Homework 8 solution
6．1．（a）

$$
\begin{aligned}
& \text { mework } 8 \text { solution } \\
& \text { a) Let } p=\text { probabilitiy of head in a toss } \\
& P_{X, Y}(x, y)=P(X=x, Y=y)=\binom{3}{x} P^{x}(1-p)^{3-x} \\
& \therefore P_{X, Y}(x, y)=\left\{\begin{array}{l}
\binom{3}{x} p^{x}(1-p)^{3-x}, x=0,1,2,3, y=3-x \\
0,
\end{array}, 0 . w .\right.
\end{aligned}
$$

$$
\text { if } x=0,1,2,3, y=3-x \text {. }
$$

（b）
（c）$P(X=x, Y=y)=\binom{3}{y}(1-p)^{y} p^{3-y}$ ，if $y=0,1,2,3, x=|y-(3-y)|$

$$
\therefore P_{X, Y}(x, y)= \begin{cases}\binom{3}{y}(1-p)^{y} p^{3-y} & , \text { if } y=0,1,2,3, x=|2 y-3| \\ 0 & , \text { o.w. }\end{cases}
$$

6．7．$X_{1}+1 \sim \operatorname{geo}(p), x_{2}+1 \sim \operatorname{geo}(p), x_{1}$ and X_{2} are independent．

$$
P_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=P_{x_{1}}\left(x_{1}\right) P_{x_{2}}\left(x_{2}\right)=(1-p)^{x_{1}} p \cdot(1-p)^{x_{2}} p=(1-p)^{x_{1}+x_{2}} p^{2}, x_{1}=0,1,2, \cdots, x_{2}=0,1,2, \cdots
$$

6．10．（a）$f_{x}(x)=\int_{0}^{1} 4(\ln 2)^{2} 2^{-(x+y)} d y=4(\ln 2)^{2} 2^{-x} \int_{0}^{1} 2^{-y} d y=4(\ln 2)^{2} 2^{-x} \int_{-1}^{0} 2^{y} d y=4(\ln 2)^{2} 2^{-x}\left[\frac{2^{y}}{\ln 2}\right]_{-1}^{0}$

$$
\begin{aligned}
& =2(\ln 2) 2^{-x}, 0 \leqslant x<1 . \\
P\{x<a\} & =\int_{0}^{a} 2(\ln 2) 2^{-x} d x=2(\ln 2) \int_{-a}^{0} 2^{x} d x=2(\ln 2)\left[\frac{2^{x}}{\ln 2}\right]_{-a}^{0}=2\left(1-2^{-a}\right), 0 \leqslant a<1 \\
\therefore P\{x<a\} & =\left\{\begin{array}{cl}
0, & \text { if } a<0 \\
2\left(1-2^{-a}\right), & \text { if } 0 \leqslant a<1 \\
1, & \text { if } a \geqslant 1 .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& P\left\{x+y<\frac{1}{2}\right\}=\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}-y} 4(\ln 2)^{2} 2^{-(x+y)} d x d y \\
&=\int_{0}^{\frac{1}{2}} 4(\ln 2)^{2} 2^{-y}\left[\frac{2^{x}}{\ln 2}\right]_{y-\frac{1}{2}}^{0} d y=\int_{0}^{\frac{1}{2}} 4(\ln 2) 2^{-y}\left(1-2^{y-\frac{1}{2}}\right) d y \\
&=\int_{0}^{\frac{1}{2}} 4(\ln 2) 2^{-y}-4(\ln 2) 2^{-\frac{1}{2}} d y=4(\ln 2)\left[\frac{2^{y}}{\ln 2}\right]_{-\frac{1}{2}}^{0}-2(\ln 2) \frac{1}{\sqrt{2}} \\
&=4\left(1-\frac{1}{\sqrt{2}}\right)-2(\ln 2) \frac{1}{\sqrt{2}} \\
& \text { made by 許漢邦, 黃佳盈 助教 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
P(X=x, Y=y)=P(X=x) \cdot P(Y=y \mid X=x) \\
P(X=x)=\binom{2}{x} P^{x}(1-P)^{2-x} \text { if } x=0,1,2
\end{array} \\
& P(Y=y \mid X=x)= \begin{cases}p, & \text { if } y=x+1 \\
1-p, & \text { if } y=x \\
0, & 0 . W .\end{cases} \\
& \therefore P_{X, Y}(x, y)=\left\{\begin{array}{ll}
2 \\
x
\end{array}\right) P^{x+1}(1-p)^{2-x}, \text { if } x=0,1,2, y=x+1
\end{aligned}
$$

