
NTHU MATH 2810 Final Examination Solution Dec 17, 2024

(A1, B1) (13pts)

Exam-A.

(a) (5pts) X1 ∼ binomial(50, p), where p =
P (Chosen|Male) is an unknown parame-
ter, and X2 = 50−X1. Y1 ∼ binomial(60,
q), where q = P (Chosen|Female) is an un-
known parameter, and Y2 = 60− Y1.
Another acceptable answer with the same
meaning is: (X1, X2) ∼ multinomial(50, 2,
p, 1−p) and (Y1, Y2) ∼ multinomial(60, 2,
q, 1− q).
The two sets of random variables (X1, X2)
and (Y1, Y2) are independent. (Note: If
“independence” is not stated, your answer
only addresses the marginal distributions
of (X1, X2) and (Y1, Y2). Since marginal
distributions alone are not sufficient to
uniquely determine the joint distribution
of X, some point will be deducted.)

(b) (4pts) X ∼ multinomial(n, m, p1, . . . , pm)
with n = 12, m = 3, and p1 = (10 −
9)/(17−9) = 1/8, p2 = (12−10)/(17−9) =
2/8, p3 = (17− 12)/(17− 9) = 5/8.

(c) (4pts) Let p be the probability of landing
heads. For i = 1, . . . , n, let Ui = 1 if
the ith flip is head and 0 if tail. The
flea’s position after n flips is given by
t +

∑n
i=1(2Ui − 1) = t + 2(

∑n
i=1 Ui) − n.

Because
∑n

i=1 Ui ∼ binomial(n, p), by the
normal approximation to the binomial (a
special case of central limit theorem), the
distribution of

∑n
i=1 Ui can be approxi-

mated by normal(np, np(1−p)) for large n.
Thus, X ∼ normal(t+2np−n, 4np(1−p)).
For p = 1/4 and t = 3, this simplifies to
normal(3− n/2, 3n/4).

Exam-B.

(b) (5pts) X1 ∼ binomial(90, p), where p =
P (Chosen|Male) is an unknown parame-
ter, and X2 = 90−X1. Y1 ∼ binomial(80,
q), where q = P (Chosen|Female) is an un-
known parameter, and Y2 = 80− Y1.
Another acceptable answer with the same
meaning is: (X1, X2) ∼ multinomial(90, 2,
p, 1−p) and (Y1, Y2) ∼ multinomial(80, 2,
q, 1− q).
The two sets of random variables (X1, X2)
and (Y1, Y2) are independent. (Note: If
“independence” is not stated, your answer
only addresses the marginal distributions
of (X1, X2) and (Y1, Y2). Since marginal
distributions alone are not sufficient to
uniquely determine the joint distribution
of X, some point will be deducted.)

(c) (4pts) X ∼ multinomial(n, m, p1, . . . , pm)
with n = 15, m = 3, and p1 = (12 −
9)/(17−9) = 3/8, p2 = (16−12)/(17−9) =
4/8, p3 = (17− 16)/(17− 9) = 1/8.

(a) (4pts) Let p be the probability of landing
heads. For i = 1, . . . , n, let Ui = 1 if
the ith flip is head and 0 if tail. The
flea’s position after n flips is given by
t +

∑n
i=1(2Ui − 1) = t + 2(

∑n
i=1 Ui) − n.

Because
∑n

i=1 Ui ∼ binomial(n, p), by the
normal approximation to the binomial (a
special case of central limit theorem), the
distribution of

∑n
i=1 Ui can be approxi-

mated by normal(np, np(1−p)) for large n.
Thus, X ∼ normal(t+2np−n, 4np(1−p)).
For p = 2/3 and t = 4, this simplifies to
normal(4 + n/3, 8n/9).
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(A2, B2) (24pts)
For most problems in the question, we have to first identify the joint pdf f(x, y) of the random
variables and the event (set) A of interest, and then compute the probability of A using

P (A) =

∫ ∫
A

f(x, y) dxdy.

