NTHU MATH 2810, 2024 Solution to Homework 7

Probability  HWO07 Solution

Problem 16

(%) : Assume that the events of annual rainfall exceeding 50 inches each year are mutually independent.

Let X be the annual rainfall for a given year. Then X ~ N(40,4?).
Let p = Pr(X < 50). Then we have :

X —40 - 50 — 40)
4 4
= Pr(Z < 2.5) (By normalizing X, we have Z =

szr(
X —40

~ N(0, 1).)
= ®(2.5) = 0.9937903

LetY be the number of years starting from this year until the first occurrence of annual rain fall exceeding 50 inches.
Then, Y ~ Geometric(1 — p), and the desired quantity is :

Pr (None of the following 10 years has a rainfall of more than 50 inches)

= Pr(y >10) = i P (1—p)=p'® = (0-9937903)10

y=11

pnorm(2.5)

## [1] 0.9937903

Problem 17

Let X be the salaries. Then, X ~ N(p,0?), and we have :

X—p 180,000 — 180,000 — )
0.25 = Pr(X <180,000) = Pr( - b= - S @(7’“‘) Z P ( —0.6744898)
X — 320,000 — 320,000 — p. G+
0.25 = Pr(X >320,000) = Pr(=—£ > =5 B) =1-e— A 21— @(0.6744898)
ag ag ag
B0.000-1 — _.6744898
o : 2 1
_ { L d 0,000; 80,000 o 000
3200001 = (0.6744898

180, 000 — 250, 000
=
g

= —0.6744898 = o =103782.1

(%) : ®(—0.6744898) = 1 — P (0.6744898) = 0.25
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gnorm(0.25)

## [1] -0.6744898

()

X —u 200,000 — 250,000
o 103782.1

Pr(X < 200, 000) - Pr( ) ~ B —0.4817786) ~ 0.3149816

pnorm( (200000-250000) /103782.1)

## [1] 0.3149816

(b)

280,000 —u X —p 320,000 —
Pr<280,000 < X < 320, 000) - Pr( P27k “)

g o g

280,000 —
7711“ <
g

= Pr( Z , where Z ~ N(0,1)

2 — 2 —
_ @(3 0,000 u) _q>< 80,000 u)
ag g

~ 0.75 —0.613735
= 0.136265

320,000 —
< ) H)
o

0.75-pnorm((280000-250000) /103782.1)

## [1] 0.136265

Problem 29

Let X be the number of times the stock price goes up (i.e., the price becomes u X its original value)
in the next 1000 periods.

Then, X ~ Binomial(1000,p), and <1000 — X) is the number of times the stock price goes down
(i.e., the price becomes d times its original value) in the next 1000 periods.

X
W hen the initial stock price is s, after 1000 periods, the price becomes sxu™ x d'000~X = sx @100 x (%)

So the event of interest is :

Because X ~ Binomial(lOOO, 0.52) L N(520, 249.6) by the ' DeMoivre — Laplace limit theorem (see T Bp.219),

X —520 < 470—0.5 — 520
V249.6 \/249.6

Pr(X > 470) ~ Pr( ) ~ Pr(Z > —3.196459) ~ 0.9993044

(Note that the "continuity correction" has been taken!)

tFYI: This result can also be obtained by applying the well-known Central Limit Theorem!
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https://en.wikipedia.org/wiki/Central_limit_theorem
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1-pnorm((470-0.5-520) /sqrt (249.6))

## [1] 0.9993044

Problem 30
Let X = the reading of the randomly chosen point.

| 0, if this point is in the white section : _J 1—=a,ify=0
Let ¥ = { 1, if this point is in the black section then Y ~ Bernoulli(a) <= py(y) = { a, if y=1

X|Y=0)~N|(4,22
So we have and we want to find a such that Pr(Y = O‘X = 5) = Pr(Y = I‘X = 5) ==
X | Y=1)~N(6,32

1
That is, 5= Pr (the chosen point having a reading of 5 is from the black sectz’on)

Pr(y =1)Pr(x=5]v =1)

Pr(y =1)Pr(X=5]v =1)+Pr(y =0)Pr(x =5|v =0)

5-4 5-6
aXZ\/lﬂexp(_ (2><4> ) +(1—a) Xg,;gexp(— (2><9> )

= Ta ~ 0.41677

I
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1 : From the above derivation, using P'r(Y

(INTENTIONALLY LEFT BLANK)
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Problem 31
(a)
A 1 1 a A
E(‘X—aD :/o |x—a|Ada:=A</0 (a—a:)dl:+/ (a:—a)dx)
(G RIS DEE R
To find aareg{g?j?EOX—a‘), set ((ZE(XaD) ) =1+ 22* =0, then a* = —

2

d A
Note that (d >0, soa= B is actually the minimizer.

