5.18

$$
\begin{aligned}
& x \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \frac{x-\mu}{\sigma} \sim N(0.1) \\
& \Rightarrow\left\{\begin{array}{l}
P(x<10)=P\left(\frac{x-\mu}{\sigma}<\frac{10-\mu}{\sigma}\right)=0.67 \\
P(x<20)=P\left(\frac{x-\mu}{\sigma}<\frac{20-\mu}{\sigma}\right)=0.975
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\left.\frac{10-\mu}{\sigma}=0.44 \quad \text { (by } z \text {-table }\right) \\
\frac{20-\mu}{\sigma}=1.96
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\mu=\frac{135}{19} \\
\sigma=\frac{125}{19}
\end{array}\right.
\end{aligned}
$$

5． 24
Let x be the lifetime of interactive computer chip $\Rightarrow X \sim N\left(1.4 \times 10^{6},\left(3 \times 10^{5}\right)^{2}\right)$

$$
\begin{aligned}
& \Rightarrow z \Rightarrow \frac{x-1.4 \times 15^{6}}{3 \times 10^{5}} \sim N(0,1) \\
& P\left(x<1.8 \times 10^{6}\right)=P\left(\frac{x-1.4 \times 10^{6}}{3 \times 10^{5}}<\frac{1.8 \times 10^{6}-1.4 \times 10^{6}}{3 \times 10^{5}}\right)=P\left(z<\frac{4}{3}\right)=0.9082(\text { by } z-\text { table })
\end{aligned}
$$

Let Y be the number of computers whose lifetimes are less than $1.8 \times 10^{6} \Rightarrow Y \sim \operatorname{Bin}(100,0.9082)$ So the required probability $=P(Y \geqslant 20)$

$$
\begin{aligned}
& \approx P(Y>19.5)(\text { anntinuous correction }) \\
& =P\left(\frac{Y-100 \times 0.9082}{\sqrt{100 \times 0.9082(1-0.9082)}}>\frac{19.5-100 \times 0.9082}{\sqrt{100 \times 0.9082(1-0.9082)}}\right) \\
& \approx P(z>-24.70) \quad(\text { by } d T, \text { where } z \sim N(0.1)) \\
& \approx 1(\text { by } z \text {-table })
\end{aligned}
$$

5.26

Let X be the number $\frac{f}{a}$ heads of a fair com $\Rightarrow X \sim \operatorname{Bin}(1000,0.5)$
Then the probability that reach a false conclusion $=P(x \geqslant 525)$

$$
\begin{aligned}
& \approx P(x \geqslant 524.5)(\text { continuous correction }) \\
& =P\left(\frac{x-1000 \times 0.5}{\sqrt{1000 \times 0.5 \times(1-0.5)}} \geqslant \frac{544.5-1000 \times 0.5}{\sqrt{1000 \times 0.5 \times(1-0.5)}}\right) \\
& \approx P(z>1.55)(\text { by } C L T \text {, where } z \sim N(0.1)) \\
& \approx 0.0606 \text { (by } z \text {-table) }
\end{aligned}
$$

Let Y be the number $\frac{f}{a}$ heads of a biased $\operatorname{com} \Rightarrow Y \sim \operatorname{Bin}(1000,0.55)$
Then the probability that reach a false conclusion $=P(Y<525)$

$$
\begin{aligned}
& \approx P(x<524.5)(\text { continuous correction }) \\
& =P\left(\frac{x-1000 \times 0.55}{\sqrt{1000 \times 0.55 \times(1-0.55)}}<\frac{544.5-1000 \times 0.5}{\sqrt{1000 \times 0.55 \times(1-.555)}}\right) \\
& \approx P(z<-1.62)(\text { by } d T, \text { where } Z \sim N(0.1)) \\
& \approx 0.0526 \text { (by } Z-\text { table })
\end{aligned}
$$

5.29

Let x be the number of times that the stack raised price $\Rightarrow x \sim \operatorname{Bin}(1000,0.52)$
Under $x=t$ ，the final stock price $=s \cdot u^{t} d^{1000-t}=s \cdot 1 \cdot 012^{t} 0.990^{1000-t}$
We hope that $S \cdot 1.012^{t} 0.990^{1000-t}>1.3 S \Rightarrow\left(\frac{1.012}{0.990}\right)^{t}>\frac{1.3}{0.990^{1000}} \Rightarrow t>\frac{\log 1.3-1000 \log 0.990}{\log 1.012-\log 0.990} \approx 469.289$ So the required probability $=P(x \geqslant 470)$
$\approx P(x>469.5)$（Continuous correction）

$$
\begin{aligned}
& =P\left(\frac{x-1000 \times 0.52}{\sqrt{1000 \times 0.52 \times(1-0.52)}}>\frac{469.5-1000 \times 0.52}{\sqrt{1000 \times 0.52 \times(1-0.52)}}\right) \\
& \approx P(z>-3.20) \quad \text { (by CLT, where } z \sim N(0.1)) \\
& \approx 0.9993 \quad \text { by } z \text {-table) }
\end{aligned}
$$