(a) (6pts)

Exam-A. The joint pdf of (X, Y ) is

fX,Y (x, y) = fX(x)× fY (y) (∵ the

independent assumption)

=


1, for 0 < x < 1,

0 < y < 1,
0, otherwise.

Then,

P (min(X, Y ) = X | Y ≥ 3/4)

=
P ({min(X, Y ) = X} ∩ {Y ≥ 3/4})

P ({Y ≥ 3/4})

=
P ({X ≤ Y } ∩ {Y ≥ 3/4})

P ({Y ≥ 3/4})

=
P (A)

P ({Y ≥ 3/4)}
, where A = {(x, y) :

3/4 ≤ y < 1, 0 < x ≤ y}

=

∫ 1

3/4

∫ y

0
fX,Y (x, y) dxdy∫ 1

3/4
fY (y) dy

=

∫ 1

3/4

∫ y

0
1 dxdy∫ 1

3/4
1 dy

=

1
2
y2
∣∣1
3/4

y|13/4
=

7/32

1/4
=

7

8
.

Exam-B. The joint pdf of (X, Y ) is

fX,Y (x, y) = fX(x)× fY (y) (∵ the

independent assumption)

=


1, for 0 < x < 1,

0 < y < 1,
0, otherwise.

Then,

P (min(X, Y ) = X | Y ≤ 1/3)

=
P ({min(X, Y ) = X} ∩ {Y ≤ 1/3})

P ({Y ≤ 1/3})

=
P ({X ≤ Y } ∩ {Y ≤ 1/3})

P ({Y ≤ 1/3})

=
P (A)

P ({Y ≤ 1/3)}
, where A = {(x, y) :

0 < x ≤ y ≤ 1/3}

=

∫ 1/3

0

∫ y

0
fX,Y (x, y) dxdy∫ 1/3

0
fY (y) dy

=

∫ 1/3

0

∫ y

0
1 dxdy∫ 1/3

0
1 dy

=
1
2
y2
∣∣1/3
0

y|1/30

=
1/18

1/3
=

1

6
.

2



(b) (8pts)

Exam-A. Let X and Y be the times that it
takes to service the cars of A.J. and M.J. re-
spectively. The question asked us to find the
probability of the event A = {X > Y + t}.
Because X ∼ exp(1), Y ∼ exp(1), and X, Y
are independent, the joint pdf of (X, Y ) is

fX,Y (x, y) = e−(x+y), for x, y > 0,

and zero, otherwise. The probability of in-
terest is

P (X > Y + t) =

∫ ∫
A

fX,Y (x, y) dxdy

=

∫ ∞

0

∫ ∞

y+t

e−(x+y) dxdy

=

∫ ∞

0

[
−e−(x+y)

∣∣∞
x=y+t

]
dy

=

∫ ∞

0

e−(2y+t) dy

= −(1/2)e−(2y+t)
∣∣∞
0

= e−t/2.

Exam-B. Let X and Y be the times that it
takes to service the cars of A.J. and M.J. re-
spectively. The question asked us to find the
probability of the event A = {X < Y + t}.
Because X ∼ exp(1), Y ∼ exp(1), and X, Y
are independent, the joint pdf of (X, Y ) is

fX,Y (x, y) = e−(x+y), for x, y > 0,

and zero, otherwise. The probability of in-
terest is

P (X < Y + t) =

∫ ∫
A

fX,Y (x, y) dxdy

=

∫ ∞

0

∫ y+t

0

e−(x+y) dxdy

=

∫ ∞

0

[
−e−(x+y)

∣∣y+t

x=0

]
dy

=

∫ ∞

0

e−y − e−(2y+t) dy

= −e−y + (1/2)e−(2y+t)
∣∣∞
0

= 1− e−t/2.
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(c) (10pts)

Exam-A. Let Θ1 and Θ2 be the polar angles
of the two random points respectively, then
Θ1 ∼ uniform(0, 2π), Θ2 ∼ uniform(0, 2π),
and Θ1 and Θ2 are independent. The joint
pdf of (Θ1,Θ2) is

fΘ1,Θ2(θ1, θ2) = fΘ1(θ1)× fΘ2(θ2) (∵ the

independent assumption)

=


1

4π2 , for 0 < θ1 < 2π,
0 < θ2 < 2π,

0, otherwise.

