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Problem 7.21
Problem. Fifty people are placed randomly in 200 rooms. Compute (a) the expected number of rooms
containing exactly 2 people; (b) the expected number of non-vacant rooms.

We assume each of the 50 people independently chooses one of the 200 rooms with equal probability
1/200.

Let Nj be the number of people in room j, j = 1, . . . , 200. Then, for each fixed j,

Nj ∼ Binomial
(
50,

1

200

)
,

since each person independently goes to room j with probability 1/200.
(Note

(N1, . . . , N200) ∼ Multinomial
(
50, 200,

1

200
, . . . ,

1

200

)
,

但在此題中不必使用它們的 joint distribution，只須用到它們的 marginal distributions.)

(a) Expected number of rooms with exactly two people

For each room j = 1, 2, . . . , 200, define the indicator

Ij =

1, if room j contains exactly 2 people, (i.e.Nj = 2)

0, otherwise.(i.e.Nj ̸= 2)

Then the total number of rooms with exactly 2 people T is

T =
200∑
j=1

Ij .

By linearity of expectation,

E[T ] =
200∑
j=1

E[Ij ].

Since all rooms are identically distributed,

E[Ij ] = P (Nj = 2).

Because Nj ∼ Binomial(50, 1/200),

P (Nj = 2) =

(
50

2

)(
1

200

)2 (
1− 1

200

)50−2

=

(
50

2

)(
1

200

)2 (
199

200

)48

.

Therefore,

E[T ] = 200 ·
(
50

2

)(
1

200

)2 (
199

200

)48

.
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So the expected number of rooms containing exactly two people is

E[# rooms with exactly 2 people] = 200

(
50

2

)(
1

200

)2 (
199

200

)48

.

注意在此題的計算中，只須使用到 (I1, . . . , I200) 的 marginal distributions，無須使用到它們
的 joint distribution。這使得計算能簡化。

但有興趣的同學，可嘗試推導它們的 joint distribution。

(注意： I1, . . . , I200 are not independent because they are transformations of N1, . . . , N200,
respectively, but N1, . . . , N200 are not independent.)

(b) Expected number of non-vacant rooms

Now define, for each room j = 1, 2, . . . , 200,

Jj =

1, if room j is non-vacant (i.e. has at least one person,Nj ≥ 1)

0, if room j is vacant.(i.e.Nj = 0)

Then the total number of non-vacant rooms S is

S =
200∑
j=1

Jj ,

and again by linearity of expectation,

E[S] =
200∑
j=1

E[Jj ].

For a fixed room j,
E[Jj ] = P (Nj ≥ 1) = 1− P (Nj = 0).

But
P (Nj = 0) =

(
1− 1

200

)50

=

(
199

200

)50

.

Hence
E[Jj ] = 1−

(
199

200

)50

.

Therefore,

E[S] = 200

[
1−

(
199

200

)50
]
.

So the expected number of non-vacant rooms is

E[# non-vacant rooms] = 200

[
1−

(
199

200

)50
]
.

注意在此題的計算中，只須使用到 (J1, . . . , J200) 的 marginal distributions，無須使用到它們
的 joint distribution。這使得計算能簡化。

但有興趣的同學，可嘗試推導它們的 joint distribution。
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(注意： J1, . . . , J200 are not independent, because they are transformations of N1, . . . , N200,
respectively, but N1, . . . , N200 are not independent.)

Problem 7.41
Problem. Let X1, X2, . . . be independent with common mean µ and common variance σ2, and set

Yn = Xn +Xn+1 +Xn+2.

For j ≥ 0, find Cov(Yn, Yn+j).
Solution. Write

Yn = Xn +Xn+1 +Xn+2, Yn+j = Xn+j +Xn+j+1 +Xn+j+2.