5.30

Let X be a reading taken from a randomly chosen point
If the chosen point is white，then $X \sim N(4,4)$
If the chosen point is black，then $x \sim N(6,9)$
The probability of making an err be the same $\Rightarrow p($ in black $\mid x=5)=\frac{1}{2}$

$$
\begin{aligned}
& p(\text { in black } \mid x=5)=\frac{P(\text { in black }, x=5)}{P(x=5)} \\
&=\frac{P(x=51 \text { in black }) P(\text { in black })}{P(x=5 \operatorname{lin} \text { lack }) P(\text { in black })+P(x=5) \text { in white }) P(\text { in white })} \\
&=\frac{1}{\sqrt{2 \pi} \cdot 3 e^{-\frac{1}{2 \cdot 9}(5-6)^{2}} \cdot \alpha} \\
& \frac{1}{\sqrt{2 \pi} \cdot 3} e^{-\frac{1}{2 \cdot 9}(5-6)^{2}} \cdot \alpha+\frac{1}{\sqrt{2 \pi} \cdot 2} e^{-\frac{1}{2 \cdot 4}(5-4)^{2}} \cdot(1-\alpha)
\end{aligned}=\frac{1}{2}
$$

（a）$X \sim U(0, A) \rightarrow$ pdf：$\frac{1}{A-0}=\frac{1}{A}$
$E(|x-a|)=\int_{0}^{A}|x-a| \cdot \frac{1}{A} d x=\int_{0}^{a}(a-x) \cdot \frac{1}{A} d x+\int_{a}^{A}(x-a) \cdot \frac{1}{A} d x=\left.\frac{1}{A}\left(a x-\frac{1}{2} x^{2}\right)\right|_{0} ^{a}+\left.\frac{1}{A}\left(\frac{1}{2} x^{2}-a x\right)\right|_{a} ^{A}=\frac{1}{A} \cdot \frac{1}{2} a^{2}+\frac{1}{A}\left(\frac{1}{2} A^{2}-A a+\frac{1}{2} a^{2}\right)=\frac{1}{2} A-a+\frac{a^{2}}{A}$ \because 二次方 coeff $>0 \Rightarrow$ 開口向上 a 的二次多項式 By 配方法，$\frac{1}{2} A-a+\frac{a^{2}}{A}=\frac{1}{A}\left(a-\frac{A}{2}\right)^{2}+\frac{A}{4}$ ，minimium happen when $a=\frac{A}{2}$ ．
（b）

Now $x \sim \exp (\lambda) \rightarrow p d f: \lambda e^{-\lambda x}$

$$
\begin{aligned}
\cos \int_{0}^{a} x \lambda e^{-\lambda x} & =\left.\left(-x e^{-\lambda x}\right)\right|_{0} ^{a}+\int_{0}^{a} e^{-\lambda x} d x \\
& =\left.\left(-x e^{-\lambda x}\right)\right|_{0} ^{a}+\left.\left(\frac{-1}{\lambda} e^{-\lambda x}\right)\right|_{0} ^{a}
\end{aligned}
$$

$$
\begin{aligned}
E(|x-a|) & =\int_{0}^{a}(a-x) \lambda e^{-\lambda x} d x+\int_{a}^{\infty}(x-a) \lambda e^{-\lambda x} d x \\
& =a \int_{0}^{a} \lambda e^{-\lambda x} d x-\int_{0}^{a} x \lambda e^{-\lambda x} d x+\int_{a}^{\infty} x \lambda e^{-\lambda x} d x-a \int_{a}^{\infty} \lambda e^{-\lambda x} d x \\
& \left.\stackrel{(4)}{=} a\left(-e^{-\lambda x}\right)\right|_{0} ^{a}-\left[\left.\left(-x e^{-\lambda x}\right)\right|_{0} ^{a}+\left.\left(-\frac{1}{\lambda} e^{-\lambda x}\right)\right|_{0} ^{a}\right]+\left[\left.\left(-x e^{-\lambda x}\right)\right|_{a} ^{\infty}+\left.\left(-\frac{-1}{\lambda} e^{-\lambda x}\right)\right|_{a} ^{\infty}\right]-\left.a\left(-e^{-\lambda x}\right)\right|_{a} ^{\infty} \\
& =a\left(-e^{-\lambda a}+1\right)-\left[\left(-a e^{-\lambda a}\right)-\frac{1}{\lambda} e^{-\lambda a}+\frac{1}{\lambda}\right]+\left[0+a e^{-\lambda a}-0+\frac{1}{\lambda} e^{-\lambda a}\right]-a\left(-0+e^{-\lambda a}\right) \\
& =-2 a e^{-\lambda a}+a-\left[\left(-\alpha e^{-\lambda a}\right)-\frac{1}{\lambda} e^{-\lambda a}+\frac{1}{\lambda}\right]+\left[a e^{-\lambda a}+\frac{1}{\lambda} e^{-\lambda a}\right] \\
& =a+\frac{2}{\lambda} e^{-\lambda a}-\frac{1}{\lambda} \equiv g(a)
\end{aligned}
$$

