6pts) The inverse function of the transformation is:

X1 = g−1
1 (W1,W2) =

√
3

4
W1 +

1

4
W2 and X2 = g−1

2 (W1,W2) =
1

4
W1 −

√
3

4
W2.

Because
∂g−1

1

∂W1

=

√
3

4
,

∂g−1
1

∂W2

=
1

4
,

∂g−1
2

∂W1

=
1

4
,

∂g−1
2

∂W1

=
−
√
3

4
,

J =

∣∣∣∣∣
√
3
4

1
4

1
4

−
√
3
4

∣∣∣∣∣ = −1

4
,

and X2
1 +X2

2 = 1
4
(W 2

1 +W 2
2 ), the joint pdf of (W1,W2) is:

fW1,W2(w1, w2) = fX1,X2(g
−1
1 (w1, w2), g

−1
2 (w1, w2))× |J |

=
1

2π
e−

1
8
(w2

1+w2
2) ×

∣∣∣∣−1

4

∣∣∣∣ = 1

8π
e−

1
8
(w2

1+w2
2)

=

(
1

2
√
2π

e−
w2
1

2×4

)
×
(

1

2
√
2π

e−
w2
2

2×4

)
,

where −∞ < w1, w2 < ∞. (Note that the joint pdf is a product of two normal pdfs.)

(c) (2pts) Because the joint pdf of (W1,W2) is proportional to a product of two terms, one
depending only on w1 and the other depending only on w2, W1 and W2 are independent.
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(d) (6pts) We can get the cdf of Y , FY (y), for y ≥ 0 by

FY (y) = P (Y ≤ y) = P (X2
1 ≤ y) = P (−√

y ≤ X1 ≤
√
y) = Φ(

√
y)− Φ(−√

y),

where Φ is the cdf of normal(0, 1). Then, for y ≥ 0, the pdf of Y is

fY (y) =
d

dy
FY (y) =

d

dy
Φ(

√
y)− d

dy
Φ(−√

y) = ϕ(
√
y)

(
1

2
√
y

)
− ϕ(−√

y)

(
− 1

2
√
y

)
=

1√
2π

e−y/2

(
1

2
√
y

)
− 1√

2π
e−y/2

(
− 1

2
√
y

)
=

1√
2πy

e−y/2,

where ϕ is the pdf of normal(0, 1), and fY (y) = 0 for y < 0.

(A5, B6) (14pts)

(a) (2pts) Let U1 and U2 be i.i.d. ∼ uniform(0, 1), then X = min(U1, U2) and Y = max(U1, U2).
Therefore, for 0 < x < y < 1, the joint pdf of X and Y is

fX,Y (x, y) = (2!)fU1(x)fU2(y) = 2.

(b) (2pts) The marginal pdf of X is

fX(x) =

∫ 1

x

fX,Y (x, y) dy =

∫ 1

x

2 dy = 2(1− x),

for 0 < x < 1, and fX(x) = 0, otherwise. Similarly, the marginal pdf of Y is

fY (y) =

∫ y

0

fX,Y (x, y) dx =

∫ y

0

2 dx = 2y,

for 0 < y < 1, and fY (y) = 0, otherwise.

(c) (2pts) For a fixed x ∈ (0, 1), the conditional pdf of Y is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

1

1− x
,

for x < y < 1 and fY |X(y|x) = 0, otherwise.

(d) (2pts)

E[Y |X = x] =

∫ 1

x

y fY |X(y|x) dy =

∫ 1

x

y

1− x
dy =

1

1− x

(
1

2
y2
∣∣∣∣1
x

)
=

1 + x

2
,

for 0 < x < 1. Therefore, E[Y |X] = 1+X
2

.

(e) (3pts)

E(XY ) = EX [EY |X(XY |X)] = EX

{
X[EY |X(Y |X)]

}
= EX

(
X × 1 +X

2

)
=

∫ ∞

−∞
x× 1 + x

2
× fX(x) dx =

∫ 1

0

x× 1 + x

2
× 2(1− x) dx

=

∫ 1

0

(x− x3) dx =
1

4
.
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(f) (3pts) Because
V ar(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2,

and

E[Y 2|X = x] =

∫ 1

x

y2 fY |X(y|x) dy =

∫ 1

x

y2

1− x
dy =

1

1− x

(
1

3
y3
∣∣∣∣1
x

)
=

1 + x+ x2

3
,

we get

V ar(Y |X = x) =
1 + x+ x2

3
−
(
1 + x

2

)2

=
x2 − 2x+ 1

12
=

(x− 1)2

12
,

for 0 < x < 1.

(A6, B5) (16pts)

(a) (3pts) X ∼ geometric(p1) (or negative binomial(1, p1)) and E(X) = 1/p1.

(b) (2pts) Since Y counts how many types among {2, . . . , r} appear before the first type 1 catch,

Y =
r∑

i=2

Ii

(however, note that the distribution of Y is not binomial because Ii’s are not independent,
see the solution to (d)).

(c) (3pts) Because Y =
∑r

i=2 Ii, by the fundamental formula about expectation,

E(Y ) =
r∑

i=2

E(Ii).

Since ai = P (Ii = 1), we have Ii ∼ Bernoulli(ai). Therefore,

E(Ii) = P (Ii = 1) = ai,

and

E(Y ) =
r∑

i=2

ai.

(d) (2pts) For 2 ≤ i < j ≤ r, the provided value

bi,j = P (Ii = 1, Ij = 1).

Notice that Ii and Ij are independent if and only if

bi,j = P (Ii = 1, Ij = 1) = P (Ii = 1)P (Ij = 1) = aiaj.

But using the given formula in (c) and (d), one finds bi,j ̸= aiaj in general, so Ii and Ij are
not independent (except possibly for special parameter choices, e.g., p1 = 0).

(e) (6pts) To compute the variance of Y , we can use the formula:

V ar(Y ) = V ar

(
r∑

i=2

Ii

)
=

r∑
i=2

V ar(Ii) + 2
∑

1≤i<j≤k

Cov(Ii, Ij).
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Because Ii ∼ Bernoulli(ai),
V ar(Ii) = ai(1− ai).

From (c), for i < j, we have

Cov(Ii, Ij) = E(IiIj)− E(Ii)E(Ij) = P (Ii = 1, Ij = 1)− E(Ii)E(Ij) = bi,j − aiaj.

Thus, the answer is

V ar(Y ) =
r∑

i=2

ai(1− ai) + 2
∑

2≤i<j≤r

(
bi,j − aiaj

)
.
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