Let D be the squared distance be-
tween the two points (cos(Θ1), sin(Θ1)) and
(cos(Θ2), sin(Θ2)), then

D = (cos(Θ1)− cos(Θ2))
2

+(sin(Θ1)− sin(Θ2))
2

= cos2(Θ1) + sin2(Θ1)

+ cos2(Θ2) + sin2(Θ2)

−2 cos(Θ1) cos(Θ2)

−2 sin(Θ1) sin(Θ2)

= 2− 2 cos(Θ1 −Θ2).

The event of interest is

A = {D > 3} = {cos(Θ1 −Θ2) < −1/2}
= {(θ1, θ2) : 2π/3 < θ1 − θ2 < 4π/3}

∪ {(θ1, θ2) : 2π/3 < θ2 − θ1 < 4π/3}
≡ A1 ∪ A2.

So,

P (A) = P (A1 ∪ A2) = 2× P (A1) (∵ A1 and

A2 are symmetric events)

= 2×

(∫ 4π
3

2π
3

∫ θ1− 2π
3

0

fΘ1,Θ2(θ1, θ2) dθ2dθ1

+

∫ 2π

4π
3

∫ θ1− 2π
3

θ1− 4π
3

fΘ1,Θ2(θ1, θ2) dθ2dθ1

)

=
2

4π2
×

(∫ 4π
3

2π
3

∫ θ1− 2π
3

0

1 dθ2dθ1

+

∫ 2π

4π
3

∫ θ1− 2π
3

θ1− 4π
3

1 dθ2dθ1

)

=
2

4π2

(
2

9
π2 +

4

9
π2

)
=

1

3
.

Exam-B. Let Θ1 and Θ2 be the polar angles
of the two random points respectively, then
Θ1 ∼ uniform(0, 2π), Θ2 ∼ uniform(0, 2π),
and Θ1 and Θ2 are independent. The joint
pdf of (Θ1,Θ2) is

fΘ1,Θ2(θ1, θ2) = fΘ1(θ1)× fΘ2(θ2) (∵ the

independent assumption)

=


1

4π2 , for 0 < θ1 < 2π,
0 < θ2 < 2π,

0, otherwise.

Let D be the squared distance be-
tween the two points (cos(Θ1), sin(Θ1)) and
(cos(Θ2), sin(Θ2)), then

D = (cos(Θ1)− cos(Θ2))
2

+(sin(Θ1)− sin(Θ2))
2

= cos2(Θ1) + sin2(Θ1)

+ cos2(Θ2) + sin2(Θ2)

−2 cos(Θ1) cos(Θ2)

−2 sin(Θ1) sin(Θ2)

= 2− 2 cos(Θ1 −Θ2).

The event of interest is

A = {D > 2 +
√
2} = {cos(Θ1 −Θ2) < −

√
2/2}

= {(θ1, θ2) : 3π/4 < θ1 − θ2 < 5π/4}
∪ {(θ1, θ2) : 3π/4 < θ2 − θ1 < 5π/4}

≡ A1 ∪ A2.