Using bilinearity of covariance,

Cov(Yn, Yn+j) = Cov
( 2∑

k=0

Xn+k,
2∑

ℓ=0

Xn+j+ℓ

)
=

2∑
k=0

2∑
ℓ=0

Cov
(
Xn+k, Xn+j+ℓ

)
.

Because the Xi are independent, we have

Cov(Xr, Xs) =

σ2, r = s,

0, r ̸= s.

Hence each nonzero term in the double sum corresponds to an index that appears in both Yn and Yn+j ;
each such overlap contributes σ2.

The set of indices in Yn is {n, n+1, n+2}, and in Yn+j is {n+j, n+j+1, n+j+2}. The intersection
size depends on j:

• j = 0: the two sets are identical, so all three indices overlap. Thus

Cov(Yn, Yn) = Var(Yn) = Var(Xn +Xn+1 +Xn+2) = 3σ2.

• j = 1: the sets are {n, n+ 1, n+ 2} and {n+ 1, n+ 2, n+ 3}, whose intersection is {n+ 1, n+ 2}
(two common terms). Hence

Cov(Yn, Yn+1) = 2σ2.

• j = 2: the sets are {n, n+1, n+2} and {n+2, n+3, n+4}, with intersection {n+2} (one common
term). Thus

Cov(Yn, Yn+2) = σ2.

• j ≥ 3: the sets {n, n+1, n+2} and {n+ j, n+ j+1, n+ j+2} are disjoint, so there are no common
indices and every covariance term is zero. Hence

Cov(Yn, Yn+j) = 0, j ≥ 3.
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Therefore,

Cov(Yn, Yn+j) =



3σ2, j = 0,

2σ2, j = 1,

σ2, j = 2,

0, j ≥ 3.

Problem 7.42
Problem. The joint density function of X and Y is given by

fX,Y (x, y) =
1

y
e−(y+x/y), x > 0, y > 0.

Find E[X], E[Y ], and show that Cov(X,Y ) = 1.
Solution.

1. Find the marginal density of Y

We integrate out x:

fY (y) =

∫ ∞

0

fX,Y (x, y) dx =

∫ ∞

0

1

y
e−(y+x/y) dx, y > 0.

Let u = x/y so that x = yu and dx = y du. Then

fY (y) =
1

y
e−y

∫ ∞

0

e−uy du = e−y

∫ ∞

0

e−u du = e−y, y > 0.

Thus Y has an Exp(1) distribution: fY (y) = e−y for y > 0, so

E[Y ] = 1, Var(Y ) = 1.

2. Conditional distribution of X given Y = y

For x > 0, y > 0,

fX|Y (x | y) = fX,Y (x, y)

fY (y)
=

1
y e

−(y+x/y)

e−y
=

1

y
e−x/y, x > 0.

This is an exponential density with rate 1/y (or mean y). Hence

X | Y = y ∼ Exp
(
rate = 1/y

)
,

so
E[X | Y = y] = y, Var(X | Y = y) = y2.

Therefore, as random variables,
E[X | Y ] = Y.
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3. Compute E[X]

Using the law of total expectation,

E[X] = E
(
E[X | Y ]

)
= E[Y ] = 1.

Thus we have
E[X] = 1, E[Y ] = 1.

4. Show that Cov(X,Y ) = 1

We use the identity
Cov(X,Y ) = E[XY ]− E[X]E[Y ].

First compute E[XY ] by using the law of total expectation via conditioning on Y :

E[XY ] = E(E[XY | Y ]) = E
(
Y E[X | Y ]

)
= E(Y · Y ) = E[Y 2].

Since Y ∼ Exp(1), we know

E[Y 2] = Var(Y ) + (E[Y ])2 = 1 + 12 = 2.

Therefore,
Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 2− (1)(1) = 1.

Hence
E[X] = 1, E[Y ] = 1, Cov(X,Y ) = 1.

