HW2－Solution

1．（Problem 5）
（a）There are 2^{5} outcomes in the sample space．（Each of the 5 components is either working or failed．）
（b）

$$
W=\{(1,1,0,0,0),(1,1,0,0,1),(1,1,0,1,0),(1,1,1,0,0),(1,1,0,1,1),(1,1,1,0,1),(1,1,1,1,0),
$$

$$
(1,1,1,1,1),(0,0,1,1,0),(0,0,1,1,1),(0,1,1,1,0),(1,0,1,1,0),(0,1,1,1,1),(1,0,1,1,1)\}
$$

（c）There are 2^{3} outcomes in A ．（Each of X_{1}, X_{2} and X_{3} is either 0 or 1．）
（d）$A \cap W=\{(1,1,0,0,0),(1,1,1,0,0)\}$
2．（Problem 13）
Let E_{i} be the event of reading i th newspaper，$i=1,2,3$ ．
（a）

$$
\begin{aligned}
& P \text { (read only one newspaper) } \\
= & P\left(E_{1} \cap E_{2}^{\complement} \cap E_{3}^{\complement}\right)+P\left(E_{1}^{\complement} \cap E_{2} \cap E_{3}^{\complement}\right)+P\left(E_{1}^{\complement} \cap E_{2}^{\complement} \cap E_{3}\right) \\
= & (10 \%-8 \%-2 \%+1 \%)+(30 \%-8 \%-4 \%+1 \%)+(5 \%-2 \%-4 \%+1 \%)=20 \%
\end{aligned}
$$

So \＃（people who read only one newspaper）$=100000 \times 20 \%=20000$ ．
（b）

$$
\begin{aligned}
& P \text { (read at least two newspapers) } \\
= & P\left(E_{1} \cap E_{2} \cap E_{3}^{\complement}\right)+P\left(E_{1} \cap E_{2}^{\complement} \cap E_{3}\right)+P\left(E_{1}^{\complement} \cap E_{2} \cap E_{3}\right)+P\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
= & (8 \%-1 \%)+(2 \%-1 \%)+(4 \%-1 \%)+1 \%=12 \%
\end{aligned}
$$

So \＃（people who read at least two newspapers $)=100000 \times 12 \%=12000$ ．
（c）

$$
\begin{aligned}
& P \text { (read at least one morning newspaper plus an evening newspaper) } \\
= & P\left(E_{1} \cap E_{2} \cap E_{3}^{\complement}\right)+P\left(E_{1}^{\complement} \cap E_{2} \cap E_{3}\right)+P\left(E_{1} \cap E_{2} \cap E_{3}\right) \\
= & (8 \%-1 \%)+(4 \%-1 \%)+1 \%=11 \%
\end{aligned}
$$

So the desired number is $100000 \times 11 \%=11000$ ．
（d）

$$
\begin{aligned}
& P(\text { not read any newspaper }) \\
= & 1-P(\text { read only one newspaper })-P(\text { read at least two newspapers }) \\
= & 100 \%-20 \%-12 \%=68 \%
\end{aligned}
$$

So \＃（people do not read any newspaper $)=100000 \times 68 \%=68000$ ．
（e）

$$
\begin{aligned}
& P(\text { read only one morning newspaper and one evening newspaper) } \\
= & P\left(E_{1} \cap E_{2} \cap E_{3}^{\complement}\right)+P\left(E_{1}^{\complement} \cap E_{2} \cap E_{3}\right) \\
= & (8 \%-1 \%)+(4 \%-1 \%)=10 \%
\end{aligned}
$$

So \＃（people read only one morning newspaper and one evening newspaper）$=100000 \times 10 \%=10000$ ．

3．（Problem 17）
The desired probability is $\frac{\binom{16}{8}\binom{8}{0}}{\binom{25}{15}}=0.1102436$ ．

4．（Problem 26）
Let E_{i} be the event that the initial outcome is i and the player wins，$i=2,3, \ldots, 12$ ．
By the statements in this problem，$P\left(E_{2}\right)=P\left(E_{3}\right)=P\left(E_{12}\right)=0, P\left(E_{7}\right)=\frac{6}{36}$ and $P\left(E_{11}\right)=\frac{2}{36}$ ．
For $i=4,5,6,8,9,10$ ，define $E_{i, n}$ be the events that the initial sum is i and the player wins on the nth roll． Then

$$
P\left(E_{4}\right)=\sum_{n=2}^{\infty} P\left(E_{4, n}\right)=\sum_{n=2}^{\infty}\left(\frac{3}{36}\right)\left(1-\frac{6}{36}-\frac{3}{36}\right)^{n-2}\left(\frac{3}{36}\right)=\left(\frac{3}{36}\right)^{2} \frac{1}{1-\frac{27}{36}}=\frac{1}{36} .
$$