6．13．Let $X=$ minutes after $12: 00$ P．M．when the man arrives，$X \sim U(15,45)$ $\Rightarrow(X, Y) \sim \cup[(15,45) \times(0,60)]$ $Y=$ minutes after 12：00P．M．when the woman arrives，$Y \sim U(0,60)$ For $A C(15,45) \times(0,60), P\{(X, Y) \in A\}=\int_{A} f_{X, Y}(X, y) d x d y=\frac{\text { Area of } A}{\text { Area of }(15,45) \times(0,60)}$ $P\{$ the first to arrive waits no longer than 5 minutes $\}=P\{|X-Y| \leqslant 5\}=P\{-5 \leqslant X-Y \leqslant 5\}=\frac{\text { Area of }}{30 \cdot 60}$

$$
=\frac{10 \cdot 30}{30 \cdot 60}=\frac{1}{6}
$$

$P\{$ the man arrives first $\}=P\{X-Y<0\}=\frac{\text { Area of } \mathbb{W}}{30.60}=\frac{1}{2}$
6．9．$f(x, y)=\frac{x(1-x)}{B(3,2)} \geq 0$ for $0<y<x<1$ ．

$$
\iint_{<y<x<1} f(x, y) d y d x=\int_{0}^{1} \int_{0}^{x} \frac{x(1-x)}{B(3,2)} d y d x=\int_{0}^{1} \frac{x(1-x)}{B(3,2)} \cdot x d x=\frac{1}{B(3,2)} \int_{0}^{1} x^{2}(1-x) d x=\frac{B(3,2)}{B(3,2)}=1
$$

$\therefore f(x, y)$ is a joint density function
（a）$f_{x}(x)=\int_{0}^{x} \frac{x(1-x)}{B(3,2)} d y=\frac{x(1-x)}{B(3,2)} \cdot x=\frac{1}{B(3,2)} x^{2}(1-x), 0<x<1$
（b）$f_{Y}(y)=\int_{y}^{1} \frac{x(1-x)}{B(3,2)} d x=\frac{1}{B(3,2)}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{y}^{1}=\frac{1}{B(3,2)}\left(\frac{1}{6}-\frac{y^{2}}{2}+\frac{y^{3}}{3}\right)=\frac{24}{2 \cdot 1}\left(\frac{1}{6}-\frac{y^{2}}{2}+\frac{y^{3}}{3}\right)=2-6 y^{2}+4 y^{3}$,
（c）$X \sim \operatorname{Beta}(3,2) \quad \therefore E[X]=\frac{3}{3+2}=\frac{3}{5}$
（d）$E[Y]=\int_{0}^{1} y \cdot \frac{1}{B(3,2)}\left(\frac{1}{6}-\frac{y^{2}}{2}+\frac{y^{3}}{3}\right) d y=\frac{1}{B(3,2)}\left[\frac{y^{2}}{12}-\frac{y^{4}}{8}+\frac{y^{5}}{15}\right]_{0}^{1}=\frac{1}{B(3,2)}\left(\frac{1}{12}-\frac{1}{8}+\frac{1}{15}\right)$

$$
=\frac{24}{2 \cdot 1} \cdot \frac{3}{120}=\frac{3}{10}
$$

20．
（i）Method 1

$$
\begin{aligned}
& f_{X}(x)=\int f(x, y) d y=\int_{0}^{\infty} x e^{-(x+y)} d y=x e^{-x}, x>0 . \\
& \begin{aligned}
f_{Y}(y)=\int f(x, y) d x & =\int_{0}^{\infty} x e^{-(x+y)} d x \\
& =-\left.x e^{-y x+y)}\right|_{x=0} ^{\infty}+\int_{0}^{\infty} e^{-(x+y)} d x=e^{-y}, y>0 . \\
\because f(x, y)=x e^{-(x+y)} & =f_{X}(x) \cdot f_{Y}(y) \quad \forall x>0, y>0
\end{aligned}
\end{aligned}
$$

