＜Problems＞
49.
$p=$ the prob．that the company will refund for a package

$$
\begin{aligned}
= & 1-\frac{0.99^{20}}{}-\frac{C_{1}^{20} \cdot 0.99^{19} \cdot 0.01}{1 \text { defective }}=0.01686 \\
& 0 \text { defective }
\end{aligned}
$$

Let X ：the number of refunded packages among 100 packages．

$$
\because X \sim B(100, p)
$$

\therefore The company should expect to refund

$$
25 \cdot E(X)=25 \cdot 100 \cdot p=42,1483 \text { dollars. }
$$

59
$p=$ the prob．that a person has the same first and last names as you

$$
=\left(\frac{1}{26}\right)^{2}=0.001479
$$

Let X ：the number of people whose first and last names are the same as you among n people．

Method 1 $X \sim \operatorname{Poisson}(\lambda=n p)$
i $P(x \geqslant 1)=1-P(X=0)=1-e^{-n p} \geqslant \frac{3}{4}$
$\therefore n \geqslant \frac{\log 4}{p}=937.135 \quad \Rightarrow 938$ people are needed
Method 2 $X \sim B(n, p)$
$\because P(x \geqslant 1)=1-P(x=0)=1-(1-p)^{n} \geqslant \frac{3}{4}$
$\therefore n \geqslant \frac{-\log 4}{\log (1-p)}=936.4417 \Rightarrow 937$ people are needed
63.

Let X ：the number of times that a person contracts a cold in a given year．
$\because X \sim \operatorname{Poisson}(\lambda)$ ，where $\lambda=\left\{\begin{array}{l}3, \text { with prob．}=0.75 \\ 5, \quad\end{array}\binom{\right.$ drug is }{ benefical }

$$
\begin{aligned}
\therefore P(\lambda=3 \mid X=2) & =\frac{P(X=2 \mid \lambda=3) \cdot P(\lambda=3)}{P(X=2 \mid \lambda=3) \cdot P(\lambda=3)+P(X=2 \mid \lambda=5) \cdot P(\lambda=5)} \\
& =\left(\frac{3^{2} \cdot e^{-3}}{2!} \cdot 0.75\right) /\left(\frac{3^{2} \cdot e^{-3}}{2!} \cdot 0.75+\frac{5^{2} \cdot e^{-5}}{2!} \cdot 0.25\right) \\
& =0.88864
\end{aligned}
$$

77.

Let X ：the number of people that agree to be interviewed if the interviewer is given a list of n people．
Then $X \sim B\left(n, \frac{2}{3}\right)$ ．
（a）when $u=5, P(x \geqslant 5)=P(x=5)=\left(\frac{2}{3}\right)^{5}=0.13169$
（b）When $n=8, P(x \geqslant 5)=P(x=5)+P(x=6)+P(x=7)+P(x=8)$

$$
\begin{aligned}
& =C_{5}^{8}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{3}+C_{6}^{8}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2}+C_{7}^{8}\left(\frac{2}{3}\right)^{7}\left(\frac{1}{3}\right)+\left(\frac{2}{3}\right)^{8} \\
& =0.74135
\end{aligned}
$$

（c）$P($ the interviewer will speak to exactly 6 people）

$$
=\frac{C_{4}^{5}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)}{1} \cdot \frac{\left(\frac{2}{3}\right)}{C}=0.21948
$$

4 of the first 5 people agree to be interviewed
（d）$P($ the interviewer will speak to exactly 7 people）

$$
=C_{4}^{6}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)=0.21948
$$

4 of the first 6 people agree to be interviewed
81.
$p=$ the prob．to get exactly 2 red balls in a selection

$$
=\frac{C_{2}^{4} C_{4}^{8}}{C_{6}^{12}}=0.4545
$$

Let X ：the number of selections until getting exactly 2 red balls．
Then $X \sim \operatorname{geometric}(p)$ with $P(x=n)=(1-p)^{n-1} p \quad \forall n \in \mathbb{N}$ ．

$$
=0.5455^{n-1} \cdot 0.4545
$$

4.20

$$
\begin{aligned}
& x \sim P_{0 i}(\lambda) \Rightarrow P(x=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \text { for } k=0,1, \ldots \\
& E\left[x^{n}\right]
\end{aligned}=\sum^{\infty}=\sum_{=00}^{x=0} x^{n} P(x=x) .
$$

4.21
＜Method 1＞Let S be the number of coins are hood when all n wins are tossed．

$$
\Rightarrow S \sim \operatorname{Binamial}(n, p) \rightarrow P_{\text {caisson }}(\lambda=n p) \text { when } n \text { is large and } P \text { is small }
$$

We can observe X only when $S>0$（the experiment ends）
Then $P(x=1)=P(S=1 \mid S>0)=\frac{P(S=1)}{1-P(S=0)}=\frac{e^{-\lambda} \frac{\lambda}{1}}{1-e^{\lambda} \frac{\lambda^{0}}{0!}}=\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}$
The experiment ends．
＜Method 2 ＞Let T be the number of trials wail the experiment ends

Then $p(x=1)=\sum_{t=1}^{\infty} p(x=1, T=t)$

$$
\begin{aligned}
& =\lambda e^{-\lambda} \cdot \frac{1}{1-\left[1-\left(1-e^{-\lambda}\right)\right]}=\sum_{t=1}^{\infty}\left[1-\left(1-e^{-\lambda}\right)\right]^{t-1} \\
& =\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}
\end{aligned}
$$

So（b）is correct．
4.26

Let X be the number of events are counted
Y be the number of events that occur in a specified time

$$
\Rightarrow Y \sim \operatorname{Poisson}(\lambda)_{\infty} \text { and } X \mid Y=Y \sim \operatorname{Banamial}(Y, P)
$$