So,

P (A) = P (A1 ∪ A2) = 2× P (A1) (∵ A1 and

A2 are symmetric events)

= 2×

(∫ 5π
4

3π
4

∫ θ1− 3π
4

0

fΘ1,Θ2(θ1, θ2) dθ2dθ1

+

∫ 2π

5π
4

∫ θ1− 3π
4

θ1− 5π
4

fΘ1,Θ2(θ1, θ2) dθ2dθ1

)

=
2

4π2
×

(∫ 5π
4

3π
4

∫ θ1− 3π
4

0

1 dθ2dθ1

+

∫ 2π

5π
4

∫ θ1− 3π
4

θ1− 5π
4

1 dθ2dθ1

)

=
2

4π2

(
1

8
π2 +

3

8
π2

)
=

1

4
.
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(A3, B4) (17pts)

(a) (3pts) Because X1, . . . , Xn are i.i.d. from uniform(0, 1) distribution, their marginal pdf is
fX(x) = 1, for 0 < x < 1, and their marginal cdf is FX(x) = x, for 0 < x < 1. The joint pdf
of X(1) and X(n) is

fX(1),X(n)
(s, t) =

(
n

1, 1, n− 2

)
× fX(s)× fX(t)× [FX(t)− FX(s)]

n−2

= n(n− 1)× 1× 1× (t− s)n−2,

for 0 < s < t < 1, and zero otherwise.

(b) (6pts) Notice that

FX(1),X(n)
(u, v) = P (X(1) ≤ u,X(n) ≤ v) =

∫ u

−∞

∫ v

−∞
fX(1),X(n)

(s, t) dtds.

It is clear that FX(1),X(n)
(u, v) = 0 if v < 0 or u < 0, and FX(1),X(n)

(u, v) = 1 if 1 ≤ v and
1 ≤ u. If 0 ≤ u < v < 1,∫ u

−∞

∫ v

−∞
fX(1),X(n)

(s, t) dtds =

∫ u

0

∫ v

s

n(n− 1)(t− s)n−2 dtds

= n

∫ u

0

[
(t− s)n−1

∣∣v
t=s

]
ds = n

∫ u

0

−(v − s)n−1 ds = (v − s)n|us=0 = vn − (v − u)n.

If 0 ≤ v < 1 and v ≤ u,∫ u

−∞

∫ v

−∞
fX(1),X(n)

(s, t) dtds =

∫ v

0

∫ v

s

n(n− 1)(t− s)n−2 dtds

= n

∫ v

0

[
(t− s)n−1

∣∣v
t=s

]
ds = n

∫ v

0

−(v − s)n−1 ds = (v − s)n|vs=0 = vn.

If 0 ≤ u < 1 ≤ v,∫ u

−∞

∫ v

−∞
fX(1),X(n)

(s, t) dtds =

∫ u

0

∫ 1

s

n(n− 1)(t− s)n−2 dtds

= n

∫ u

0

[
(t− s)n−1

∣∣1
t=s

]
ds = n

∫ u

0

−(1− s)n−1 ds = (1− s)n|us=0 = 1− (1− u)n.

The joint cdf of X(1) and X(n) is

FX(1),X(n)
(u, v) =


0, if v < 0 or u < 0,
vn − (v − u)n, if 0 ≤ u < v < 1,
vn, if 0 ≤ v < 1 and v ≤ u,
1− (1− u)n, if 0 ≤ u < 1 ≤ v,
1, if 1 ≤ v and 1 ≤ u.

(1)

An alternative way to get the solution is given below. Because {X(1) > u,X(n) ≤ v} ⊂
{X(n) ≤ v}, we have

FX(1),X(n)
(u, v) = P (X(1) ≤ u,X(n) ≤ v) = P (X(n) ≤ v)− P (X(1) > u,X(n) ≤ v). (2)
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Because X1, . . . , Xn are independent, we have

P (X(n) ≤ v) = P (X1 ≤ v, · · · , Xn ≤ v) =
n∏

i=1

P (Xi ≤ v) =


0, if v < 0,
vn, if 0 ≤ v < 1,
1, if 1 ≤ v,

(3)

and

P (X(1) > u,X(n) ≤ v) = P (u < X1 ≤ v, · · · , u < Xn ≤ v) =
n∏

i=1

P (u < Xi ≤ v)

=


(v − u)n, if 0 ≤ u < v < 1,
(1− u)n, if 0 ≤ u < 1 ≤ v,
1, if 1 ≤ v and u < 0,
0, otherwise.