$\therefore X$ and Y are indep．
Method 2

$$
\because f(x, y)=x e^{-(x+y)} \mathbb{1}_{(0, \infty) \times(0, \infty)}(x, y)=x e^{-x} \mathbb{1}_{(0, \infty)}(x) \cdot e^{-y} \mathbb{1}_{(0, \infty)}(y)
$$

$\therefore X$ and Y are indef．
（ii）Method 1

$$
\begin{aligned}
& f_{X}(x)=\int f(x, y) d y= \begin{cases}\int_{x}^{1} 2 d y=2(1-x), 0<x<1 \\
0,0, w_{1}\end{cases} \\
& f_{Y}(y)=\int f(x, y) d x= \begin{cases}\int_{0}^{y} 2 d x=2 y, 0<y<1 & 0<y, 0<y \\
0,0, w_{1}\end{cases} \\
& \because \because f(x, y) \neq f_{X}(x) \cdot f_{Y}(y)
\end{aligned}
$$

$\therefore X$ and Y are not indep．
Method 2
if $(x, y)=2 \mathbb{1}_{A}(x, y)$ ，where $A=\{(x, y) \mid 0<x<y, 0<y<1\}$ is not a cross product set
$\therefore f(x, y)$ can not be expressed in the form $g_{1}(x) \cdot g_{2}(y)$
$\Rightarrow X$ and Y are not indep．

26． A, B, C indep．
（a）

$$
\begin{aligned}
F_{A, B, c}(a, b, c) & \stackrel{\downarrow}{=} F_{A}(a) \cdot F_{B}(b) \cdot F_{c}(c)=a b c, 0<a<1,0<b<1,0<c<1 \\
& \left(\stackrel { o v } { = } \left\{\begin{array}{l}
\min (a, 1) \cdot \min (b, 1) \cdot \min (c, 1), a>0, b>0, c>0 \\
0,0, w .
\end{array}\right.\right.
\end{aligned}
$$

（b）Let E be the event that all of the roots of the equation $A x^{2}+B x+C=0$ are real．$\left(\Leftrightarrow B^{2}-4 A C \geqslant 0\right)$
Note that the joint pdf of A, B, C is

$$
\begin{aligned}
f_{A, B, c}(a, b, c)= & f_{A}(a) \cdot f_{B}(b) \cdot f_{C}(c)= \begin{cases}1, & 0<a<1,0<b<1,0<c<1 \\
0, & 0, w .\end{cases} \\
& { }_{A, B}, C \text { indep. }
\end{aligned}
$$

Then $P(E)=P\left(B^{2}-4 A C \geqslant 0\right)$

$$
\begin{aligned}
& =\iiint_{b^{2}-4 a c \geqslant 0} f_{A, B, c}(a, b, c) d a d b d c \\
& \because b^{2}-4 a c \geqslant 0 \curvearrowright \int_{0}^{1} \int_{0}^{1} \int_{0}^{\left.\min \left(\frac{b^{2}}{4 a}, 1\right) 1 d c d a d b=b^{2}\right) 1}= \\
& \Leftrightarrow 4 a c \leqslant b^{2} \\
& \Leftrightarrow c \leqslant \frac{b^{2}}{4 a} \quad=\int_{0}^{1} \int_{0}^{1} \min \left(\frac{b^{2}}{4 a}, 1\right) d a d b \\
& \because \frac{b^{2}}{4 a} \geqslant 1 \Leftrightarrow a \leqslant \frac{b^{2}}{4}=\int_{0}^{1}\left(\int_{0}^{\frac{b^{2}}{4}} 1 d a+\int_{\frac{b^{2}}{4}}^{1} \frac{b^{2}}{4 a} d a\right) d b \\
& =\int_{0}^{1} \frac{b^{2}}{4}\left(1-\ln \left(\frac{b^{2}}{4}\right)\right) d b \\
& =\left.\frac{b^{3}}{b} \cdot \ln \vec{b}\right|_{0} ^{1}-\int_{0}^{1} \frac{b^{2}}{b} d b \\
& =\int_{0}^{1} \frac{b^{2}}{4}(1+2 \ln 2) d b-\int_{0}^{1} \frac{b^{2}}{2} \cdot \ln b d b \\
& =\frac{1}{12}(1+2 \ln 2)+\frac{1}{18} \\
& =\frac{5}{36}+\frac{\ln 2}{6}
\end{aligned}
$$