Similarly，$P\left(E_{5}\right)=P\left(E_{9}\right)=\left(\frac{4}{36}\right)^{2} \frac{1}{1-\frac{26}{36}}=\frac{8}{36 \times 5}, P\left(E_{6}\right)=P\left(E_{8}\right)=\left(\frac{5}{36}\right)^{2} \frac{1}{1-\frac{25}{36}}=\frac{25}{36 \times 11}$ and $P\left(E_{10}\right)=P\left(E_{4}\right)$ ．
Thus the desired probability is

$$
\sum_{i=2}^{12} P\left(E_{i}\right)=\frac{6}{36}+\frac{2}{36}+2\left(\frac{1}{36}+\frac{8}{36 \times 5}+\frac{25}{36 \times 11}\right)=0.4929293
$$

5．（Problem 28）
Case 1：Without replacement
（a）$P($ each of the 3 balls is of the same color $)=\frac{\binom{5}{3}+\binom{6}{3}+\binom{8}{3}}{\binom{19}{3}}=0.08875129$
（b）$P($ each of the 3 balls is of different colors $)=\frac{\binom{5}{1}\binom{6}{1}\binom{8}{1}}{\binom{19}{3}}=0.247678$
Case2：With replacement
（a）P（each of the 3 balls is of the same color $)=\left(\frac{5}{19}\right)^{3}+\left(\frac{6}{19}\right)^{3}+\left(\frac{8}{19}\right)^{3}=0.1243622$
（b）$P($ each of the 3 balls is of different colors $)=\left(\frac{5}{19}\right)\left(\frac{6}{19}\right)\left(\frac{8}{19}\right) \times 3!=0.2099431$
6．（Problem 37）
（a）$P($ answer correctly all 5 problems $)=\frac{\binom{7}{5}}{\binom{10}{5}}=\frac{1}{12}$
（b）P（answer correctly at least 4 of the problems）$=\frac{\binom{7}{5}+\binom{7}{4}\binom{3}{1}}{\binom{10}{5}}=\frac{1}{2}$
7．（Problem 40）
（a）$P($ at least one of the 4 balls chosen is green $)=1-\frac{\binom{15}{4}}{\binom{22}{4}}=\frac{170}{209}$
（b）$P($ one ball of each color is chosen $)=\frac{\binom{4}{1}\binom{5}{1}\binom{6}{1}\binom{7}{1}}{\binom{22}{4}}=\frac{24}{209}$
8．（Problem 45）
（a）$P($ open on k th try without keys replaced $)=\frac{\binom{n-1}{k-1} \cdot(k-1)!\cdot 1}{\binom{n}{k} \cdot k!}=\frac{1}{n}$
（b）$P($ open on k th try with keys replaced $)=\left(\frac{n-1}{n}\right)^{k-1} \cdot \frac{1}{n}$
9．（Problem 48）
There are 12^{20} ways to assign 20 people to 12 months．To make 4 months containing exactly 2 birthdays and 4 containing exactly 3 birthdays，there are $\binom{12}{4}\binom{8}{4}$ ways to select the months，and $\frac{20!}{2!2!2!2!3!3!3!3!}$ ways to assign 20 people to the selected months．So the desired probability is

$$
\frac{\binom{12}{4}\binom{8}{4} \frac{20!}{2!2!2!2!3!3!3!3!}}{12^{20}}=\frac{5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19}{2 \cdot 12^{14}}=0.00106042
$$

10．（Problem 54）
Let the four suits be $S_{1}, S_{2}, S_{3}, S_{4}$ ．

$$
\begin{aligned}
& P(\text { void in at least one suit }) \\
= & P\left(\text { void in } S_{1} \cup \text { void in } S_{2} \cup \text { void in } S_{3} \cup \operatorname{void} \text { in } S_{4}\right) \\
= & \sum_{i=1}^{4} P\left(\operatorname{void} \text { in } S_{i}\right)-\sum_{i<j} P\left(\text { void in } S_{i} \cap \operatorname{void} \text { in } S_{j}\right)+\sum_{i<j<k} P\left(\operatorname{void} \text { in } S_{i} \cap \operatorname{void} \text { in } S_{j} \cap \operatorname{void} \text { in } S_{k}\right) \\
- & P\left(\text { void in } S_{1} \cap \text { void in } S_{2} \cap \text { void in } S_{3} \cap \operatorname{void} \text { in } S_{4}\right) \\
= & \binom{4}{1} \cdot \frac{\binom{39}{13}}{\binom{52}{13}}-\binom{4}{2} \cdot \frac{\binom{26}{13}}{\binom{52}{13}}+\binom{4}{3} \cdot \frac{\binom{13}{13}}{\binom{52}{13}}-0=\frac{1621364909}{31750677980}=0.05106552
\end{aligned}
$$