Alternatively, if not using conditional expectation, E(X), E(Y ), and E(XY ) can also be calculated by
double integration as shown below:

E(X) =

∫ ∞

0

∫ ∞

0

xf(x, y) dx dy =

∫ ∞

0

∫ ∞

0

x

y
e−(y+x/y) dx dy =

∫ ∞

0

e−y

y

∫ ∞

0

xe−x/y dx dy

=

∫ ∞

0

e−y

y

[
−xye−x/y

∣∣∣∞
0

+ y

∫ ∞

0

e−x/y dx

]
dy

=

∫ ∞

0

e−y

∫ ∞

0

e−x/y dx dy =

∫ ∞

0

ye−y dy = −ye−y
∣∣∣∞
0

+

∫ ∞

0

e−ydy = 1.

E(Y ) =

∫ ∞

0

∫ ∞

0

yf(x, y) dx dy =

∫ ∞

0

∫ ∞

0

e−(y+x/y) dx dy =

∫ ∞

0

e−y

(∫ ∞

0

e−x/ydx

)
dy

=

∫ ∞

0

ye−ydy = −ye−y
∣∣∣∞
0

+

∫ ∞

0

e−ydy = 1.
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E(XY ) =

∫ ∞

0

∫ ∞

0

xy f(x, y) dx dy =

∫ ∞

0

∫ ∞

0

xe−(y+x/y)dx dy =

∫ ∞

0

e−y

∫ ∞

0

xe−x/ydx dy

=

∫ ∞

0

e−y

[
−xye−x/y

∣∣∣∞
0

+ y

∫ ∞

0

e−x/ydx

]
dy

=

∫ ∞

0

y2e−ydy = −y2e−y
∣∣∣∞
0

+ 2

∫ ∞

0

ye−ydy = 2.

Hence, Cov(X,Y ) = E(XY )− E(X)E(Y ) = 2− 1 · 1 = 1.
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# 47
,
δ i ~ P 1 k

,
θ )

: i
=1 . ? . 3,Var(δ i ) =θθi ,

smeti ,tjareuncorrelated →ov (8i , tj ) = O titj
( G ) ω V (λ , λ , + ti ) = Cov (t ,+ )+ω r (], γ ) :↓Gl( ] . ) + O =

θ

Var (γ . +λi) = Var (5 , ) + Uar (γr ) + 2Gv (A , λi) =
K K

+ O :
2 K

θ 2
+

θ 2 ㉒

*orr ( t , Jifo )

:au (titietdVarlt) larltit )器恐江
[b) COV (H , + 2 tc

,
A ,
+tr +ts ) = Varlt , ) + Coult. tr ) + CGx (8. .γ3 ) +2ω r(t , t , )

+ 2Var (λ2) + [Ov ( Ac , γ3 )

:

0
= k + O + O + O

∞θ

2kiO
=θ
23水

K
+

5kVar (λ . + 2ti ) = VGr (A, ) + V[.r(?.2+ Cωv (+, 28 :) = θ2
4k
=θ 2㉗
K
:
3kVGr (+++e+t3 ) = Var (H, 1+Var ( t=)+↓arA 3)

= θ+θ+θ ㉗
3k

orr (λ ,
+2+2 ,

λ ,++i +γs) =ω
v [H , + 2γ c

,
λ ,
+fz ++s )

=
㉒

3kVarA. + 2 γr)VGr (A ++ r +f3 )
5K

.

θz②

姿
# 49 . (a ) Di是第一個頂點和其他州11個頂點連線成功的總次數頂點i

和不同的頂點連線成功的機率皆為 P , 且每次連線皆獨立

→mdependent Bernoullicp)
→ Di 是 [n - 1 ) 個napendent Bernoullicp) random variables 的總和
⇒ Di ~ Bim (n - 1

, p ) .
Var ( Di ) = (n - 11P ( 1 - P )