Then $P(X=m)=\sum_{y=m}^{\infty} P(x=m \mid Y=y) \cdot P(P=y)$（Note that $y \geqslant m$ ）

$$
\begin{aligned}
& =\frac{I_{1}}{y=m}\binom{y}{m} p^{m}(1-p)^{y-m} \cdot e^{-\lambda} \frac{\lambda}{y!} \\
& =e^{-\lambda p} \frac{(\lambda p)^{m}}{m!} \sum_{y=m}^{\infty} \frac{[\lambda(1-p)]^{y-m}}{(y-m))} e^{-\lambda(1-p)} \text { Let } t=y-m \\
& =e^{-\lambda p \frac{(\lambda p)^{m}}{m!} \sum_{t=0}^{\infty} \frac{[\lambda(1-p)]^{t}}{t!} e^{-\lambda(1-p)}} \sim \text { Poisson }(\lambda(1-p)) \\
& =e^{-\lambda p \frac{(\lambda p)^{m}}{m!}} \text { for } m=0.1 \ldots . .
\end{aligned}
$$

Therefore，$X \sim$ Poisson（ λp ）
Intuitive argument：In Poisson (λ) distribution，λ can be approximated by $n \alpha$ for n is large and α is small．
If each trinal will be success with probability p ， than the number of trials counted is $n \alpha \cdot p \approx \lambda p$
Under $\lambda=10$ and $P=\frac{1}{50} \Rightarrow P(x=m)=e^{-\lambda P \frac{(\lambda P)^{m}}{m!}}=e^{-0.2} \frac{0.2^{m}}{m!}$ for $m=0.1, \ldots$
（a）$P(x=1)=e^{-0.2} \frac{0.2^{1}}{1!}=0.2 e^{-0.2}$
（b）$P(x \geqslant 1)=1-P(x=0)=1-e^{-0.2} \frac{0.2^{0}}{0!}=1-e^{-0.2}$
（c）$P(x \leqslant 1)=1-P(x \geqslant 1)+P(x=1)=1-\left(1-e^{-0.2}\right)+0.2 e^{-0.2}=1.2 e^{-0.2}$
4.28

$$
\begin{aligned}
& x \sim \epsilon_{e 0}(p) \Rightarrow p(x=k)=p(1-p)^{k-1} \text { for } k=1,2, \ldots \\
& P(x=n+k \mid x>n)=\frac{P(x=n+k)}{P(x>n)} \\
& =\frac{p(1-p)^{n+k-1}}{\sum_{t=n+1}^{\infty} p(1-p)^{t-1}} \\
& =\frac{(1-p)^{n+k-1}}{\frac{(1-p)^{p} \cdot 1}{1-(1-p)}} \\
& =P(1-p)^{k-1} \\
& =P(x=k)
\end{aligned}
$$

Verbal argument：幾何分佈代表的是重覆賓唤直到成功所需的次數而且每二欠實䲆昔瓜同樣的骚立事件
（不断執行 indpendent Bexnalli trials with some probabiltoy p）

indpendent Bemallitrials with some pobabitity P 的過埕
\Rightarrow 原始赛験進行 $n+k=\lambda$ ，代表新䆭騕進行 $k=$ 人
4.36
（a）$P(x=1)=\frac{1}{2}=\left(1-\frac{1}{2}\right)$

$$
\begin{aligned}
& P(x=2)=\frac{1}{2} \cdot \frac{1}{3}=\left(\frac{1}{2}-\frac{1}{3}\right) \\
& P(x=3)=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}=\frac{1}{3} \cdot \frac{1}{4}=\left(\frac{1}{3}-\frac{1}{4}\right)
\end{aligned}
$$

$$
\vdots
$$

$$
P(x=i)=\frac{1}{2} \cdot \frac{2}{2} \cdots \cdots \frac{i N}{i} \cdot \frac{1}{i+1}=\frac{1}{i} \cdot \frac{1}{i+1}=\left(\frac{1}{i}-\frac{1}{i+1}\right)
$$

$$
\Rightarrow P(x>i)=1-P(x \leq i)
$$

$$
=1-\sum_{k=1}^{2} P(x=k)
$$

$$
=1-\sum_{k=1}^{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)
$$

$$
=1-\left(1-\frac{1}{i+1}\right)
$$

$$
=\frac{1}{n+1}
$$

Note：$X>i$ 代表前 $i=$ 久抽球都抽到紅球的事件
\Rightarrow Another method is $P(x>i)=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4} \cdots \cdots \frac{i}{i+1}=\frac{1}{i+1}$
（b）$P(x<\infty)=\lim _{n \rightarrow \infty} P(x \leq n)=\lim _{n \rightarrow \infty}(1-P(x>n))=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1$
（c）$E[X]=\sum_{x=1}^{\infty} x P(X=x)$

$$
\begin{aligned}
& =\sum_{\sum_{=1}^{\infty} x\left(\frac{1}{x} \cdot \frac{1}{x+1}\right)}^{\text {业 } \frac{1}{x+1}} \\
& =\infty
\end{aligned}
$$

Another method：$\because X$ is a nonnegative infeger－valued random variable

$$
\begin{aligned}
& \therefore \text { We may apply } E[x]=\sum_{x=1}^{\infty} P(x \geqslant x) \text { in theoretical exercise } 4.5 \\
& \Rightarrow E[x]=\sum_{x=1}^{\infty} P(x \geqslant x) \\
&=\sum_{x=1}^{\infty} P(x>x-1) \\
&=\sum_{x=1}^{\infty} \frac{1}{x} \\
&=\infty
\end{aligned}
$$