(4)

Then, we can substitute (3) and (4) into (2) to obtain (1).

(c) (5pts) The range of (R,M) is

R =
{
(r,m)

∣∣∣0 < r < 1,
r

2
< m < 1− r

2

}
.

Because

X(1) =
2M −R

2
and X(n) =

2M +R

2
,

the Jacobians is given by

J =

∣∣∣∣ −1/2 1
1/2 1

∣∣∣∣ = −1.

If (r,m) ∈ R, the joint pdf of (R,M) is

fR,M(r,m)

= fX(1),X(n)

(
2m− r

2
,
2m+ r

2

)
|J |

= n(n− 1)rn−2,

and fR,M(r,m) = 0 if (r,m) /∈ R.

(d) (3pts)

Cov(R,M) = Cov

(
X(n) −X(1),

X(n) +X(1)

2

)
=

1

2
Cov(X(n), X(n)) +

1

2
Cov(X(n), X(1))

−1

2
Cov(X(1), X(n))−

1

2
Cov(X(1), X(1))

=
1

2
Cov(X(n), X(n))−

1

2
Cov(X(1), X(1))

=
[
V ar(X(n))− V ar(X(1))

]
/2
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(A4, B3) (12pts)
We can adopt the method of events (lecture notes p.7-28) to solve the problem. Because U and
V are discrete random variables, we can use the conditional pmf of U given V = m to specify the
conditional distribution. Note that because X and Y are independent binomial random variables
with identical parameters n and p, the marginal distribution of U = X + Y is binomial(2n, p).
The conditional pmf of U given V = m is

pU |V (u|m) = P (U = u|V = m) =
P (U = u, V = m)

P (V = m)
=

P (X = u, Y = m− u)

P (X + Y = m)

=
P (X = u) · P (Y = m− u)

P (X + Y = m)
(∵ X and Y are independent)

=


(nu)pu(1−p)n−u·( n

m−u)pm−u(1−p)n−(m−u)

(2nm)pm(1−p)2n−m
, for u ∈ {max (0,m− n), . . . ,

min (n,m)},
0, otherwise,

=


(
n
u

)(
n

m−u

)(
2n
m

) , for u ∈ {max (0,m− n), . . . ,min (n,m)},

0, otherwise.

This is the pmf of the hyper-geometric distribution with parameters m (number of balls drawn),
2n (number of balls in the box), and n (number of red balls in the box).

(A5, B6) (17pts)

(a) (3pts) By the multiplication law, the joint mixed pdf/pmf of W and N is

fW,N(w, n) = fW (w)fN |W (n|w)

=
λα

Γ(α)
wα−1e−λw × e−wwn

n!

=
λα

Γ(α)

1

n!
w(n+α)−1e−(λ+1)w

for w > 0 and n = 0, 1, 2, . . . , and fW,N(w, n) = 0, otherwise.

(b) (5pts) By the law of total probability, the marginal pmf of N + α is

fN+α(x) = P (N + α = x) = P (N = x− α)

=

∫ ∞

−∞
fW (w)fN |W (x− α|w) dw =

∫ ∞

0

λα

Γ(α)

1

(x− α)!
wx−1e−(λ+1)w dw

=
λα

Γ(α)

1

(x− α)!

Γ(x)

(λ+ 1)x

×
∫ ∞

0

(λ+ 1)x

Γ(x)
wx−1e−(λ+1)w︸ ︷︷ ︸

pdf of gamma(x, λ+ 1)

dw

=
λα

(α− 1)!

1

(x− α)!

(x− 1)!