(b)若由几個頂點中任取 2 個 ( 第 K 和第 l ] ,其中 k <l , kl = 1 . 2 . … n

令 Eae= 1 . ifk和li 間有連線[ 0 Ow
→ Eae~Bernoulli ( p), Ec .i'sare mdependnt
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#4G (b) Di :ƩEuiteEie , Dj 飛Eajt飛 Eilk<i

ij
ω v !DiPj:ovl繼繼iu1流ie_前Eaji:ej

= Ov (Eij.Eij) =Var (Eij) =
P ( 1 - P)

Var ( Di ) =Var (Dj ) = (n - 1 )P( 1 -P )

>Corr (Di ,Dj )
:Gu (Dr , Dj ] P( 1 -P) 1

VarlPi )Var ( 1)j)
" !

n- 1 ) p(1-p)
=

n - 1

1

→COrrIDiDj)n - 1! .

iij
Qij

#53 . fx (x) = %↑ox
^

ydy = 5x
=

y
'

。

0

: 5x
4
O<x/

0 Ow

fKAIY1x 1 :faxfrelx
.y ): 15

x,
x
'

Y =

x
叫, Ocyexcl

E(↑
"
( γ *x1 = f

。

"

y
"
, Y.dy= f。

“

xy"
"

dy= t 2( x .y
""

)
。

*

=

k+2x "
,

O
<xc1
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#57 . N :一群鴨子裡有 N 隻鴨子 N ~ Poisson (6 ) .10 位獵人的目標互相獨立

10 位獵人的命中率是 0
. 6 ,

θ 1
≤
i =N .

γ i " [ d 第 i 隻鴨子被命半

→ 令 γ是被命中的子數,没有被命子
:

: :
,

:
中

GivenN = n.
θ

1 ≤ :. i ≤ n
.
Jiln ~ Bernoulli ( p ) 第 j個人沒選到第

p = P (γi= 1| N=n ) = 1 - P(没有人命中第一隻鴨子卜(公然^"隻鴨

↓
= 1 - 11 - n. 6 jo 第 j{個人

選到第i隻鴨子但没命中

E (A 1N : n ) = El"γ i /N =n ) =E ( γi | Nn ) =P=np : n.11 - ( 1 - n6 j0 ]
E (A) :☆ E (γ / N ) ) = E (N . 11 - ( 1 - 6) 0 )) =n. ( 1 - / | - 6) 0 ). e66

^

n !

RMK : ( 1 )計算不需使用小 … tn 在給定 N =n 時的 jointpmf ,只需使用各目
的 margnalpmf , 這使得計算可以簡化

(2 )因為在給定Nin 時子 …λ並非mdependen[ →A /N :n的分配

不是 BMOMialkn , P)

#影 Oγ:明年的風暴次數

明年是good year → } - Berlo .
4 )

明年是badyear
A 1 Y: 1 ~ poisson ( 3 .

)
,
A 1 Y: Orpoisson (5 )

E 1 λ|↑= 1 ) = 3 = Var (+| Y = 1 ) , E (γ 1 T = 0) = 5 : Var( A 1Ψ= O

E ( γ ) = EF( γ 1 τ . 1 ) = 0 , 4 , E (γ 1 Y= 1 ) + O.

6 EA1 Y = O) = 4 . 2
,

Var (t ) = E
,
(Var !λ 1 Y 1 ) + VardE 1A / Y 1 )

: 0 ,
4 . Var (A 1 Y= 1 ) + 0 .6.VarA 1Y 1 ) + O .13 - 421 P + 0

.
6 . ( 5 - 4

. 2)]
= O .
4 . : 3 + O . 65 + 0

.
96 : 5. 16
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NTHU MATH 2810, 2025 Solution to Homework 10

Problems:

7.79

X ∼ U(0, 1), a0 = 0, a1 =
1

2
, a2 = 1.

I =

0, a0 = 0 < X ≤ 1
2
= a1,

1, a1 =
1
2
< X ≤ 1 = a2.