(Xa|)>

A

a*

(b)

oo

|X—a| |IE*CL|)\@ )\Idgp* </ (G*I))\e*deJr/ ($*G)A€7Axdx)
0 a

/
( [ m%) - ( [ A:éexmdx) N ( [ Ad) - ( [ GAB%)
{

(4)

(oo}

a

)

(2) (3)
= —ae~ — | (ze = +/ e dy | + — ze e +/ e dy | + | (ae =
)= () o i) (o) o)
(2) (3) (4)
= (M—i— a) — (ae?*‘f— %e_)‘“ + i) + (&e%‘f—i— ie_m> + (M)
— 2 —Aa _ l
—atae )

(1) : Direct integration

u=x du = dx
v=—e M duv= e Mdz

= du = dx
C oA gy — \edy over {x cx ‘ a< :c}

(2) : Do integration by parts with > over {x S ‘ O<z< a}

(3) : Do integration by parts with

7NN
SE
8

(4) = Direct integration

log(2
A

~

To find argminE(‘X—aD, set ( d <|X— a’)) =1—2¢* =0, then a* =

ac(0,A)

a*

log(2)
A

=2 e >0, soa=

a*

Note that (dd2 (‘X—aD)
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Problem 32

Because X ~ exponential(A = 7<), the cdf of X is Fx(z) =1— e 3% for x> 0.

(a)

The desired quantity is Pr (X > 2) =1—Fy(2) =e /5

(b)

Pr(X > 2) o473
PT(X > 1) S e

The desired quantity is PT(X > 2 ’ X > 1) = = ¢ 2/3, which equals Pr (X > 1).

This shows the memoryless property of an exponential distribution.

Theoretical Exercise 13

(a)
x
Let X ~ Uniform(a,b), then the cdf of X is Fx(z) = { /a b—adu ife<z<b
0 yifre<a
Let m,) be the median of X, so we have :
1 e u |7 my —a a+b
FX(m(a)):QZ/a b—aduzb—au:a  b—a = M) T T
(b)
Let m, be the median of X, where X ~ N(pu, o?).
1 (x—p)*y . .
Then the pdf of X, say fx(z) = 76$p{ — 7}, is symmetric about L,
V2ro? 202
) 1 62 ()
e, fx(p+6d)=fx(p—29)= mexp{ - @}, Vo€ R = my) = p
(ele] Iz oo 13
0 [ axwdo= [ ix@det [ frode=2 [ ez =1
—00 —00 12 —00
(c)

. [ 1—e? if0<u
Let X ~ Exp(\), then the cdf of X is FX(m)—{ 0 ifr<0
1
Let m., be the median of X, then 5= 1—e Mo,

log(2)
)

1
= log(i) = =AMy = My =
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Theoretical Exercise 19
The pdf of X is fx(x) =X >0, so

E[X*] :/ xk'fX(J;)dac:/ zke A dy
0 0

_D(k+1) /OO AR x<(k+1>_1>e—/\mda:
I
0

C (k+1)
*)
T(k+1) k!
TN TN

(Note that (x) equals 1, since its integrand is the pdf of a T'(k+ 1, \) distribution.)

(INTENTIONALLY LEFT BLANK)
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Theoretical Exercise 25

(W'e solve this problem by (a) CDF method (b) PDF method.)

First note that the transformation 9 : {m ‘ z > V} — {y ’ y > O} 15 bijective and monotone,
T —v\P
— G(r) = )
T F— oy (z) ( o

and that x = 97 1(y) = ay% +rv. (%)
(a)

0 ,yifx<v
Because X ~ Weibull(u7 a, ﬁ), thecdfof Xis Fy(x) = z—v\P ) . (k)

1—exp —( ) Jifx>v

o

B
Note that Y =¥9(X) = <X_”) , so we can derive the cdf of Y :

[e3

X—v

Fy(y) = Pr{Y:g(X) < y} = Pr{( - )ﬁ < y} 2 P’I“{X < ay% +y}

1

Kk ) B — B

= 1—ewp{—(ay v °) }:1—ey,y>0
o

=Y ~ Ezp(1)!