(λ+ 1)x

=

(
x− 1

α− 1

)(
λ

λ+ 1

)α(
1− λ

λ+ 1

)x−α

︸ ︷︷ ︸
pmf of negative binomial

(
α, λ

λ+1

)
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for x = α, α + 1, α+ 2, . . . , and zero, otherwise.

(c) (5pts) By the Bayes theorem, the conditional pdf of W given N = n is

fW |N(w|n) =
fW (w)fN |W (n|w)∫∞

−∞ fW (w)fN |W (n|w) dw

=

λα

Γ(α)
1
m!

w(α+n)−1e−(λ+1)w(
(α+n)−1

α−1

) (
λ

λ+1

)α (
1− λ

λ+1

)(α+n)−α

=

λα

(α−1)!
1
n!
w(α+n)−1e−(λ+1)w

(α+n−1)!
(α−1)!n!

λα

(λ+1)α+n

=
(λ+ 1)α+n

Γ(α + n)
w(α+n)−1e−(λ+1)w︸ ︷︷ ︸

pdf of gamma(α + n, λ+ 1)

for w > 0, and zero, otherwise.

(d) (4pts) Because N |W = w ∼ Poisson(w), we have EN |W (N |w) = w. By the law of total
expectation,

EN(N) = EW [EN |W (N |W )] = EW (W ) = α/λ.

(A6, B5) (17pts)

(a) (5pts) To compute P (Ii = 1), assume that husband #i is seated first (there are 2k choices).
Then, of the remaining 2k− 1 seats which are available at random to wife #i, only two will
lead to sitting together. So,

P (Ii = 1) =
2k × 2

2k × (2k − 1)
=

2

2k − 1
.

Because
P (Ii = 1, Ij = 1) = P (Ij = 1|Ii = 1)P (Ii = 1),

it is enough to compute P (Ij = 1|Ii = 1). This is the same as having a line (Note. not
a circle) of 2k − 2 chairs in a row, for the jth couple to choose from randomly. There are
1+ (2k− 4)× 2+ 1 = 4k− 6 ways to seat the jth husband and wife next to each other out
of (2k − 2)× (2k − 3) possible ways where they could be seated. Thus,

P (Ij = 1|Ii = 1) =
4k − 6

(2k − 2)× (2k − 3)
=

1

k − 1
,

and

P (Ii = 1, Ij = 1) =
2

2k − 1
× 1

k − 1
=

2

(k − 1)(2k − 1)
.

(b) (5pts) BecauseN =
∑k

i=1 Ii (however, note that the distribution ofN is not binomial because
Ii’s are not independent), by the fundamental formula about expectation,

E(N) =
k∑

i=1

E(Ii).
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Since Ii ∼ Bernoulli( 2
2k−1

),

E(Ii) = P (Ii = 1) =
2

2k − 1
,

and

E(N) = k × 2

2k − 1
=

2k

2k − 1
.

(c) (7pts) To compute the variance of N , we can use the formula:

V ar(N) = V ar

(
k∑

i=1

Ii

)
=

k∑
i=1

V ar(Ii) + 2
∑

1≤i<j≤k

Cov(Ii, Ij).

Because Ii ∼ Bernoulli( 2
2k−1

),

V ar(Ii) =
2

2k − 1
× (1− 2

2k − 1
) =

2(2k − 3)

(2k − 1)2
.

From (a), for i < j, we have

Cov(Ii, Ij) = E(IiIj)− E(Ii)E(Ij) = P (Ii = 1, Ij = 1)− E(Ii)E(Ij)

=
2

(k − 1)(2k − 1)
−
(

2

2k − 1

)2

=
2

(k − 1)(2k − 1)2
.

Thus, the answer is

V ar(N) = k × 2(2k − 3)

(2k − 1)2
+ 2×

(
k

2

)
× 2

(k − 1)(2k − 1)2
=

4k(k − 1)

(2k − 1)2
.
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