=⇒ I ∼ Bernoulli(
1

2
)

fX|I(x|I = 0) =


1

P (0<X≤ 1
2
)
= 2, 0 < x ≤ 1

2
,

0, otherwise,
fX|I(x|I = 1) =


1

P ( 1
2
<X≤1)

= 2, 1
2
< x ≤ 1,

0, otherwise.

1. By Proposition 6.1, the quantity is minimized when

yi = E(X | I = i) = E(X | ai < X ≤ ai+1) , i = 0, 1.

So, we have

y0 = E(X | I = 0) =

∫ 1/2

0

xfX|I=0(x) dx =

∫ 1/2

0

2x dx =
1

4
,

y1 = E(X | I = 1) =

∫ 1

1/2

xfX|I=1(x) dx =

∫ 1

1/2

2x dx =
3

4
.

Now, the optimal quantizer is given by Y = E[X|I].

2. Calculate E[(X − Y )2]

E

[
(X − Y )2

]
=

1∑
i=0

E

[
(X − yi)

2 | I = i

]
P (I = i)

=
1

2

(∫ 1/2

0

2
(
x− 1

4

)2
dx+

∫ 1

1/2

2
(
x− 3

4

)2
dx

)
=

1

48
.
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7.82

By question, we have the joint pdf of X and Y s.t.

fX,Y (x, y) =
1√
2π

e−y exp

[
−(x− y)2

2

]
, 0 < y < ∞, −∞ < x < ∞.

(a)

MX,Y (t1, t2) = E
(
et1X+t2Y

)
=

∫ ∞

0

∫ ∞

−∞

1√
2π

et1x+t2ye−y exp

[
−(x− y)2

2

]
dx dy

=

∫ ∞

0

∫ ∞

−∞

1√
2π

exp

[
t1x+ t2y − y − x2 − 2xy + y2

2

]
dx dy

=

∫ ∞

0

∫ ∞

−∞

1√
2π

exp

[
−1

2

(
x2 − 2(t1 + y)x

)
+ t2y − y − y2

2

]
dx dy

=

∫ ∞

0

∫ ∞

−∞

1√
2π

exp

[
−1

2

(
x− (t1 + y)

)2
+

(t1 + y)2

2
+ t2y − y − y2

2

]
dx dy

=

∫ ∞

0

exp

[
t21
2
+ (t1 + t2 − 1)y

] ∫ ∞

−∞

1√
2π

exp

[
−1

2

(
x− (t1 + y)

)2]
︸ ︷︷ ︸

pdf of N(y+t1,1) =⇒ 積分值= 1

dx dy

= et
2
1/2

∫ ∞

0

e(t1+t2−1)y dy

=


et

2
1/2

1−t1−t2
, t1 + t2 < 1,

do not exist, t1 + t2 ≥ 1.

(b)

MX(t1) = MX,Y (t1, 0) =

 et
2
1/2

1−t1
, t1 < 1,

do not exist, t1 ≥ 1.

MY (t2) = MX,Y (0, t2) =

 1
1−t2

, t2 < 1,

do not exist, t2 ≥ 1.
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Solution Manual Homework 10
NTHU MATH 2810, Probability (Sep ∼ Dec 2025) Term: Fall 2025
Instructor: Shao-Wei Cheng Date: December 10, 2025

——————————————————–
Theoretical 7.6.
Let A1, A2, . . . , An be arbitrary events, and define Ck = {at least k of the Ai occur}. Show that

n∑
k=1

P (Ck) =
n∑

k=1

P (Ak)

Hint: Let X denote the number of the Ai that occur. Show that both sides of the preceding equation
are equal to E[X].