T : Note that the cdf specifies a distribution.
(b)

Note that %@1}("") = %y%_l , and that 97 (y) = ay® +v. (%% %)

X ~ Weibull(v, o, §)
< For € Ry = {x ‘ T > 1/}, fx(x) = ea:p{ _ (TL'—I/)ﬂ}ﬂ<fE—1/>5l

(07

Fory€ Ry = {y ’ y>0}, fyly) = fx(@ () x ’dgil;(y)|
= e 6xp{ - (<ayé —;V) - Vf}i((ayé —;V) - V)B_l X @Fj

= e Y, which is the pdf of exponential(1).

<Y ~ Exponential(1)
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Theoretical Exercise 31

(*)
We can find the pdf fy of Y by applying the theorem in LNp.6 — 10.

Let fx(x) be the pdf of X, where X ~ N(u,o?).

Let Y = g(X) = e¥, so the the range of Y is Ry = {y ‘ y > 0}.

We then have g (Y) = log(X) and ‘dg;i;(y)’ =

(%) : <Note that %g(x) =e">0Vax e Ry =%, sogqgisdifferentiable and strictly monotone.)

So the pdf of y is:

—1 o _ 2
) fx(g_l(x))‘dg (y)‘: 1 emp{_(l 9(y) u)} y>0

dy YV 2mo? 202

0 ,y<o0

An alternative approach is to first derive the cdf Fy of Y, and then obtain the pdf fy fromthe cdf Fy as follows.

Fy(y) = Pr{v <y} = Pr{e¥ <y}
_{ Pr X<log(y)} Cify>0

(%) 0 Lify<0
lo .

Y i@y ify >0

0 ,ify<0

Take derivative on (xx) with respect to y over {y ‘ y > 0}, we obtain :

AL L ey -
fy(y) = dyFy(y) = ny (log(y)) = ymew{ - 52 } if y>0.

(Note that we have applied the Leibniz integral rule.)

Also, it is obvious that fy(y) =0, if y <O0.
Thus, the pdf of Y, fy(y), is:
2
log(y)—p .
0 Lify <0

This verifies our answer above!

1 : You may browse this page for details about Leibniz integral rule.
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R

The following is a brief introduction to R language (about pdf, cdf, quantiles, generating
random samples).

Some problems above require finding the quantiles of a normal distribution, but looking them up on tables
is a very outdated practice. Using R is a more efficient method, below are some basic functions of R:

Let X ~ N(0,1), which is the same as default.
1. pnorm(3)=Pr(X < 3)=%(3), is the cdf.

qnorm(0.2)=®"1(0.2) = 2, ,.

dnorm(0.4)=f(0.4) is the pdf of X at 0.4.

Ll

rnorm(5) generates a sample iid from N(0,1) of size “5”.
For example:

o To have a N(u,0?) distribution, use norm(u, o), for example, norm(3,2) is N(3,4).
o To generate a sample iid from N(3,4) of size 100, use rnorm(100,3,2).
o To find z; o5, use qnorm(0.05).

The above (p,q,d,r) functions can also be used for other distributions, for example:

(What we want) < (Code)
Negative Binomial <— nbinom
Hypergeometric <— hyper

FExponential <— exp
Geometric <— geom
Uniform <— unif
Binomial <— binom
Normal <— norm
— Use (p,q,r,d) + RHS, like rt, qbeta, dchisq, or pf ...
Gamma <— gamma
Postion < pois
Weibull «+— weibull
Cauchy <— cauchy
Beta < beta
x? <= chisq
T+t
F < f

1: You must enter the required parameters, otherwise R will use the default parameters.

Resources with hyperlinks:

A resource for those who have not used R, including instructions for downloading R!

An entry-level learning resource!
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https://r-lover.com/tutorial/r-basic/install-r-and-rstudio/#%E5%AE%89%E8%A3%9DR%E8%B7%9FRStudio
https://yaojenkuo.gitbooks.io/learn-r-the-easy-way/content/
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