＜Theoretical Exercises＞
11.
（a）（b）
$I=P\left(X_{1}<X_{2}<X_{3}<X_{4}<X_{5}\right)$
$=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} \int_{x_{3}}^{\infty} \int_{x_{4}}^{\infty} f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) f\left(x_{4}\right) f\left(x_{5}\right) d x_{5} d x_{4} d x_{3} d x_{2} d x_{1}$
$=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} \int_{x_{3}}^{\infty} f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) f\left(x_{4}\right)\left(1-F\left(x_{4}\right)\right) d x_{4} d x_{3} d x_{2} d x_{1}$
let $\omega_{4}=1-F\left(x_{4}\right)$
$\Rightarrow d w_{4}=-f\left(x_{4}\right) d x_{4} \downarrow=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} \int_{0}^{1-F\left(x_{3}\right)} f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) w_{4} d w_{4} d x_{3} d x_{2} d x_{1}$
let $w_{3}=1-F\left(x_{3}\right)$

$$
=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) \frac{1}{2}\left(1-F\left(x_{3}\right)\right)^{2} d x_{3} d x_{2} d x_{1}
$$

$\Rightarrow d w_{3}=-f\left(x_{3}\right) d x_{3}=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} \int_{0}^{1-F\left(x_{2}\right)} f\left(x_{1}\right) f\left(x_{2}\right) \frac{1}{2} w_{3}^{2} d w_{3} d x_{2} d x_{1}$
let $w_{2}=1-F\left(x_{2}\right)$

$$
=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} f\left(x_{1}\right) f\left(x_{2}\right) \frac{1}{3!}\left(1-F\left(x_{2}\right)\right)^{3} d x_{2} d x_{1}
$$

$\Rightarrow d w_{2}=-f\left(x_{2}\right) d x_{2} \stackrel{\downarrow}{=} \int_{-\infty}^{\infty} \int_{0}^{1-F\left(x_{1}\right)} f\left(x_{1}\right) \frac{1}{3!} w_{2}^{3} d w_{2} d x_{1}$

$$
=\int_{-\infty}^{\infty} f\left(x_{1}\right) \frac{1}{4!}\left(1-F\left(x_{1}\right)\right)^{4} d x_{1}
$$

let $w_{1}=1-F\left(x_{1}\right)$

$$
\begin{aligned}
& \text { let } w_{1}=1-F\left(x_{1}\right) \\
& \Rightarrow d w_{1}=-f\left(x_{1}\right) d x_{1} \stackrel{1}{1} \frac{1}{4!} w_{1}^{4} d w_{1}
\end{aligned}
$$

$=\frac{1}{5!}$ ，which does not depend on $F_{\text {．}}$
（c）䏝機抽取 5 個貫又字 $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ ，
因為分配看連繒型，故任雨個鄞字相等的機率為 0 ，
特這些锤字由小到大排列，共有 5 ！種排列方式，
且 各種排列方式出現的可能性相等，
故出現 $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$（或任一排列方式）的機率为 $\frac{1}{5!}$ 。
24.
$P([X]=n, X-[X] \leqslant x) \quad$ cdf of exponential (λ)

$$
\begin{aligned}
& =\left\{\begin{array}{l}
P(n \leqslant x<n+1)=F_{x}(n+1)-F_{x}(n)=\left(1-e^{-\lambda}\right) e^{-\lambda n}, x \geqslant 1, \quad n \in \mathbb{N} \cup\{0\} \\
P(n \leq x \leq n+x)=F_{x}(n+x)-F_{x}(n)=\left(1-e^{-\lambda x}\right) e^{-\lambda n}, 0<x<1, n \in \mathbb{N} \cup\{0\} \\
0,0, \omega .
\end{array}\right. \\
& =e^{-\lambda n} \mathbb{1}_{N \cup\{0\}}(n) \cdot\left(1-e^{-\lambda \min (x, 1)}\right) \mathbb{1}_{(0, \infty)}(x)
\end{aligned}
$$

Since the prob．factor into two terms，one depending only on n and the other depending only on x ， we have that $[x]$ and $x-[x]$ are indep．

NTHU MATH 2810， 2023
＜Self－Test Problem＞
4.