Solution:
令 X 表示 A1, . . . , An 中發生的事件總數。我們可以利用 Indicator 來表示 Ai：

IAi =

{
1 若Ai 發生
0 若Ai 未發生

⇒ IAi ∼ Bernoulli(P (Ai))

則 X 可寫為所有 IAi 的總和：

X =

n∑
i=1

IAi

對兩邊取期望值：

E[X] = E

[
n∑

i=1

IAi

]
=

n∑
i=1

E[IAi ] =

n∑
i=1

P (Ai) . . . (∗1)

另一方面，由定義可知 Ck = {X ≥ k}，因此：
n∑

k=1

P (Ck) =

n∑
k=1

P (X ≥ k)

=
n∑

k=1

n∑
s=k

P (X = s)

=
n∑

s=1

s∑
k=1

P (X = s)

=
n∑

s=1

s · P (X = s)

=

n∑
s=0

s · P (X = s) (補上s = 0 的項，其值為 0)

= E[X] . . . (∗2)

由 (∗1) 和 (∗2) 可知：
n∑

k=1

P (Ck) =
n∑

k=1

P (Ak)

註: (∗2) 其實為套用 Homework 4 中 Theoretical Exercises — Problem 4.5 之結果。
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Theoretical 7.18.
Suppose that X1 and X2 are independent random variables having a common mean µ. Suppose also
that Var(X1) = σ2

1 and Var(X2) = σ2
2. The value of µ is unknown, and it is proposed that µ be

estimated by a weighted average of X1 and X2. That is, λX1 + (1− λ)X2 will be used as an estimate
of µ for some appropriate value of λ. Which value of λ yields the estimate having the lowest possible
variance? Explain why it is desirable to use this value of λ.

Solution:
令估計量為 µ̂ = λX1 + (1− λ)X2，期望值為 E[µ̂] = λµ+ (1− λ)µ = µ (不偏估計量)。
由於 X1 與 X2 獨立，其 Cov(X1, X2) = 0，故變異數為：

Var(µ̂) = λ2Var(X1) + (1− λ)2Var(X2)

= λ2σ2
1 + (1− λ)2σ2

2

為了挑選 λ 以使得變異數能最小，我們對 λ 微分並設為 0：
d

dλ
Var(µ̂) = 2λσ2

1 + 2(1− λ)(−1)σ2
2 = 0

2λσ2
1 − 2(1− λ)σ2

2 = 0

λσ2
1 = (1− λ)σ2

2

λσ2
1 = σ2

2 − λσ2
2

λ(σ2
1 + σ2

2) = σ2
2

λ =
σ2
2

σ2
1 + σ2

2

因二階導數為 d2

dλ2 Var(µ̂) = 2(σ2
1 + σ2

2) > 0，故確認其為最小值。

使用此 λ 值，我們給 X1 的權重是 σ2
2

σ2
1+σ2

2
，給 X2 的權重是 σ2

1

σ2
1+σ2

2
，這表示變異數越小的變數，其權重

越大（權重與變異數成反比）。
另外，由於 E[µ̂] = µ，故 Var(µ̂) = E{(µ̂ − µ)2} 即為估計量 µ̂ 的均方誤差 (Mean Squared Error,

MSE)，其中 µ̂− µ 為估計誤差。因此，找最小變異數等價於找最小的 MSE。
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Theoretical 7.52.
Use Table 7.2 to determine the distribution of

∑n
i=1Xi when X1, . . . , Xn are independent and identi-

cally distributed exponential random variables, each having mean 1/λ.

Solution:
已知 Xi ∼ Exp(λ) (平均值 1/λ)，其動差生成函數 (MGF) 為：

MXi(t) =
λ

λ− t
, t < λ

令 Y =
∑n

i=1Xi。由於 Xi 互相獨立，Y 的 MGF 等於各個 Xi 的 MGF 皆代入相同的 t 時的乘積：

MY (t) =

n∏
i=1

MXi(t)

=

(
λ

λ− t

)n

查 Table 7.2，這就是 Gamma(s = n, λ) 分布的 MGF 形式。

根據 MGF 的唯一性，可知：∑n
i=1Xi ∼ Gamma(n, λ)

Figure 1: Table 7.2
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