$$
\frac{d g(a)}{d a}=1+\frac{2}{\lambda} e^{-\lambda a} \cdot(-\lambda)=1-2 e^{-\lambda a} \stackrel{\text { let be }}{=} 0 \Rightarrow e^{-\lambda a}=\frac{1}{2} \Rightarrow-\lambda a=-\log 2 \Rightarrow a=\frac{\log 2}{\lambda}
$$

Check 2nd derivative：

$$
\frac{d^{2} g}{d a^{2}}=2 \lambda e^{-\lambda a}>0
$$

Note：$E(|x-a|)$ 最小值發生在 $a=$ median of X ．
34．Let X denotes the total number of thousands of miles can be driven．
（a）$x \sim \exp \left(\frac{1}{20}\right)$
$P(x>30 \mid x>10)=\frac{P(x>30)}{P(x>10)}=\frac{\int_{30}^{20} \frac{1}{20} e^{-\frac{x}{20}} d x}{\int_{10}^{20} \frac{1}{20} e^{-\frac{2}{21}} d x}=\frac{e^{-\frac{30}{20}}}{e^{-\frac{10}{20}}}=e^{-\frac{20}{20}}=P(x>20) \quad$（memoryless）$)$
（b）$x \sim U_{\text {nif }}(0,40)$

$$
P(x>30 \mid x>10)=\frac{P(x>30)}{P(x>10)}=\frac{\frac{40-30}{40}}{\frac{40-10}{40}}=\frac{1}{3} \neq P(x>20)=\frac{40-20}{40}=\frac{1}{2}
$$

Theorectical Exercises．
13．（a）$X \sim U(a, b)$

$$
F_{x}(c)=\int_{a}^{c} \frac{1}{b-a} d x=\frac{c-a}{b-a}=\frac{1}{2} \Rightarrow c=\frac{b+a}{2}
$$

（b）$X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& F_{x}(x)=P(x \leq x)=P\left(\frac{x-\mu}{6} \leq \frac{x-\mu}{\sigma}\right)=\frac{1}{2}, z \sim N(0,1), p d f ; \frac{\frac{1}{\sqrt{2 \pi}} \exp \left(-(x)^{2} / 2\right) \equiv f_{z}}{\frac{11}{z}} \\
& \because \int_{-\infty}^{\infty} f_{z} d z=1 \text { and } \int_{-\infty}^{0} f_{z} f_{z}=\int_{0}^{\infty} f_{z} d z \Rightarrow \int_{-\infty}^{0} f(z) d z=\frac{1}{2} \\
& \therefore \frac{x-\mu}{\sigma}=0 \Rightarrow x=\mu .
\end{aligned}
$$

cc）$X \sim \exp (\lambda)$
$F_{x}(c)=\int_{0}^{c} \lambda e^{-\lambda x} d x=\left.\left(-e^{-\lambda x}\right)\right|_{0} ^{c}=-e^{-\lambda c}+1=\frac{1}{2} \Rightarrow e^{-\lambda c}=\frac{1}{2} \Rightarrow c=\frac{\log 2}{\lambda}$
$15 X \sim \exp (\lambda) \rightarrow P(x \leqslant x)=1-e^{-\lambda x}$
$\forall x>0, P(c x \leq x)=P\left(x \leq \frac{x}{c}\right)=\frac{1-e^{-\lambda \cdot \frac{x}{c}} \Rightarrow c x \sim \exp \left(\frac{\pi}{c}\right)}{\exp \left(\frac{\pi}{c}\right) \text { 的cdf．}}$

$$
\begin{align*}
& \text { Def of median: (conti) 見 Theorectical } 13 \\
& \text { (discrete) } x \text { satisfies }\left\{\begin{array}{l}
0 \\
P(x \leq x)=F(x) \geq \frac{1}{2} \\
P(x \geq x) \geq \frac{1}{2}
\end{array}\right. \text {. } \tag{1}
\end{align*}
$$

31．$X \sim N\left(\mu, \sigma^{2}\right), Y=e^{x} . \equiv g(x) \quad 1-1$ transf．$\Rightarrow g^{-1}(y)=\log (y)$
$f_{Y}(y)= \begin{cases}f_{X}\left(g^{-1}(y)\right) \cdot\left|\frac{d x}{d y}\right|=f_{X}(\log y) \cdot\left|\frac{1}{y}\right|=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(\log y-\mu)^{2}}{2 \sigma^{2}}\right) \cdot \frac{1}{y} & \text { for } y>0 \\ 0 & \text { for } y \leqslant 0\end{cases}$