Fivst show that if X_{1}, \ldots, X_{r} has a multinomial dist．， then so does $X_{1}+x_{2}, x_{3}, \cdots, x_{r}$ ．

Suppose $\left(x_{1}, \ldots, x_{r}\right) \sim$ multinomial $\left(n, p_{1}, \ldots, p_{r}\right)$ ，

$$
\begin{aligned}
& \text { i.e, } P\left(x_{i}=n_{i}, i=1, \ldots, v\right)=\frac{n!}{n_{1}!\cdots n_{r}!} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}, n_{i} \geqslant 0, \sum_{i=1}^{r} n_{i}=n . \\
\because & P\left(x_{1}+x_{2}=n_{1}+n_{2}, x_{i}=n_{i}, i=3, \ldots, r\right) \\
= & \sum_{m=0}^{n_{1}+n_{2}} P\left(x_{1}=m, x_{2}=n_{1}+n_{2}-m, x_{i}=n_{i}, \bar{i}=3, \ldots, r\right) \\
= & \sum_{m=0}^{n_{1}+n_{2}} \frac{n!}{m!\left(n_{1}+n_{2}-m\right)!n_{3}!\cdots n_{r}!} p_{1}^{m} p_{2}^{n_{1}+n_{2}-m} p_{3}^{n_{3}} \cdots p_{r}^{n_{r}} \\
= & \frac{n!}{\left(n_{1}+n_{2}\right)!n_{3}!\cdots n_{r}!} p_{3}^{n_{3} \ldots p_{r}^{n_{r}} \sum_{m=0}^{n_{1}+n_{2}} \frac{\left(n_{1}+n_{2}\right)!}{m!\left(n_{1}+n_{2}-m\right)!} p_{1}^{m} p_{2}^{n_{1}+n_{2}-m}} \\
= & \frac{n!}{\left(n_{1}+n_{2}\right)!n_{3}!\cdots n_{r}!} p_{3}^{n_{3}} \cdots p_{r}^{n_{r}} \cdot\left(p_{1}+p_{2}\right)^{n_{1}+n_{2}}
\end{aligned}
$$

$\therefore\left(X_{1}+x_{2}, x_{3}, \ldots, x_{v}\right) \sim$ multinomial $\left(n, p_{1}+p_{2}, p_{3}, \ldots, p_{r}\right)$ ．
Inductively，if x_{1}, \ldots, X_{r} has a multinomial dist．， then so does Y_{1}, \ldots, Y_{k} ，where $Y_{j}=\sum_{i=r_{0}+\cdots+r_{j-1}+1}^{r_{0}+\cdots+r_{j}} X_{i}, j=1, \ldots, k_{1}$

Remark Intuitive explanation：

$\left(x_{1}, \ldots, x_{r}\right) \sim$ multinomial $\left(n, p_{1}, \ldots, p_{r}\right)$ 代表在 n 次猲立試馷㰻
出現第こ種觡果的機卒舀 $P_{i}, ~ i=1, \ldots, r$ 。搒著将第1至 r_{1} 種觡果帰類為第1類，第 $r_{1}+1$ 至 $r_{1}+r_{2}$ 種觡果歸類為第2颣，…依此類推至第k類。則（ Y_{1}, \ldots, Y_{k} ）可視為在n次猲立試験中，Yj表示出現第う类夏結果的次囪久，其中每次試験中出現第 了颣觡果的機率死 ${ }_{i=r_{0}+\cdots+r_{j-1}+1}^{r_{0}+\cdots+r_{j}} p_{i}$ ， $j=1, \ldots, k_{0}$ 故 $\left(Y_{1}, \ldots, Y_{k}\right) \sim \operatorname{multinomial}\left(n, \sum_{i=1}^{r_{1}} P_{i}, \ldots, \sum_{i=r-r_{k}+1}^{r} P_{i}\right)$ 。 made by 許漢邦，黃佳盈 助教

